Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = mycorrhizae symbiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 - 4 Aug 2025
Viewed by 137
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

17 pages, 2706 KiB  
Article
Phylogenetic Determinants Behind the Ecological Traits of Relic Tree Family Juglandaceae, Their Root-Associated Symbionts, and Response to Climate Change
by Robin Wilgan
Int. J. Mol. Sci. 2025, 26(14), 6866; https://doi.org/10.3390/ijms26146866 - 17 Jul 2025
Viewed by 238
Abstract
Dual mycorrhizal symbiosis, i.e., the association with both arbuscular and ectomycorrhizal fungal symbionts, is an ambiguous phenomenon concurrently considered as common among various genetic lineages of trees and a result of bias in data analyses. Recent studies have shown that the ability to [...] Read more.
Dual mycorrhizal symbiosis, i.e., the association with both arbuscular and ectomycorrhizal fungal symbionts, is an ambiguous phenomenon concurrently considered as common among various genetic lineages of trees and a result of bias in data analyses. Recent studies have shown that the ability to form dual mycorrhizal associations is a distinguishing factor for the continental-scale invasion of alien tree species. However, the phylogenetic mechanisms that drive it remain unclear. In this study, all the evidence on root-associated symbionts of Juglandaceae from South and North America, Asia, and Europe was combined and re-analysed following current knowledge and modern molecular-based identification methods. The Juglandaceae family was revealed to represent a specific pattern of symbiotic interactions that are rare among deciduous trees and absent among conifers. Closely related phylogenetic lineages of trees usually share the same type of symbiosis, but Juglandaceae contains several possible ones concurrently. The hyperdiversity of root symbionts of Juglandaceae, unlike other tree families, was concurrently found in Central and North America, Asia, and Europe, indicating its phylogenetic determinants, which endured geographical isolation. However, for many Juglandaceae, including the invasive Juglans and Pterocarya species, this was never studied or was studied only with outdated methods. Further molecular research on root symbionts of Juglandaceae, providing long sequences and high taxonomic resolutions, is required to explain their ecological roles. Full article
(This article belongs to the Collection Advances in Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2403 KiB  
Article
Drought Stress Enhances Mycorrhizal Colonization in Rice Landraces Across Agroecological Zones of Far-West Nepal
by Urmila Dhami, Nabin Lamichhane, Sudan Bhandari, Gunanand Pant, Lal Bahadur Thapa, Chandra Prasad Pokhrel, Nikolaos Monokrousos and Ram Kailash Prasad Yadav
Soil Syst. 2025, 9(3), 72; https://doi.org/10.3390/soilsystems9030072 - 9 Jul 2025
Viewed by 313
Abstract
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, [...] Read more.
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, Mid-hill) of Far-West Nepal under drought stress. Field experiments exposed landraces to control, intermittent, and complete drought treatments, with soil properties and root colonization analyzed. Results revealed FMS and IRS variations driven by soil composition and genotype. Mid-hill soils (acidic, high organic matter) showed lower FMS but elevated IRS under drought, while neutral pH in Tarai and silt/clay-rich soils supported higher FMS. Sandy soil in Inner-Tarai also promoted FMS. Drought significantly increased IRS, particularly in Anjana and Sauthiyari (Tarai), Chiudi and Shanti (Inner-Tarai), and Chamade and Jhumke (Mid-hill), which exhibited IRS surges of 171–388%. These landraces demonstrated symbiotic resilience, linking mycorrhizal networks to enhanced nutrient/water uptake. Soil organic matter and nutrient levels amplified IRS responses, underscoring fertility’s role in adaptation. FMS ranged from 50 to 100%, and IRS 1.20–19.74%, with intensity being a stronger drought-tolerance indicator than frequency. The study highlights the conservation urgency for these landraces, as traditional varieties decline due to hybrid adoption. Their drought-inducible mycorrhizal symbiosis offers a sustainable strategy for climate-resilient rice production, emphasizing soil–genotype interactions in agroecological adaptation. Full article
Show Figures

