error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = nano-biosafety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5020 KB  
Article
Siloxane and Nano-SiO2 Dual-Modified Bio-Polymer Coatings Based on Recyclable Spent Mushroom Substrate: Excellent Performance, Controlled-Release Mechanism, and Effect on Plant Growth
by Jianrong Zhao, Yuanhao Zhang, Fuxin Liu, Songling Chen, Hongbao Wu and Ruilin Huang
Agriculture 2026, 16(1), 76; https://doi.org/10.3390/agriculture16010076 - 29 Dec 2025
Viewed by 191
Abstract
Spent mushroom substrate (SMS)-derived bio-based polyurethane coatings typically exhibit poor hydrophobicity and short nutrient release durations, limiting their ability to satisfy long-term crop requirements. This study developed improved controlled-release urea by preparing water-repellent and compact bio-polymer coatings from recyclable SMS using non-toxic siloxane [...] Read more.
Spent mushroom substrate (SMS)-derived bio-based polyurethane coatings typically exhibit poor hydrophobicity and short nutrient release durations, limiting their ability to satisfy long-term crop requirements. This study developed improved controlled-release urea by preparing water-repellent and compact bio-polymer coatings from recyclable SMS using non-toxic siloxane and nano-SiO2 modifiers through simple processes. The dual modification markedly reduced water absorption (from 6.60% to 4.43%) and porosity (from 6.32% to 3.92%), creating a dense coating with lotus-leaf-like nanoscale surface protrusions and fewer intermembrane pores. As a result, the nitrogen (N) release period of the dual-modified bio-polymer-polyurethane-coated urea (SBPCU) with a 7% coating thickness was extended from 23 days to 42 days. Phytotoxicity assessments confirmed the excellent biosafety of the bio-polymer coating, revealing no adverse effects on maize growth and even promotional effects at low concentrations. This approach offers a sustainable, eco-friendly, and scalable strategy for producing bio-polymer-coated urea from agricultural waste, serving as a viable alternative to petrochemical coatings while improving nutrient use efficiency and biosafety. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 3543 KB  
Article
Traceable and Biocompatible Carbon Dots from Simple Precursors: A Pre-Deployment Safety Baseline
by Christian Silva-Sanzana, Plinio Innocenzi, Luca Malfatti, Federico Fiori, Francisca Blanco-Herrera, Juan Hormazabal, María Victoria Gangas, Oscar Diaz and Iván Balic
Agrochemicals 2025, 4(4), 20; https://doi.org/10.3390/agrochemicals4040020 - 20 Nov 2025
Viewed by 1925
Abstract
Carbon dots (CDs) are promising for agro-environmental applications; however, clear connections between synthesis, photophysical properties, size, and biosafety are often not well established. In this study, we map these relationships for glucose–arginine CDs (GA-CDs). By using microwave and hydrothermal routes at precursor ratios [...] Read more.
Carbon dots (CDs) are promising for agro-environmental applications; however, clear connections between synthesis, photophysical properties, size, and biosafety are often not well established. In this study, we map these relationships for glucose–arginine CDs (GA-CDs). By using microwave and hydrothermal routes at precursor ratios of 1:3, 1:9, and 1:15, we produced sub-10 nm nanoparticles (analyzed by dynamic light scattering and atomic force microscopy) that exhibit tunable absorption and emission properties, as well as surface properties (demonstrated through UV–Vis spectroscopy, 3D photoluminescence, and FTIR analysis). The hydrothermal 1:9 condition yielded the narrowest size distribution and red-shifted photoluminescence. Across biological models spanning plants, insects, plant-growth-promoting bacteria (PGPR), and human cells, GA-CDs were well tolerated, with no adverse changes detected in plant stress markers, aphid feeding behavior or fecundity, or PGPR growth. In A549 cells, viability remained stable up to a concentration of 0.125 mg mL−1, while exposure to 0.5 mg mL−1 reduced viability, establishing a practical operating range. These results provide a clearer picture of how the structure and properties of carbon dots derived from arginine and glucose are correlated to their safety. The GA-CDs are, therefore, useful, and traceable tools for agro-environmental research. The findings support their use as biocompatible nanomaterials for studying interactions among plants, insects, and microbes in agriculture. Full article
(This article belongs to the Section Fungicides and Bactericides)
Show Figures

