Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = multivalent ion transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8184 KiB  
Article
Surface-Modified Pore-Filled Anion-Exchange Membranes for Efficient Energy Harvesting via Reverse Electrodialysis
by Ji-Hyeon Lee, Do-Hyeong Kim and Moon-Sung Kang
Membranes 2023, 13(12), 894; https://doi.org/10.3390/membranes13120894 - 30 Nov 2023
Cited by 3 | Viewed by 3185
Abstract
In this study, novel pore-filled anion-exchange membranes (PFAEMs) modified with polypyrrole (PPy) and reduced graphene oxide (rGO) were developed to improve the energy harvesting performance of reverse electrodialysis (RED). The surface-modified PFAEMs were fabricated by varying the contents of PPy and rGO through [...] Read more.
In this study, novel pore-filled anion-exchange membranes (PFAEMs) modified with polypyrrole (PPy) and reduced graphene oxide (rGO) were developed to improve the energy harvesting performance of reverse electrodialysis (RED). The surface-modified PFAEMs were fabricated by varying the contents of PPy and rGO through simple spin coating and chemical/thermal treatments. It was confirmed that the PPy and PPy/rGO layers introduced on the membrane surface did not significantly increase the electrical resistance of the membrane and could effectively control surface characteristics, such as structural tightness, hydrophilicity, and electrostatic repulsion. The PPy/rGO-modified PFAEM showed excellent monovalent ion selectivity, more than four times higher than that of the commercial membrane (AMX, Astom Corp., Tokyo, Japan). This means that the PPy/rGO layer can effectively reduce the permeation of multivalent ions with a high charge intensity and a relatively large hydration radius compared to monovalent ions. The results of evaluating the performance of the surface-modified PFAEMs by applying them to a RED cell revealed that the decrease in potential difference occurring in the membrane was reduced by effectively suppressing the uphill transport of multivalent ions. Consequently, the PPy/rGO-modified membrane exhibited a 5.43% higher power density than the AMX membrane. Full article
(This article belongs to the Special Issue Surface Modification of Ion Exchange Membranes)
Show Figures

Graphical abstract

19 pages, 7185 KiB  
Article
Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model
by Tobias Hubach, Stefan Schlüter and Christoph Held
Processes 2023, 11(8), 2355; https://doi.org/10.3390/pr11082355 - 4 Aug 2023
Cited by 1 | Viewed by 1929
Abstract
Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing [...] Read more.
Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage membrane plant that differentiates between different ions and that is based on a validated transport model. This study presents a method for modeling predefined membrane interconnections using discretization along the membrane length and across the membrane thickness. The solution-diffusion–electromigration model was used as the transport model in a fundamental membrane flowsheet, and the model was employed to optimize a given flowsheet with a flexible objective function. The methodology was evaluated for three distinct separation tasks, and optimized operating points were found. These show that permeances and feed concentrations might cause negative rejections and positive rejections (especially for bivalent ions) depending on the ions’ properties and fluxes, thereby allowing for a favorable separation between the ions of different valence at optimized conditions. In an application-based case study for the separation of Li+ and Mg2+ from seawater, the method showed that under optimal conditions, the mol-based ratio of Mg2+/Li+ can be reduced from 2383 to 2.8 in three membrane stages. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