Figure 1

19 pages, 2614 KiB  
Review
Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems
by Anju Chaudhary, Shital Poudyal and Amita Kaundal
Appl. Microbiol. 2025, 5(1), 6; https://doi.org/10.3390/applmicrobiol5010006 - 11 Jan 2025
Cited by 3 | Viewed by 2561
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in maintaining sustainable agroecosystems by forming mutualistic relationships with plant roots, improving soil health, facilitating nutrient uptake, and enhancing resilience to abiotic stresses. The mutualistic relationship between AM fungi and plants promotes a balanced microbial [...] Read more.
Arbuscular mycorrhizal (AM) fungi play a crucial role in maintaining sustainable agroecosystems by forming mutualistic relationships with plant roots, improving soil health, facilitating nutrient uptake, and enhancing resilience to abiotic stresses. The mutualistic relationship between AM fungi and plants promotes a balanced microbial community and improves soil structure by forming stable soil aggregates. Additionally, AM fungi can lower the adverse effects of high soil phosphorus (P) while also enhancing plant tolerance to drought, salinity, and heavy metal toxicity through osmotic regulation and antioxidant production. Arbuscular mycorrhizal fungi also support beneficial microorganisms, such as potassium (K)-solubilizing microbes and nitrogen (N)-transforming bacteria, which enhance the nutrient dynamics in soil. However, intensive agricultural practices, including heavy tillage and continuous monoculture, disrupt AM fungal networks and reduce microbial diversity, impairing their effectiveness. Adopting conservation practices such as reduced tillage, crop rotation, and organic amendments supports AM fungal growth. Incorporating mycorrhizal crops and utilizing native fungal inoculants can enhance AM fungal colonization and plant growth. These strategies collectively bolster soil health, crop productivity, and resilience, offering a promising solution to the environmental and agricultural challenges posed by intensive farming. By promoting AM fungi growth and colonization, agroecosystems can achieve long-term productivity and increased sustainability. Full article
Show Figures

Figure 1

24 pages, 1857 KiB  
Article
Responsivity of Two Pea Genotypes to the Symbiosis with Rhizobia and Arbuscular Mycorrhiza Fungi—A Proteomics Aspect of the “Efficiency of Interactions with Beneficial Soil Microorganisms” Trait
by Andrej Frolov, Julia Shumilina, Sarah Etemadi Afshar, Valeria Mashkina, Ekaterina Rhomanovskaya, Elena Lukasheva, Alexander Tsarev, Anton S. Sulima, Oksana Y. Shtark, Christian Ihling, Alena Soboleva, Igor A. Tikhonovich and Vladimir A. Zhukov
Int. J. Mol. Sci. 2025, 26(2), 463; https://doi.org/10.3390/ijms26020463 - 8 Jan 2025
Cited by 1 | Viewed by 995
Abstract
It is well known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this study [...] Read more.
It is well known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this study was to characterize alterations in the root proteome of highly responsive pea genotype k-8274 plants and low responsive genotype k-3358 ones grown in non-sterile soil, which were associated with root colonization with rhizobial bacteria and arbuscular mycorrhizal fungi (in comparison to proteome shifts caused by soil supplementation with mineral nitrogen salts). Our results clearly indicate that supplementation of the soil with mineral nitrogen-containing salts switched the root proteome of both genotypes to assimilation of the available nitrogen, whereas the processes associated with nitrogen fixation were suppressed. Surprisingly, inoculation with rhizobial bacteria had only a minor effect on the root proteomes of both genotypes. The most pronounced response was observed for the highly responsive k-8274 genotype inoculated simultaneously with rhizobial bacteria and arbuscular mycorrhizal fungi. This response involved activation of the proteins related to redox metabolism and suppression of excessive nodule formation. In turn, the low responsive genotype k-3358 demonstrated a pronounced inoculation-induced suppression of protein metabolism and enhanced diverse defense reactions in pea roots under the same soil conditions. The results of the study shed light on the molecular basis of differential symbiotic responsivity in different pea cultivars. The raw data are available in the PRIDE repository under the project accession number PXD058701 and project DOI 10.6019/PXD058701. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