Figure 1

18 pages, 4088 KB  
Article
Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality
by Yuying Tang, Taiming Zhang, Yuanbo Li, Quanlong Wang, Weichen Zhao, Muhammed Nadeem, Peng Zhang and Yukui Rui
Plants 2025, 14(7), 1011; https://doi.org/10.3390/plants14071011 - 24 Mar 2025
Cited by 6 | Viewed by 1516
Abstract
Nanotechnology has been a source of innovation in various fields in recent years, and its application in agriculture has attracted much attention, particularly for its potential to enhance crop growth and optimize nutritional quality. This study systematically investigated the effects of nickel ferrite [...] Read more.
Nanotechnology has been a source of innovation in various fields in recent years, and its application in agriculture has attracted much attention, particularly for its potential to enhance crop growth and optimize nutritional quality. This study systematically investigated the effects of nickel ferrite nanoparticles (NiFe2O4 NPs) on peanut (Arachis hypogaea L.) growth, nutrient dynamics, and biochemical responses, highlighting their potential as sustainable alternatives to conventional fertilizers. The results showed that an optimum concentration of 50 mg/kg soil significantly improved photosynthetic efficiency, biomass accumulation, seed yield, and nutritional quality, with 1000 seed weight and total yield increasing by 12.3% and 15.6%, respectively. In addition, we hypothesized that NiFe2O4 NPs would activate the antioxidant system and increase plant resistance. According to the risk assessment, the target hazard quotient (THQ = 0.081) is well below the safety threshold of 1. These findings provide strong evidence for the application of NiFe2O4 NPs as next-generation nano-fertilizers, offering a dual advantage of improved agronomic performance and biosafety. However, further research is needed to optimize their application strategies and assess potential long-term environmental impacts. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 5701 KB  
Article
Preparation and Synergistic Effect of Composite Solid Nanodispersions for Co-Delivery of Prochloraz and Azoxystrobin
by Tingyu Wang, Fangyuan Chen, Xiquan Ding, Fei Gao, Qian Du, Zhanghua Zeng, Haixin Cui and Bo Cui
Agronomy 2025, 15(3), 683; https://doi.org/10.3390/agronomy15030683 - 12 Mar 2025
Cited by 2 | Viewed by 1550
Abstract
The low efficacy of traditional single-component pesticide formulations has resulted in excessive pesticide application, the evolution of pest resistance, and a range of food safety and environmental concerns. Developing efficient composite nanopesticides represents a critical strategy for addressing the above challenges. In this [...] Read more.
The low efficacy of traditional single-component pesticide formulations has resulted in excessive pesticide application, the evolution of pest resistance, and a range of food safety and environmental concerns. Developing efficient composite nanopesticides represents a critical strategy for addressing the above challenges. In this study, solid nanodispersions (SNDs) co-loaded with prochloraz and azoxystrobin were constructed through a self-emulsifying carrier adsorption method. The antifungal activities of the composite SND with a 14:1 ratio of prochloraz to azoxystrobin against Fusarium graminearum and Pyricularia oryzae were 2.3-fold and 1.6-fold higher than those of commercial microemulsions (MEs) with the same proportion of active ingredients. The SND could cause severe oxidative damage to fungi, by reducing the activities of superoxide dismutase (SOD) and catalase (CAT), and break the permeability of cell membranes, resulting in fungal death. Additionally, the composite SND exhibited superior foliar wettability and biosafety with a minimal environmental cost, thereby enhancing the pesticide’s effective utilization rate. This research provides theoretical and technical support for the design and development of high-efficiency composite nano-fungicide, holding promise for sustainable disease management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