20 pages, 4868 KiB  
Article
Improving the Energy Storage of Supercapattery Devices through Electrolyte Optimization for Mg(NbAgS)x(SO4)y Electrode Materials
by Haseebul Hassan, Muhammad Waqas Iqbal, Sarah Alharthi, Mohammed A. Amin, Amir Muhammad Afzal, Jacek Ryl and Mohd Zahid Ansari
Molecules 2023, 28(12), 4737; https://doi.org/10.3390/molecules28124737 - 13 Jun 2023
Cited by 30 | Viewed by 2330
Abstract
Electrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte [...] Read more.
Electrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte for supercapacitors improves conductivity, electrochemical properties, and stability, allowing greater energy storage capacity and increased device durability. We synthesized extremely thin nanosheets of niobium silver sulfide using a hydrothermal process and mixed them with magnesium sulfate in different wt% ratios to produce Mg(NbAgS)x)(SO4)y. The synergistic effect of MgSO4 and NbS2 increased the storage capacity and energy density of the supercapattery. Multivalent ion storage in Mg(NbAgS)x(SO4)y enables the storage of a number of ions. The Mg(NbAgS)x)(SO4)y was directly deposited on a nickel foam substrate using a simple and innovative electrodeposition approach. The synthesized silver Mg(NbAgS)x)(SO4)y provided a maximum specific capacity of 2087 C/g at 2.0 A/g current density because of its substantial electrochemically active surface area and linked nanosheet channels which aid in ion transportation. The supercapattery was designed with Mg(NbAgS)x)(SO4)y and activated carbon (AC) achieved a high energy density of 79 Wh/kg in addition to its high power density of 420 W/kg. The supercapattery (Mg(NbAgS)x)(SO4)y//AC) was subjected to 15,000 consecutive cycles. The Coulombic efficiency of the device was 81% after 15,000 consecutive cycles while retaining a 78% capacity retention. This study reveals that the use of this novel electrode material (Mg(NbAgS)x(SO4)y) in ester-based electrolytes has great potential in supercapattery applications. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Figure 1

16 pages, 1405 KiB  
Communication
Bambus[4,6]urils as Dual Scaffolds for Multivalent Iminosugar Presentation and Ion Transport: Access to Unprecedented Glycosidase-Directed Anion Caging Agents
by Marine Lafosse, Yan Liang, Jérémy P. Schneider, Elise Cartier, Anne Bodlenner, Philippe Compain and Marie-Pierre Heck
Molecules 2022, 27(15), 4772; https://doi.org/10.3390/molecules27154772 - 26 Jul 2022
Cited by 4 | Viewed by 2335
Abstract
Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] [...] Read more.
Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology. Full article
(This article belongs to the Special Issue Synthesis and Therapeutic Applications of Iminosugars)
Show Figures

Graphical abstract

21 pages, 8050 KiB  
Article
Runge–Kutta Numerical Method Followed by Richardson’s Extrapolation for Efficient Ion Rejection Reassessment of a Novel Defect-Free Synthesized Nanofiltration Membrane
by Chabi Noël Worou, Jing Kang, Jimin Shen, Pengwei Yan, Weiqiang Wang, Yingxu Gong and Zhonglin Chen
Membranes 2021, 11(2), 130; https://doi.org/10.3390/membranes11020130 - 14 Feb 2021
Cited by 7 | Viewed by 2963
Abstract
A defect-free, loose, and strong layer consisting of zirconium (Zr) nanoparticles (NPs) has been successfully established on a polyacrylonitrile (PAN) ultrafiltration substrate by an in-situ formation process. The resulting organic–inorganic nanofiltration (NF) membrane, NF-PANZr, has been accurately characterized not only with regard to [...] Read more.
A defect-free, loose, and strong layer consisting of zirconium (Zr) nanoparticles (NPs) has been successfully established on a polyacrylonitrile (PAN) ultrafiltration substrate by an in-situ formation process. The resulting organic–inorganic nanofiltration (NF) membrane, NF-PANZr, has been accurately characterized not only with regard to its properties but also its structure by the atomic force microscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy. A sophisticated computing model consisting of the Runge–Kutta method followed by Richardson extrapolation was applied in this investigation to solve the extended Nernst–Planck equations, which govern the solute particles’ transport across the active layer of NF-PANZr. A smart, adaptive step-size routine is chosen for this simple and robust method, also known as RK4 (fourth-order Runge–Kutta). The NF-PANZr membrane was less performant toward monovalent ions, and its rejection rate for multivalent ions reached 99.3%. The water flux of the NF-PANZr membrane was as high as 58 L · m−2 · h−1. Richardson’s extrapolation was then used to get a better approximation of Cl and Mg2+ rejection, the relative errors were, respectively, 0.09% and 0.01% for Cl and Mg2+. While waiting for the rise and expansion of machine learning in the prediction of rejection performance, we strongly recommend the development of better NF models and further validation of existing ones. Full article
Show Figures

