Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = multispectral imaging (MSI) analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3156 KiB  
Article
Quantitative and Qualitative Evaluation of Microplastic Contamination of Shrimp Using Visible Near-Infrared Multispectral Imaging Technology Combined with Supervised Self-Organizing Map
by Sureerat Makmuang and Abderrahmane Aït-Kaddour
Chemosensors 2025, 13(7), 237; https://doi.org/10.3390/chemosensors13070237 - 2 Jul 2025
Viewed by 370
Abstract
Microplastic (MP) contamination is a growing environmental concern with significant impacts on ecosystems, the economy, and potentially human health. However, accurately detecting and characterizing MPs in biological samples remains a challenge due to the complexity of biological matrices and analytical limitations. This study [...] Read more.
Microplastic (MP) contamination is a growing environmental concern with significant impacts on ecosystems, the economy, and potentially human health. However, accurately detecting and characterizing MPs in biological samples remains a challenge due to the complexity of biological matrices and analytical limitations. This study presents a novel, non-destructive visible near-infrared multispectral imaging (Vis-NIR-MSI) method combined with a supervised self-organizing map (SOM) to enable rapid qualitative and quantitative analysis of MPs in seafood. We specifically aimed to identify and differentiate four types of microplastics, namely PET, PE, PP, and PS, in the range 1–4 mm, present on the surface of minced shrimp and shrimp shell. For quantification, MPs were incorporated into minced shrimp surface at concentrations ranging from 0.04% to 1% w/w. The modified model achieved a high coefficient of determination (R2 > 0.99) for PE and PP quantification. Unlike conventional techniques, this approach eliminates the need for pre-sorting or chemical processing, offering a cost-effective and efficient solution for large-scale monitoring of MPs in seafood, with potential applications in food safety and environmental protection. Full article
Show Figures

Figure 1

18 pages, 3896 KiB  
Article
The Contribution of Meteosat Third Generation–Flexible Combined Imager (MTG-FCI) Observations to the Monitoring of Thermal Volcanic Activity: The Mount Etna (Italy) February–March 2025 Eruption
by Carolina Filizzola, Giuseppe Mazzeo, Francesco Marchese, Carla Pietrapertosa and Nicola Pergola
Remote Sens. 2025, 17(12), 2102; https://doi.org/10.3390/rs17122102 - 19 Jun 2025
Viewed by 538
Abstract
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 [...] Read more.
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 min and a spatial resolution ranging between 500 m in the high-resolution (HR) and 1–2 km in the normal-resolution (NR) mode, may represent a very promising instrument for monitoring thermal volcanic activity from space, also in operational contexts. In this work, we assess this potential by investigating the recent Mount Etna (Italy, Sicily) eruption of February–March 2025 through the analysis of daytime and night-time SWIR observations in the NR mode. The time series of a normalized hotspot index retrieved over Mt. Etna indicates that the effusive eruption started on 8 February at 13:40 UTC (14:40 LT), i.e., before information from independent sources. This observation is corroborated by the analysis of the MIR signal performed using an adapted Robust Satellite Technique (RST) approach, also revealing the occurrence of less intense thermal activity over the Mt. Etna area a few hours before (10.50 UTC) the possible start of lava effusion. By analyzing changes in total SWIR radiance (TSR), calculated starting from hot pixels detected using the preliminary NHI algorithm configuration tailored to FCI data, we inferred information about variations in thermal volcanic activity. The results show that the Mt. Etna eruption was particularly intense during 17–19 February, when the radiative power was estimated to be around 1–3 GW from other sensors. These outcomes, which are consistent with Multispectral Instrument (MSI) and Operational Land Imager (OLI) observations at a higher spatial resolution, providing accurate information about areas inundated by the lava, demonstrate that the FCI may provide a relevant contribution to the near-real-time monitoring of Mt. Etna activity. The usage of FCI data, in the HR mode, may further improve the timely identification of high-temperature features in the framework of early warning contexts, devoted to mitigating the social, environmental and economic impacts of effusive eruptions, especially over less monitored volcanic areas. Full article
Show Figures