13 pages, 3819 KB  
Article
Neutralizing Antibody Screening Using NanoBiT-Based Virus-like Particles of Foot-and-Mouth Disease Type Asia1 Enhances Biosafety and Sensitivity
by Hyejin Kim, Dong-Wan Kim, Giyoun Cho, Ji-Hyeon Hwang, Yeonrae Chae, Taejun Kim, Jae Young Kim, Young-Joon Ko, Jong-Hyeon Park, Yoon-Hee Lee and Sung-Han Park
Viruses 2025, 17(3), 337; https://doi.org/10.3390/v17030337 - 27 Feb 2025
Cited by 1 | Viewed by 1261
Abstract
Background/Objectives: Foot-and-mouth disease (FMD) is a highly contagious class 1 animal disease that affects cloven-hoofed animals, such as cattle, pigs, and goats. Diagnosis and research on live FMD virus (FMDV) typically require biosafety level 3 facilities, which are challenging to maintain due to [...] Read more.
Background/Objectives: Foot-and-mouth disease (FMD) is a highly contagious class 1 animal disease that affects cloven-hoofed animals, such as cattle, pigs, and goats. Diagnosis and research on live FMD virus (FMDV) typically require biosafety level 3 facilities, which are challenging to maintain due to strict protocols and high costs. The development of NanoBiT-based assays has accelerated in response to the coronavirus disease pandemic, providing safer alternatives for viral research, and is now applicable for general laboratories. This study aimed to develop a NanoBiT-based virus-like particle (VLP) assay for the rapid and safe screening of neutralizing antibodies against FMDV Asia1 Shamir (AS). Methods: We developed an AS VLP with an inserted HiBiT tag that enabled the detection of entry into LgBiT cells through luminescence signals. Results: HiBiT-tagged AS VLPs mixed with anti-serum and introduced into LgBiT-expressing cells led to a reduction in luciferase activity. Therefore, we established a NanoBiT-based viral neutralizing antibody test (VNT) that demonstrated a high correlation (R2 = 0.881) with the traditional gold standard VNT. Conclusions: The assay demonstrated high sensitivity and could be performed in BL-2 facilities, offering a safer and more efficient alternative to traditional assays while reducing the need to handle live viruses in high-containment facilities. This method provides a valuable tool for rapid screening of neutralizing antibodies and can be adapted for broader applications in FMDV research. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 7214 KB  
Article
Investigating Flavor Enhancement Methods in NaCl-Reduced Chinese Bacon (Larou) by Focusing on Physicochemical Characteristics, Bacterial Diversity, and Volatiles
by Li Yang, Hongjun Li, Han Wu, Xuelian Sun, Shuyun Liu and Zhifei He
Foods 2024, 13(23), 3820; https://doi.org/10.3390/foods13233820 - 27 Nov 2024
Viewed by 1546
Abstract
The higher NaCl concentration of Chinese bacon, which features a unique flavor, is a major restriction to consumption. Investigating the role of NaCl in Chinese bacon (Larou) would be beneficial to optimize the dosage and enhance flavor. This study was conducted [...] Read more.
The higher NaCl concentration of Chinese bacon, which features a unique flavor, is a major restriction to consumption. Investigating the role of NaCl in Chinese bacon (Larou) would be beneficial to optimize the dosage and enhance flavor. This study was conducted to categorize Larou by comparing the quality of Larou cured with different concentrations of NaCl and then to investigate the methods of flavor enhancement of NaCl-reduced Larou. The results showed that, based on the differences in quality, Larou were categorized into three types, including the low-NaCl type (<4%, LT), the medium-NaCl type (4–8%, MT), and the high-NaCl type (>8%, HT). The vital physicochemical characteristics (PCs), predominant bacteria, and key volatile compounds (VOCs) were different for each type of Larou. The PCs contributing to the regulation of VOCs were total volatile basic nitrogen (TVB-N) and pH in LT, thiobarbituric acid reactive substance assay (TBARS) in MT, NaNO2, and moisture content in HT. Lactococcus or Lactobacillus, Staphylococcus, and Kocuria were flavor-producing bacteria in LT, MT, and HT, respectively. Vital PCs and predominant bacteria were associated with several key aldehydes, alcohols, and esters in Larou. Increasing the TVB-N, TBARS, and moisture content, decreasing the pH and NaNO2 properly, and inoculating with Staphylococcus and Kocuria were effective methods to enhance the flavor of LT. Vital PCs and predominant bacteria are prioritized to meet most of the quality and the biosafety, although key VOCs may be sacrificed at this point. Full article
(This article belongs to the Special Issue Animal Source Food Processing and Quality Control)
Show Figures