Figure 1

25 pages, 958 KiB  
Review
Dynamics of Ion Channels via Non-Hermitian Quantum Mechanics
by Tobias Gulden and Alex Kamenev
Entropy 2021, 23(1), 125; https://doi.org/10.3390/e23010125 - 19 Jan 2021
Cited by 2 | Viewed by 3699
Abstract
We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the [...] Read more.
We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels. Full article
Show Figures

Figure 1

27 pages, 5092 KiB  
Review
Review of Multivalent Metal Ion Transport in Inorganic and Solid Polymer Electrolytes
by Lauren F. O’Donnell and Steven G. Greenbaum
Batteries 2021, 7(1), 3; https://doi.org/10.3390/batteries7010003 - 31 Dec 2020
Cited by 23 | Viewed by 7982
Abstract
The lithium ion battery, with its high energy density and low reduction potential, continues to enchant researchers and dominate the landscape of energy storage systems development. However, the demands of technology in modern society have begun to reveal limitations of the lithium energy [...] Read more.
The lithium ion battery, with its high energy density and low reduction potential, continues to enchant researchers and dominate the landscape of energy storage systems development. However, the demands of technology in modern society have begun to reveal limitations of the lithium energy revolution. A combination of safety concerns, strained natural resources and geopolitics have inspired the search for alternative energy storage and delivery platforms. Traditional liquid electrolytes prove precarious in large scale schemes due to the propensity for leakage, the potential for side reactions and their corrosive nature. Alternative electrolytic materials in the form of solid inorganic ion conductors and solid polymer matrices offer new possibilities for all solid state batteries. In addition to the engineering of novel electrolyte materials, there is the opportunity to employ post-lithium chemistries. Utility of multivalent cation (Ca2+, Mg2+, Zn2+ and Al3+) transport promises a reduction in cost and increase in safety. In this review, we examine the current research focused on developing solid electrolytes using multivalent metal cation charge carriers and the outlook for their application in all solid state batteries. Full article
Show Figures

Figure 1

21 pages, 3305 KiB  
Article
Characterization of Poly(Acrylic) Acid-Modified Heterogenous Anion Exchange Membranes with Improved Monovalent Permselectivity for RED
by Ivan Merino-Garcia, Francis Kotoka, Carla A.M. Portugal, João G. Crespo and Svetlozar Velizarov
Membranes 2020, 10(6), 134; https://doi.org/10.3390/membranes10060134 - 26 Jun 2020
Cited by 23 | Viewed by 4670
Abstract
The performance of anion-exchange membranes (AEMs) in Reverse Electrodialysis is hampered by both presence of multivalent ions and fouling phenomena, thus leading to reduced net power density. Therefore, we propose a monolayer surface modification procedure to functionalize Ralex-AEMs with poly(acrylic) acid (PAA) in [...] Read more.
The performance of anion-exchange membranes (AEMs) in Reverse Electrodialysis is hampered by both presence of multivalent ions and fouling phenomena, thus leading to reduced net power density. Therefore, we propose a monolayer surface modification procedure to functionalize Ralex-AEMs with poly(acrylic) acid (PAA) in order to (i) render a monovalent permselectivity, and (ii) minimize organic fouling. Membrane surface modification was carried out by putting heterogeneous AEMs in contact with a PAA-based aqueous solution for 24 h. The resulting modified membranes were firstly characterized by contact angle, water uptake, ion exchange capacity, fixed charge density, and swelling degree measurements, whereas their electrochemical responses were evaluated through cyclic voltammetry. Besides, their membrane electro-resistance was also studied via electrochemical impedance spectroscopy analyses. Finally, membrane permselectivity and fouling behavior in the presence of humic acid were evaluated through mass transport experiments using model NaCl containing solutions. The use of modified PAA-AEMs resulted in a significantly enhanced monovalent permselectivity (sulfate rejection improved by >35%) and membrane hydrophilicity (contact angle decreased by >15%) in comparison with the behavior of unmodified Ralex-AEMs, without compromising the membrane electro-resistance after modification, thus demonstrating the technical feasibility of the proposed membrane modification procedure. This study may therefore provide a feasible way for achieving an improved Reverse Electrodialysis process efficiency. Full article
(This article belongs to the Special Issue Electromembrane Processes: Experiments and Modelling)
Show Figures