19 pages, 1996 KiB  
Article
Residues of Symbiont Cover Crops Improving Corn Growth and Soil-Dependent Health Parameters
by Sundoss Kabalan, Flórián Kovács, Enikő Papdi, Eszter Tóth, Katalin Juhos and Borbála Biró
Agriculture 2024, 14(9), 1601; https://doi.org/10.3390/agriculture14091601 - 13 Sep 2024
Cited by 1 | Viewed by 1405
Abstract
Cover crops have emerged as a crucial tool in promoting sustainable agricultural practices, particularly in improving soil quality and soil–plant health. This study investigates the impact of single cover crop plants each with varying fungal and/or bacterial symbiosis capacities in a pot experiment. [...] Read more.
Cover crops have emerged as a crucial tool in promoting sustainable agricultural practices, particularly in improving soil quality and soil–plant health. This study investigates the impact of single cover crop plants each with varying fungal and/or bacterial symbiosis capacities in a pot experiment. The growth of non-symbiont Ethiopian mustard (Brassica carinata), the associative bacterium symbiont black oat (Avena strigosa) and the double (fungus–bacterium) endosymbiont broad bean (Vicia faba) was studied on three distinct soil types, namely a less-fertile sandy soil (Arenosol), an average value of loam soil (Luvisol) and a more productive chernozem soil (Chernozem). Beside the biomass production, nitrogen content and frequency of AM fungi symbiosis (MYCO%) of cover crops, the main soil health characteristics of electrical conductivity (EC), labile carbon (POXC) and fluorescein diacetate enzyme activity (FDA) were assessed and evaluated by detailed statistical analysis. Among the used soil types, the greatest biomass production was found on Chernozem soil with the relatively highest soil organic matter (2.81%) content and productivity. Double symbiotic activity, assessed by soil nitrogen content and mycorrhiza frequency (MYCO%), were significantly improved on the lowest-quality Arenosols (SOM 1.16%). In that slightly humous sandy soil, MYCO% was enhanced by 45%, indicating that symbiosis was crucial for plant growth in the less-fertile soil investigated. After the initial cover crop phase, the accumulated biomass was incorporated into the Luvisol (SOM 1.64%) soil, followed by the cultivation of corn (Zea mays, DK 3972) as the main crop. The results indicate that incorporating cover crop residues enhanced labile carbon (POXC) by 20% and significantly increased the FDA microbial activity in the soil, which positively correlated with the nutrient availability and growth of the maize crop. This study emphasizes the importance of selecting suitable cover crops based on their symbiotic characteristics to improve soil quality and enhance soil–plant health in sustainable agricultural systems. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

12 pages, 2554 KiB  
Article
Arbuscular Mycorrhizal Fungi Selectively Promoted the Growth of Three Ecological Restoration Plants
by Hengkang Xu, Yuchuan Shi, Chao Chen, Zhuo Pang, Guofang Zhang, Weiwei Zhang and Haiming Kan
Plants 2024, 13(12), 1678; https://doi.org/10.3390/plants13121678 - 18 Jun 2024
Cited by 3 | Viewed by 2021
Abstract
Arbuscular mycorrhizal inoculation can promote plant growth, but specific research on the difference in the symbiosis effect of arbuscular mycorrhizal fungi and plant combination is not yet in-depth. Therefore, this study selected Medicago sativa L., Bromus inermis Leyss, and Festuca arundinacea Schreb., [...] Read more.
Arbuscular mycorrhizal inoculation can promote plant growth, but specific research on the difference in the symbiosis effect of arbuscular mycorrhizal fungi and plant combination is not yet in-depth. Therefore, this study selected Medicago sativa L., Bromus inermis Leyss, and Festuca arundinacea Schreb., which were commonly used for restoring degraded land in China to inoculate with three AMF separately, to explore the effects of different AMF inoculation on the growth performance and nutrient absorption of different plants and to provide a scientific basis for the research and development of the combination of mycorrhiza and plants. We set up four treatments with inoculation Entrophospora etunicata (EE), Funneliformis mosseae (FM), Rhizophagus intraradices (RI), and non-inoculation. The main research findings are as follows: the three AMF formed a good symbiotic relationship with the three grassland plants, with RI and FM having more significant inoculation effects on plant height, biomass, and tiller number. Compared with C, the aboveground biomass of Medicago sativa L., Bromus inermis Leyss, and Festuca arundinacea Schreb. inoculated with AMF increased by 101.30–174.29%, 51.67–74.14%, and 110.67–174.67%. AMF inoculation enhanced the plant uptake of N, P, and K, and plant P and K contents were significantly correlated with plant biomass. PLS-PM analyses of three plants all showed that AMF inoculation increased plant nutrient uptake and then increased aboveground biomass and underground biomass by increasing plant height and root tillering. This study showed that RI was a more suitable AMF for combination with grassland degradation restoration grass species and proposed the potential mechanism of AMF–plant symbiosis to increase yield. Full article
Show Figures