Graphical abstract

17 pages, 4788 KB  
Review
Antibiotic Alternatives: Multifunctional Ultra-Small Metal Nanoclusters for Bacterial Infectious Therapy Application
by Yuxian Wang, Meng Gu, Jiangyang Cheng, Yusong Wan, Liying Zhu, Zhen Gao and Ling Jiang
Molecules 2024, 29(13), 3117; https://doi.org/10.3390/molecules29133117 - 30 Jun 2024
Cited by 5 | Viewed by 2522
Abstract
The prevalence of major bacterial infections has emerged as a significant menace to human health and life. Conventional treatment methods primarily rely on antibiotic therapy, but the overuse of these drugs has led to a decline in their efficacy. Moreover, bacteria have developed [...] Read more.
The prevalence of major bacterial infections has emerged as a significant menace to human health and life. Conventional treatment methods primarily rely on antibiotic therapy, but the overuse of these drugs has led to a decline in their efficacy. Moreover, bacteria have developed resistance towards antibiotics, giving rise to the emergence of superbugs. Consequently, there is an urgent need for novel antibacterial agents or alternative strategies to combat bacterial infections. Nanoantibiotics encompass a class of nano-antibacterial materials that possess inherent antimicrobial activity or can serve as carriers to enhance drug delivery efficiency and safety. In recent years, metal nanoclusters (M NCs) have gained prominence in the field of nanoantibiotics due to their ultra-small size (less than 3 nm) and distinctive electronic and optical properties, as well as their biosafety features. In this review, we discuss the recent progress of M NCs as a new generation of antibacterial agents. First, the main synthesis methods and characteristics of M NCs are presented. Then, we focus on reviewing various strategies for detecting and treating pathogenic bacterial infections using M NCs, summarizing the antibacterial effects of these nanoantibiotics on wound infections, biofilms, and oral infections. Finally, we propose a perspective on the remaining challenges and future developments of M NCs for bacterial infectious therapy. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

29 pages, 9125 KB  
Review
Advancements in Nanomaterial Dispersion and Stability and Thermophysical Properties of Nano-Enhanced Phase Change Materials for Biomedical Applications
by Qian Zhang, Tkhu Chang Le, Shuang Zhao, Chenxi Shang, Menglin Hu, Su Zhang, Yushi Liu and Shuang Pan
Nanomaterials 2024, 14(13), 1126; https://doi.org/10.3390/nano14131126 - 29 Jun 2024
Cited by 14 | Viewed by 3531
Abstract
Phase change materials (PCMs) are materials that exhibit thermal response characteristics, allowing them to be utilized in the biological field for precise and controllable temperature regulation. Due to considerations of biosafety and the spatial limitations within human tissue, the amount of PCMs used [...] Read more.
Phase change materials (PCMs) are materials that exhibit thermal response characteristics, allowing them to be utilized in the biological field for precise and controllable temperature regulation. Due to considerations of biosafety and the spatial limitations within human tissue, the amount of PCMs used in medical applications is relatively small. Therefore, researchers often augment PCMs with various materials to enhance their performance and increase their practical value. The dispersion of nanoparticles to modify the thermophysical properties of PCMs has emerged as a mature concept. This paper aims to elucidate the role of nanomaterials in addressing deficiencies and enhancing the performance of PCMs. Specifically, it discusses the dispersion methods and stabilization mechanisms of nanoparticles within PCMs, as well as their effects on thermophysical properties such as thermal conductivity, latent heat, and specific heat capacity. Furthermore, it explores how various nano-additives contribute to improved thermal conductivity and the mechanisms underlying enhanced latent heat and specific heat. Additionally, the potential applications of PCMs in biomedical fields are proposed. Finally, this paper provides a comprehensive analysis and offers suggestions for future research to maximize the utilization of nanomaterials in enhancing the thermophysical properties of PCMs for biomedical applications. Full article
Show Figures