Graphical abstract

28 pages, 3161 KiB  
Review
Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis
by Abreham Tesfaye Besha, Misgina Tilahun Tsehaye, David Aili, Wenjuan Zhang and Ramato Ashu Tufa
Membranes 2020, 10(1), 7; https://doi.org/10.3390/membranes10010007 - 31 Dec 2019
Cited by 72 | Viewed by 10060
Abstract
Reverse electrodialysis (RED) represents one of the most promising membrane-based technologies for clean and renewable energy production from mixing water solutions. However, the presence of multivalent ions in natural water drastically reduces system performance, in particular, the open-circuit voltage (OCV) and the output [...] Read more.
Reverse electrodialysis (RED) represents one of the most promising membrane-based technologies for clean and renewable energy production from mixing water solutions. However, the presence of multivalent ions in natural water drastically reduces system performance, in particular, the open-circuit voltage (OCV) and the output power. This effect is largely described by the “uphill transport” phenomenon, in which multivalent ions are transported against the concentration gradient. In this work, recent advances in the investigation of the impact of multivalent ions on power generation by RED are systematically reviewed along with possible strategies to overcome this challenge. In particular, the use of monovalent ion-selective membranes represents a promising alternative to reduce the negative impact of multivalent ions given the availability of low-cost materials and an easy route of membrane synthesis. A thorough assessment of the materials and methodologies used to prepare monovalent selective ion exchange membranes (both cation and anion exchange membranes) for applications in (reverse) electrodialysis is performed. Moreover, transport mechanisms under conditions of extreme salinity gradient are analyzed and compared for a better understanding of the design criteria. The ultimate goal of the present work is to propose a prospective research direction on the development of new membrane materials for effective implementation of RED under natural feed conditions. Full article
(This article belongs to the Special Issue Membranes for Electrolysis, Fuel Cells and Batteries)
Show Figures

Graphical abstract

13 pages, 1317 KiB  
Article
Mass Transfer Phenomena during Electrodialysis of Multivalent Ions: Chemical Equilibria and Overlimiting Currents
by Manuel César Martí-Calatayud, Montserrat García-Gabaldón and Valentín Pérez-Herranz
Appl. Sci. 2018, 8(9), 1566; https://doi.org/10.3390/app8091566 - 6 Sep 2018
Cited by 35 | Viewed by 4330
Abstract
Electrodialysis is utilized for the deionization of saline streams, usually formed by strong electrolytes. Recently, interest in new applications involving the transport of weak electrolytes through ion-exchange membranes has increased. Clear examples of such applications are the recovery of valuable metal ions from [...] Read more.
Electrodialysis is utilized for the deionization of saline streams, usually formed by strong electrolytes. Recently, interest in new applications involving the transport of weak electrolytes through ion-exchange membranes has increased. Clear examples of such applications are the recovery of valuable metal ions from industrial effluents, such as electronic wastes or mining industries. Weak electrolytes give rise to a variety of ions with different valence, charge sign and transport properties. Moreover, development of concentration polarization under the application of an electric field promotes changes in the chemical equilibrium, thus making more complex understanding of mass transfer phenomena in such systems. This investigation presents a set of experiments conducted with salts of multivalent metals with the aim to provide better understanding on the involved mass transfer phenomena. Chronopotentiometric experiments and current-voltage characteristics confirm that shifts in chemical equilibria can take place simultaneous to the activation of overlimiting mass transfer mechanisms, that is, electroconvection and water dissociation. Electroconvection has been proven to affect the type of precipitates formed at the membrane surface thus suppressing the simultaneous dissociation of water. For some electrolytes, shifts in the chemical equilibria forced by an imposed electric field generate new charge carriers at specific current regimes, thus reducing the system resistance. Full article
(This article belongs to the Special Issue Electro-membrane Processes for Clean Water and Sustainable Energy)
Show Figures