Figure 1

21 pages, 10091 KiB  
Article
Scalable Hyperspectral Enhancement via Patch-Wise Sparse Residual Learning: Insights from Super-Resolved EnMAP Data
by Parth Naik, Rupsa Chakraborty, Sam Thiele and Richard Gloaguen
Remote Sens. 2025, 17(11), 1878; https://doi.org/10.3390/rs17111878 - 28 May 2025
Viewed by 737
Abstract
A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational [...] Read more.
A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational complexity, and limited training data, particularly for new-generation sensors with unique noise patterns. In this contribution, we propose a novel parallel patch-wise sparse residual learning (P2SR) algorithm for resolution enhancement based on fusion of HSI and MSI. The proposed method uses multi-decomposition techniques (i.e., Independent component analysis, Non-negative matrix factorization, and 3D wavelet transforms) to extract spatial and spectral features to form a sparse dictionary. The spectral and spatial characteristics of the scene encoded in the dictionary enable reconstruction through a first-order optimization algorithm to ensure an efficient sparse representation. The final spatially enhanced HSI is reconstructed by combining the learned features from low-resolution HSI and applying an MSI-regulated guided filter to enhance spatial fidelity while minimizing artifacts. P2SR is deployable on a high-performance computing (HPC) system with parallel processing, ensuring scalability and computational efficiency for large HSI datasets. Extensive evaluations on three diverse study sites demonstrate that P2SR consistently outperforms traditional and state-of-the-art (SOA) methods in both quantitative metrics and qualitative spatial assessments. Specifically, P2SR achieved the best average PSNR (25.2100) and SAM (12.4542) scores, indicating superior spatio-spectral reconstruction contributing to sharper spatial features, reduced mixed pixels, and enhanced geological features. P2SR also achieved the best average ERGAS (8.9295) and Q2n (0.5156), which suggests better overall fidelity across all bands and perceptual accuracy with the least spectral distortions. Importantly, we show that P2SR preserves critical spectral signatures, such as Fe2+ absorption, and improves the detection of fine-scale environmental and geological structures. P2SR’s ability to maintain spectral fidelity while enhancing spatial detail makes it a powerful tool for high-precision remote sensing applications, including mineral mapping, land-use analysis, and environmental monitoring. Full article
Show Figures

Graphical abstract

22 pages, 33216 KiB  
Article
Characterizing Sparse Spectral Diversity Within a Homogenous Background: Hydrocarbon Production Infrastructure in Arctic Tundra near Prudhoe Bay, Alaska
by Daniel Sousa, Latha Baskaran, Kimberley Miner and Elizabeth Josephine Bushnell
Remote Sens. 2025, 17(2), 244; https://doi.org/10.3390/rs17020244 - 11 Jan 2025
Viewed by 1210
Abstract
We explore a new approach for the parsimonious, generalizable, efficient, and potentially automatable characterization of spectral diversity of sparse targets in spectroscopic imagery. The approach focuses on pixels which are not well modeled by linear subpixel mixing of the Substrate, Vegetation and Dark [...] Read more.
We explore a new approach for the parsimonious, generalizable, efficient, and potentially automatable characterization of spectral diversity of sparse targets in spectroscopic imagery. The approach focuses on pixels which are not well modeled by linear subpixel mixing of the Substrate, Vegetation and Dark (S, V, and D) endmember spectra which dominate spectral variance for most of Earth’s land surface. We illustrate the approach using AVIRIS-3 imagery of anthropogenic surfaces (primarily hydrocarbon extraction infrastructure) embedded in a background of Arctic tundra near Prudhoe Bay, Alaska. Computational experiments further explore sensitivity to spatial and spectral resolution. Analysis involves two stages: first, computing the mixture residual of a generalized linear spectral mixture model; and second, nonlinear dimensionality reduction via manifold learning. Anthropogenic targets and lakeshore sediments are successfully isolated from the Arctic tundra background. Dependence on spatial resolution is observed, with substantial degradation of manifold topology as images are blurred from 5 m native ground sampling distance to simulated 30 m ground projected instantaneous field of view of a hypothetical spaceborne sensor. Degrading spectral resolution to mimicking the Sentinel-2A MultiSpectral Imager (MSI) also results in loss of information but is less severe than spatial blurring. These results inform spectroscopic characterization of sparse targets using spectroscopic images of varying spatial and spectral resolution. Full article
Show Figures

Figure 1

18 pages, 2138 KiB  
Article
Realisation of an Application Specific Multispectral Snapshot-Imaging System Based on Multi-Aperture-Technology and Multispectral Machine Learning Loops
by Lennard Wunsch, Martin Hubold, Rico Nestler and Gunther Notni
Sensors 2024, 24(24), 7984; https://doi.org/10.3390/s24247984 - 14 Dec 2024
Viewed by 4611
Abstract
Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi [...] Read more.
Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information. There are some limiting factors for the spectral resolution when implementing this imaging principle, e.g., usable sensor resolutions and area, and required spatial scene resolution or optical complexity. Careful analysis is therefore needed for the specification of the multispectral system properties and its realisation. In this work we present a systematic approach for the application-related implementation of this kind of MSI. We focus on spectral system modeling, data analysis, and machine learning to build a universally usable multispectral loop to find the best sensor configuration. The approach presented is demonstrated and tested on the classification of waste, a typical application for multispectral imaging. Full article
Show Figures