Figure 1

11 pages, 1434 KB  
Article
Establishment of the Foot-and-Mouth Disease Virus Type Asia1 Expressing the HiBiT Protein: A Useful Tool for a NanoBiT Split Luciferase Assay
by Giyoun Cho, Hyejin Kim, Dong-Wan Kim, Seong Yun Hwang, Ji-Hyeon Hwang, Yeon Rae Chae, Yoon-Hee Lee, Ok-Mi Jeong, Jung-Won Park, Sung-Han Park and Jong-Hyeon Park
Viruses 2024, 16(7), 1002; https://doi.org/10.3390/v16071002 - 21 Jun 2024
Cited by 1 | Viewed by 2374
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that affects cloven-hoofed animals and causes severe economic losses in the livestock industry. Given that this high-risk pathogen has to be handled in a biosafety level (BSL)-3 facility for safety reasons and the limited [...] Read more.
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that affects cloven-hoofed animals and causes severe economic losses in the livestock industry. Given that this high-risk pathogen has to be handled in a biosafety level (BSL)-3 facility for safety reasons and the limited availability of BSL-3 laboratories, experiments on FMDV call for more attention. Therefore, we aimed to develop an FMDV experimental model that can be handled in BSL-2 laboratories. The NanoBiT luciferase (Nano-luc) assay is a well-known assay for studying protein–protein interactions. To apply the NanoBiT split luciferase assay to the diagnosis and evaluation of FMD, we developed an inactivated HiBiT-tagged Asia1 Shamir FMDV (AS-HiBiT), a recombinant Asia1 shamir FMDV with HiBiT attached to the VP1 region of Asia1 shamir FMDV. In addition, we established LgBiT-expressing LF-BK cell lines, termed LgBit-LF-BK cells. It was confirmed that inactivated AS-HiBiT infected LgBiT-LF-BK cells and produced a luminescence signal by binding to the intracellular LgBiT of LgBiT-LF-BK cells. In addition, the luminescence signal became stronger as the number of LgBiT-LF-BK cells increased or the concentration of inactivated AS-HiBiT increased. Moreover, we confirmed that inactivated AS-HiBiT can detect seroconversion in sera positive for FMDV-neutralizing antibodies. This NanoBiT split luciferase assay system can be used for the diagnosis and evaluation of FMD and expanded to FMD-like virus models to facilitate the evaluation of FMDV vaccines and antibodies. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

28 pages, 8783 KB  
Article
Enhanced Efficacy against Drug-Resistant Tumors Enabled by Redox-Responsive Mesoporous-Silica-Nanoparticle-Supported Lipid Bilayers as Targeted Delivery Vehicles
by Shuoye Yang, Beibei Zhang, Xiangguo Zhao, Mengwei Zhang, Mengna Zhang, Lan Cui and Lu Zhang
Int. J. Mol. Sci. 2024, 25(10), 5553; https://doi.org/10.3390/ijms25105553 - 20 May 2024
Cited by 8 | Viewed by 2549
Abstract
Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor [...] Read more.
Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects. Full article
(This article belongs to the Special Issue Natural Products and Synthetic Compounds for Drug Development 2.0)
Show Figures

Figure 1

17 pages, 6173 KB  
Article
Process Optimization of Scaled-Up Production and Biosafety Evaluation of the Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nano-Vaccine
by Hengye Yang, Yuan Gao, Meijuan Liu, Juan Ma and Qun Lu
J. Funct. Biomater. 2024, 15(5), 127; https://doi.org/10.3390/jfb15050127 - 14 May 2024
Cited by 4 | Viewed by 1973
Abstract
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic [...] Read more.
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic acid) (PLA) and cationic lipid didodecyl-dimethyl-ammonium bromide (DDAB), develop the scale-up process, and evaluate the stability and biosafety of it. The optimum preparation conditions of DDAB/PLA NPs on a small scale were as follows: DDAB amount of 30 mg, aqueous phase volume of 90 mL, stirring rate at 550 rpm, and solidifying time of 12 h. Under the optimum conditions, the size of the NPs was about 170 nm. In scale-up preparation experiments, the vacuum rotary evaporation of 6 h and the Tangential flow ultrafiltration (TFU) method were the optimum conditions. The results suggested that DDAB/PLA NPs exhibited a uniform particle size distribution, with an average size of 150.3 ± 10.4 nm and a narrow polydispersity index (PDI) of 0.090 ± 0.13, coupled with a high antigen loading capacity of 85.4 ± 4.0%. In addition, the DDAB/PLA NPs can be stored stably for 30 days and do not have side effects caused by residual solvents. For biosafety, the acute toxicity experiments showed good tolerance of the vaccine formulation even at a high adjuvant dose. The local irritation experiment demonstrated the reversibility of muscular irritation, and the repeated toxicity experiment revealed no significant necrosis or severe lesions in mice injected with the high-dose vaccine formulation. Overall, the DDAB/PLA NPs exhibit potential for clinical translation as a safe candidate vaccine adjuvant. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