Figure 1

27 pages, 11608 KiB  
Article
Hyperbranched Polyglycerol Derivatives as Prospective Copper Nanotransporter Candidates
by Mohiuddin Quadir, Susanne Fehse, Gerhard Multhaup and Rainer Haag
Molecules 2018, 23(6), 1281; https://doi.org/10.3390/molecules23061281 - 26 May 2018
Cited by 9 | Viewed by 4919
Abstract
Hyperbranched polyglycerol (hPG) has been used as a multivalent scaffold to develop a series of nanocarriers capable of high-affinity encapsulation of copper (Cu). A rationally selected set of Cu-complexing motifs has been conjugated to hPG hydroxyl groups to render the constructs potentially usable [...] Read more.
Hyperbranched polyglycerol (hPG) has been used as a multivalent scaffold to develop a series of nanocarriers capable of high-affinity encapsulation of copper (Cu). A rationally selected set of Cu-complexing motifs has been conjugated to hPG hydroxyl groups to render the constructs potentially usable as exogenous sources of Cu for addressing different pathological conditions associated with Cu-deficiency. We have utilized a newly discovered route to attach Cu-binding domains exclusively within a hPG core by selective differentiation between the primary and secondary hydroxyl groups of the polyol. These hPG-derivatives were found to form a stable complex with Cu ions depending on the type of immobilized ligands and corresponding degree of functionalization. In addition, these Cu-bearing nano-complexes demonstrated moderately cationic surface charge resulting in adjustable protein-binding characteristics and low cellular toxicity profile. We envision that these Cu-loaded hPG nanocarriers can be used as a stable platform to transport the metal ion across the systemic circulation to supply bioavailable quantity of Cu in disease-afflicted tissues. Full article
Show Figures

Graphical abstract

15 pages, 2948 KiB  
Review
Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review
by Uichi Akiba, Daichi Minaki and Jun-ichi Anzai
Polymers 2018, 10(2), 130; https://doi.org/10.3390/polym10020130 - 29 Jan 2018
Cited by 14 | Viewed by 5102
Abstract
This review provides an overview of the synthesis of layer-by-layer (LbL) assemblies containing calix[n]arene (CA[n]) and cucurbit[n]uril (CB[n]) and their applications. LbL assemblies, such as thin films and microcapsules, containing selective binding sites have attracted [...] Read more.
This review provides an overview of the synthesis of layer-by-layer (LbL) assemblies containing calix[n]arene (CA[n]) and cucurbit[n]uril (CB[n]) and their applications. LbL assemblies, such as thin films and microcapsules, containing selective binding sites have attracted considerable attention because of their potential use in separation and purification, sensors for ions and molecules, and controlled release. CA[n]-containing LbL films have been prepared using sulfonated CA[n] and cationic polymers to construct chemical sensors and molecular containers. CA[n]-containing LbL films deposited on the surface of a porous support are useful as ion-selective membranes that exhibit selective permeability to monovalent ions over multivalent ions. CB[n]s have been used as molecular glues for the construction of LbL films and microcapsules by taking advantage of the strong affinity of CB[n]s to aromatic compounds. CB[n]s form a stable 1:1:1 ternary complex with electron-rich and electron-deficient molecules in LbL films to stabilize the assemblies. CB[n]-containing LbL films can also be deposited on the surfaces of micro templates and nanopore membranes to construct microcapsules for controlled release and nanochannels for selective ion transport, respectively. Full article
Show Figures

Graphical abstract

Back to TopTop