Figure 1

19 pages, 5400 KiB  
Article
Effect of Mycorrhizal Symbiosis on the Development of the Canary Island Tomato Variety “Manzana Negra” under Abiotic Stress Conditions
by Alexis Hernández-Dorta, María del Carmen Jaizme-Vega and Domingo Ríos-Mesa
Agriculture 2024, 14(6), 828; https://doi.org/10.3390/agriculture14060828 - 25 May 2024
Viewed by 1123
Abstract
Tomato production in the Canary Islands has significantly decreased in recent years due to the presence of parasites and pathogens, poor-quality irrigation water, lack of infrastructure modernization, and increased competition. To address this issue, local varieties with better agro-climatic adaptation and organoleptic characteristics [...] Read more.
Tomato production in the Canary Islands has significantly decreased in recent years due to the presence of parasites and pathogens, poor-quality irrigation water, lack of infrastructure modernization, and increased competition. To address this issue, local varieties with better agro-climatic adaptation and organoleptic characteristics have been cultivated. These varieties show their maximum potential under an agro-ecological cultivation system, where the beneficial micro-organisms of the rhizosphere (in general) and mycorrhizal fungi (in particular) have a positive influence on their development, especially when the plants are subjected to biotic or abiotic stresses. Irrigation water in Canary Islands tomato cultivation comes from groundwater sources with moderate levels of sodium and chlorides or sodium and bicarbonates. This study evaluated the response of mycorrizal plants of the local tomato variety “Manzana Negra” under abiotic stress conditions due to the presence of chlorides and bicarbonates. Two tests were carried out with mycorrhizal and non-mycorrhizal plants. In the first one, 0, 75, and 150 mM NaCl solutions were applied. In the second, the nutrient solution was enriched with sodium bicarbonate at doses of 0, 2.5, 5, 7.5, 10, and 12.5 mM. Presence of native mycorrhizae improved the growth and nutrition of plants affected by irrigation with saline and alkaline water containing chloride and sodium carbonate. Symbiosis produced statistically significant increases in all plant-development-related variables (stem length and diameter; fresh and dry weight) in all bicarbonate concentrations. However, the results with the application of sodium chloride do not seem to indicate a positive interaction in most of the analytical parameters at 150 mM NaCl concentration. The mycorrhizal inoculation with local fungi can be interesting in the production of seedlings of this tomato variety in situations of moderate salinity, especially under bicarbonate stress conditions. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

19 pages, 6778 KiB  
Article
Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi
by Deyin Wang, Ying Ni, Kailing Xie, Yuanhao Li, Wenxiang Wu, Hanchen Shan, Beijiu Cheng and Xiaoyu Li
Int. J. Mol. Sci. 2024, 25(8), 4205; https://doi.org/10.3390/ijms25084205 - 10 Apr 2024
Cited by 8 | Viewed by 2035
Abstract
Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be [...] Read more.
Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3430 KiB  
Article
Potential Role of Sugars in the Hyphosphere of Arbuscular Mycorrhizal Fungi to Enhance Organic Phosphorus Mobilization
by Zexing Jin, Guiwei Wang, Timothy S. George and Lin Zhang
J. Fungi 2024, 10(3), 226; https://doi.org/10.3390/jof10030226 - 20 Mar 2024
Cited by 5 | Viewed by 2456
Abstract
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic [...] Read more.
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg−1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg−1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