27 pages, 3951 KB  
Review
A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation
by Ruomeng Xu and Qingsong Xu
Micromachines 2024, 15(4), 468; https://doi.org/10.3390/mi15040468 - 29 Mar 2024
Cited by 28 | Viewed by 10090
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview [...] Read more.
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields. Full article
(This article belongs to the Special Issue Advanced Micro-/Nano-Manipulation and Positioning Techniques)
Show Figures

Figure 1

23 pages, 6882 KB  
Article
Intratracheal Administration of Stem Cell Membrane-Cloaked Naringin-Loaded Biomimetic Nanoparticles Promotes Resolution of Acute Lung Injury
by Hua Jin, Yue Zhao, Yinlian Yao, Shilong Fan, Renxing Luo, Xin Shen, Yanyan Wang, Jiang Pi and Gonghua Huang
Antioxidants 2024, 13(3), 282; https://doi.org/10.3390/antiox13030282 - 26 Feb 2024
Cited by 12 | Viewed by 3402
Abstract
Cytokine storm and ROS overproduction in the lung always lead to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in a very short time. Effectively controlling cytokine storm release syndrome (CRS) and scavenging ROS are key to the prevention and treatment [...] Read more.
Cytokine storm and ROS overproduction in the lung always lead to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in a very short time. Effectively controlling cytokine storm release syndrome (CRS) and scavenging ROS are key to the prevention and treatment of ALI/ARDS. In this work, the naringin nanoparticles (Nar-NPs) were prepared by the emulsification and evaporation method; then, the mesenchymal stem cell membranes (CMs) were extracted and coated onto the surface of the Nar-NPs through the hand extrusion method to obtain the biomimetic CM@Nar-NPs. In vitro, the CM@Nar-NPs showed good dispersity, excellent biocompatibility, and biosafety. At the cellular level, the CM@Nar-NPs had excellent abilities to target inflamed macrophages and the capacity to scavenge ROS. In vivo imaging demonstrated that the CM@Nar-NPs could target and accumulate in the inflammatory lungs. In an ALI mouse model, intratracheal (i.t.) instillation of the CM@Nar-NPs significantly decreased the ROS level, inhibited the proinflammatory cytokines, and remarkably promoted the survival rate. Additionally, the CM@Nar-NPs increased the expression of M2 marker (CD206), and decreased the expression of M1 marker (F4/80) in septic mice, suggesting that the Nar-modulated macrophages polarized towards the M2 subtype. Collectively, this work proves that a mesenchymal stem cell membrane-based biomimetic nanoparticle delivery system could efficiently target lung inflammation via i.t. administration; the released payload inhibited the production of inflammatory cytokines and ROS, and the Nar-modulated macrophages polarized towards the M2 phenotype which might contribute to their anti-inflammation effects. This nano-system provides an excellent pneumonia-treated platform with satisfactory biosafety and has great potential to effectively deliver herbal medicine. Full article
(This article belongs to the Special Issue Recent Trends in Nanoantioxidants)
Show Figures

Figure 1

5 pages, 197 KB  
Editorial
Special Issue: Agricultural Nanotechnology
by Kamel A. Abd-Elsalam
Plants 2024, 13(4), 489; https://doi.org/10.3390/plants13040489 - 8 Feb 2024
Cited by 11 | Viewed by 3935
Abstract
Agricultural nanotechnology has considerable promise for addressing global agricultural production/security, biodiversity, and global warming issues. Current trends in publications and patents demonstrate that biotechnology technologies, particularly for crops, are being developed to improve agricultural productivity and disease management. In the current issue, we [...] Read more.
Agricultural nanotechnology has considerable promise for addressing global agricultural production/security, biodiversity, and global warming issues. Current trends in publications and patents demonstrate that biotechnology technologies, particularly for crops, are being developed to improve agricultural productivity and disease management. In the current issue, we strongly advocate for the use of biosynthesized nanoparticles from a variety of sources, including plants, agricultural waste, and microbes, as a prerequisite for significant and in-depth study. Nanomaterials offer a wide range of practical uses in agriculture, including nanofertilizers, nanopesticides, nanoherbicides, nanosensors, and smart delivery systems for controlled agrochemical release. Additionally, nano-tools are employed for plant breeding and genetic manipulation. A thorough examination of the physicochemical soil properties of the agricultural fields where nanoparticles will be used will aid in minimizing their impact on plant and soil biota. Finally, and most importantly, we strongly recommend the inclusion of nanotoxicity, legislation, biosafety, and risk assessment as the top priorities when developing regulatory policies to address biosafety concerns. Starting today, thorough efforts must be carried out to advance and develop futuristic work based on recognized knowledge shortages. Full article
(This article belongs to the Special Issue Agricultural Nanotechnology)
23 pages, 3739 KB  
Article
A Preliminary Report Regarding the Morphological Changes of Nano-Enabled Pharmaceutical Formulation on Human Lung Carcinoma Monolayer and 3D Bronchial Microtissue
by Cătălin Prodan-Bărbulescu, Claudia-Geanina Watz, Elena-Alina Moacă, Alexandra-Corina Faur, Cristina-Adriana Dehelean, Flaviu Ionut Faur, Laura Octavia Grigoriţă, Anca Laura Maghiari, Paul Tuţac, Ciprian Duţă, Sorin Bolintineanu and Laura Andreea Ghenciu
Medicina 2024, 60(2), 208; https://doi.org/10.3390/medicina60020208 - 25 Jan 2024
Cited by 12 | Viewed by 5706
Abstract
Background and Objectives: Nowadays, the development of enabled pharmaceutical nanoparticles of solid lipid type is continuously growing, because they have the potential to be used for targeted drug release leading to an increased effect of chemotherapy, being used in lung cancer nano-diagnosis [...] Read more.
Background and Objectives: Nowadays, the development of enabled pharmaceutical nanoparticles of solid lipid type is continuously growing, because they have the potential to be used for targeted drug release leading to an increased effect of chemotherapy, being used in lung cancer nano-diagnosis and nano-therapy. The current study reports the preliminary results obtained regarding the biological effect of a new nano-enabled pharmaceutical formulation in terms of its cytotoxic and biosafety profile. Materials and Methods: The pharmaceutical formulations consist of solid lipid nanoparticles (SLN) obtained via the emulsification–diffusion method by loading green iron oxide nanoparticles (green-IONPs) with a pentacyclic triterpene (oleanolic acid—OA). Further, a complex biological assessment was performed, employing three-dimensional (3D) bronchial microtissues (EpiAirwayTM) to determine the biosafety profile of the SLN samples. The cytotoxic potential of the samples was evaluated on human lung carcinoma, using an in vitro model (A549 human lung carcinoma monolayer). Results: The data revealed that the A549 cell line was strongly affected after treatment with SLN samples, especially those that contained OA-loaded green-IONPs obtained with Ocimum basilicum extract (under 30% viability rates). The biosafety profile investigation of the 3D normal in vitro bronchial model showed that all the SLN samples negatively affected the viability of the bronchial microtissues (below 50%). As regards the morphological changes, all the samples induce major changes such as loss of the surface epithelium integrity, loss of epithelial junctions, loss of cilia, hyperkeratosis, and cell death caused by apoptosis. Conclusions: In summary, the culprit for the negative impact on viability and morphology of 3D normal bronchial microtissues could be the too-high dose (500 µg/mL) of the SLN sample used. Nevertheless, further adjustments in the SLN synthesis process and another complex in vitro evaluation will be considered for future research. Full article
(This article belongs to the Special Issue New Small Molecule Inhibitors Used in Cancers)
Show Figures

Figure 1

Back to TopTop