15 pages, 3685 KiB  
Article
Comparative Response of Arbuscular Mycorrhizal Fungi versus Endophytic Fungi in Tangor Citrus: Photosynthetic Efficiency and P-Acquisition Traits
by Yang Lü, Wei-Jia Wu, Ming-Yu Zhu, Zi-Yi Rong, Tian-Zhi Zhang, Xin-Ping Tan, Ying He, Mashael Daghash Alqahtani, Suresh Kumar Malhotra, Anoop Kumar Srivastava and Qiang-Sheng Wu
Horticulturae 2024, 10(2), 145; https://doi.org/10.3390/horticulturae10020145 - 1 Feb 2024
Cited by 6 | Viewed by 2200
Abstract
Citrus plants are prone to phosphorus (P) deficiency, especially in acidic soil, making them more dependent on root-associated endophytic fungi for growth and development. Beni-Madonna, a hybrid of Citrus nanko × C. amakusa, is a citrus known as “tangor” that is highly popular in [...] Read more.
Citrus plants are prone to phosphorus (P) deficiency, especially in acidic soil, making them more dependent on root-associated endophytic fungi for growth and development. Beni-Madonna, a hybrid of Citrus nanko × C. amakusa, is a citrus known as “tangor” that is highly popular in China and other parts of the world due to its deep red color and jelly-like flesh. In this study, the inoculation response to two arbuscular mycorrhizal fungi (Diversispora versiformis, Dv; Funneliformis mosseae, Fm) and an endophytic fungus (Serendipita indica, Si) with regard to the growth, leaf gas exchange, light energy efficiency, P levels, acid phosphatase activity, and expression of the purple acid phosphatase (PAP) and phosphate transporter (PT) genes through a potted experiment using Beni-Madonna (tangor) citrus plants grafted on trifoliate orange (Poncirus trifoliata) was studied. Two years following inoculation, the root fungal colonization rates of inoculated plants were significantly increased, accompanied by an increase in plant height and stem diameter, with Si presenting the best effect. Fungal inoculations also significantly increased the leaf chlorophyll index, nitrogen-balance index, photosynthesis rate, stomatal conductance, transpiration rate, photosynthetic efficiency, and quantum yield of PSII, while it reduced photoinhibition and heat dissipation, with Si having the best effect on light energy efficiency. Si significantly increased leaf and root P levels, as well as root CsPAP1‒3, CsPT2, CsPT3, and CsPT7 expression and soil acid phosphatase activity; Fm in mycorrhizal fungi significantly increased leaf and root P levels, as well as root CsPT1 and CsPT7 expression and root/soil acid phosphatase activity. These observations suggested an advantage of Si over the other two AMF in terms of improved plant growth and P acquisition, while Fm displayed prominent effects on increased photosynthetic efficiency. Full article
Show Figures

Figure 1

17 pages, 3347 KiB  
Article
Enhancing Salt Tolerance in Poplar Seedlings through Arbuscular Mycorrhizal Fungi Symbiosis
by Shuo Han, Yao Cheng, Guanqi Wu, Xiangwei He and Guozhu Zhao
Plants 2024, 13(2), 233; https://doi.org/10.3390/plants13020233 - 14 Jan 2024
Cited by 13 | Viewed by 2531
Abstract
Poplar (Populus spp.) is a valuable tree species with multiple applications in afforestation. However, its growth in saline areas, including coastal regions, is limited. This study aimed to investigate the physiological mechanisms of arbuscular mycorrhizal fungi (AMF) symbiosis with 84K (P. [...] Read more.
Poplar (Populus spp.) is a valuable tree species with multiple applications in afforestation. However, its growth in saline areas, including coastal regions, is limited. This study aimed to investigate the physiological mechanisms of arbuscular mycorrhizal fungi (AMF) symbiosis with 84K (P. alba × P. tremula var. glandulosa) poplar under salt stress. We conducted pot experiments using NaCl solutions of 0 mM (control), 100 mM (moderate stress), and 200 mM (severe stress) and evaluated the colonization of AMF and various physiological parameters of plants, including photosynthesis, biomass, antioxidant enzyme activity, nutrients, and ion concentration. Partial least squares path modeling (PLS-PM) was employed to elucidate how AMF can improve salt tolerance in poplar. The results demonstrated that AMF successfully colonized the roots of plants under salt stress, effectively alleviated water loss by increasing the transpiration rate, and significantly enhanced the biomass of poplar seedlings. Mycorrhiza reduced proline and malondialdehyde accumulation while enhancing the activity of antioxidant enzymes, thus improving plasma membrane stability. Additionally, AMF mitigated Na+ accumulation in plants, contributing to the maintenance of a favorable ion balance. These findings highlight the effectiveness of using suitable AMF to improve conditions for economically significant tree species in salt-affected areas, thereby promoting their utilization. Full article
(This article belongs to the Special Issue Resistance to Salt Stress: Advances in Our Molecular Understanding)
Show Figures

Figure 1

30 pages, 1324 KiB  
Review
Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation
by Aiman Slimani, Mohamed Ait-El-Mokhtar, Raja Ben-Laouane, Abderrahim Boutasknit, Mohamed Anli, El Faiza Abouraicha, Khalid Oufdou, Abdelilah Meddich and Marouane Baslam
Int. J. Mol. Sci. 2024, 25(2), 912; https://doi.org/10.3390/ijms25020912 - 11 Jan 2024
Cited by 8 | Viewed by 2843
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient [...] Read more.
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology. Full article
(This article belongs to the Special Issue The Role of Arbuscular Mycorrhizal Fungi (AMF) in Agriculture)
Show Figures

Figure 1

18 pages, 2067 KiB  
Article
Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas
by Muniba Farhad, Maryam Noor, Muhammad Zubair Yasin, Mohsin Hussain Nizamani, Veysel Turan and Muhammad Iqbal
Sustainability 2024, 16(2), 634; https://doi.org/10.3390/su16020634 - 11 Jan 2024
Cited by 58 | Viewed by 2449
Abstract
Arable soils irrigated with wastewater (SIWs) cause ecological and human health issues due to the presence of heavy metals (HMs). Burning rice stubble (RS) poses severe environmental and human health hazards. Converting RS into rice stubble compost (RSC) and rice stubble biochar (RSB) [...] Read more.
Arable soils irrigated with wastewater (SIWs) cause ecological and human health issues due to the presence of heavy metals (HMs). Burning rice stubble (RS) poses severe environmental and human health hazards. Converting RS into rice stubble compost (RSC) and rice stubble biochar (RSB) can overcome these issues. Here, we considered the role of RS, RSC, and RSB as individual soil amendments and combined each of them with arbuscular mycorrhiza fungi (AMF) to observe their effectiveness for HM immobilization in SIW, their uptake in pea plants, and improvements in the physicochemical properties of soil. The results revealed that adding RSB and AMF reduced the bioavailable concentrations of Pb, Cd, Ni, Cu, Co, and Zn in SIW by 35%, 50%, 43%, 43%, 52%, and 22%, respectively. Moreover, RSB+AMF treatment also reduced Pb, Cd, Ni, Cu, Co, and Zn concentrations in grain by 93%, 76%, 83%, 72%, 71%, and 57%, respectively, compared to the control. Improvements in shoot dry weight (DW) (66%), root DW (48%), and grain yield (56%) per pot were also the highest with RSB+AMF. RSB+AMF treatment enhanced soil health and other soil attributes by improving the activity of urease, catalase, peroxidase, phosphatase, β-glucosidase, and fluorescein diacetate by 78%, 156%, 62%, 123%, 235%, and 96%, respectively. Interestingly, RSB+AMF also led to the strongest AMF–plant symbiosis, as assessed by improved AMF root colonization (162%), mycorrhizal intensity (100%), mycorrhizal frequency (104%), and arbuscular abundance (143%). To conclude, converting RS into RSB can control air pollution caused by RS burning. Moreover, adding RSB with AMF to SIW can reduce HM uptake in plants, improve soil health, and thus minimize ecological and human health issues. Full article
Show Figures

Figure 1

27 pages, 501 KiB  
Review
Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs
by Sangam L. Dwivedi, Luis Felipe Quiroz, Anireddy S. N. Reddy, Charles Spillane and Rodomiro Ortiz
Int. J. Mol. Sci. 2023, 24(20), 15205; https://doi.org/10.3390/ijms242015205 - 15 Oct 2023
Cited by 4 | Viewed by 5211
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation [...] Read more.
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure)
Back to TopTop