Figure 1

28 pages, 4077 KiB  
Article
Inter-Sensor Level 1 Radiometric Comparisons Using Deep Convective Clouds
by Louis Rivoire, Sébastien Clerc, Bahjat Alhammoud, Frédéric Romand and Nicolas Lamquin
Remote Sens. 2024, 16(23), 4445; https://doi.org/10.3390/rs16234445 - 27 Nov 2024
Viewed by 881
Abstract
To evaluate the radiometric performance of top-of-atmosphere reflectance images, Deep Convective Clouds (DCCs) can be used as temporally, spatially and spectrally stable targets. The DCCs method has been developed more than 20 years ago and applied recently to Sentinel-2 and Sentinel-3 sensors. In [...] Read more.
To evaluate the radiometric performance of top-of-atmosphere reflectance images, Deep Convective Clouds (DCCs) can be used as temporally, spatially and spectrally stable targets. The DCCs method has been developed more than 20 years ago and applied recently to Sentinel-2 and Sentinel-3 sensors. In this paper, among other developments, we built a new methodology upon those existing by using the bootstrap method and spectral band adjustment factors computed with the Hyper-Spectral Imager (HSI) from the Environmental Mapping and Analysis Program (EnMAP). This methodology is applied to the two Multi-Spectral Imager (MSI) instruments onboard Sentinel-2A and 2B, but also the two Operational Land Imager (OLI) instruments onboard Landsat 8 and 9, from visible wavelength at 442 nm to shortwave-infrared at 2200 nm, using images with a ground resolution spanning from 10 m to 60 m. The results demonstrate the good inter-calibration of MSI units A and B, which are within one percent of relative difference on average between January 2022 and June 2024 for all visible, near-infrared and shortwave-infrared bands, except for the band at 1375 nm for which saturation prevents the use of the method. Similarly, OLI and OLI-2 are found to have a relative difference on the same period lower than one percent for all 30 m resolution bands. Evaluation of the relative difference between the MSI sensors and the OLI sensors with the DCCs method gives values lower than three percent. Finally, these validation results are compared to those obtained with Pseudo-Invariant Calibration Sites (PICSs) over Libya-4: an agreement better than two percent is found between the DCCs and PICSs methods. Full article
Show Figures

Figure 1

12 pages, 3669 KiB  
Article
Distinguishing of Histopathological Staging Features of H-E Stained Human cSCC by Microscopical Multispectral Imaging
by Rujuan Wu, Jiayi Yang, Qi Chen, Changxing Yang, Qianqian Ge, Danni Rui, Huazhong Xiang, Dawei Zhang, Cheng Wang and Xiaoqing Zhao
Biosensors 2024, 14(10), 467; https://doi.org/10.3390/bios14100467 - 29 Sep 2024
Viewed by 1552
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignant skin tumor. Early and precise diagnosis of tumor staging is crucial for long-term outcomes. While pathological diagnosis has traditionally served as the gold standard, the assessment of differentiation levels heavily depends on [...] Read more.
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignant skin tumor. Early and precise diagnosis of tumor staging is crucial for long-term outcomes. While pathological diagnosis has traditionally served as the gold standard, the assessment of differentiation levels heavily depends on subjective judgments. Therefore, how to improve the diagnosis accuracy and objectivity of pathologists has become an urgent problem to be solved. We used multispectral imaging (MSI) to enhance tumor classification. The hematoxylin and eosin (H&E) stained cSCC slides were from Shanghai Ruijin Hospital. Scale-invariant feature transform was applied to multispectral images for image stitching, while the adaptive threshold segmentation method and random forest segmentation method were used for image segmentation, respectively. Synthetic pseudo-color images effectively highlight tissue differences. Quantitative analysis confirms significant variation in the nuclear area between normal and cSCC tissues (p < 0.001), supported by an AUC of 1 in ROC analysis. The AUC within cSCC tissues is 0.57. Further study shows higher nuclear atypia in poorly differentiated cSCC tissues compared to well-differentiated cSCC (p < 0.001), also with an AUC of 1. Lastly, well differentiated cSCC tissues show more and larger keratin pearls. These results have shown that combined MSI with imaging processing techniques will improve H&E stained human cSCC diagnosis accuracy, and it will be well utilized to distinguish histopathological staging features. Full article
Show Figures

Figure 1

17 pages, 12031 KiB  
Article
Sequence Segmentation of Nematodes in Atlantic Cod with Multispectral Imaging Data
by Andrea Rakel Sigurðardóttir, Hildur Inga Sveinsdóttir, Nette Schultz, Hafsteinn Einarsson and María Gudjónsdóttir
Foods 2024, 13(18), 2952; https://doi.org/10.3390/foods13182952 - 18 Sep 2024
Viewed by 1254
Abstract
Nematodes pose significant challenges for the fish processing industry, particularly in white fish. Despite technological advances, the industry still depends on manual labor for the detection and extraction of nematodes. This study addresses the initial steps of automatic nematode detection and differentiation from [...] Read more.
Nematodes pose significant challenges for the fish processing industry, particularly in white fish. Despite technological advances, the industry still depends on manual labor for the detection and extraction of nematodes. This study addresses the initial steps of automatic nematode detection and differentiation from other common defects in fish fillets, such as skin remnants and blood spots. VideometerLab 4, an advanced Multispectral Imaging (MSI) System, was used to acquire 270 images of 50 Atlantic cod fillets under controlled conditions. In total, 173 nematodes were labeled using the Segment Anything Model (SAM), which is trained to automatically segment objects of interest from only few representative pixels. With the acquired dataset, we study the potential of identifying nematodes through their spectral signature. We incorporated normalized Canonical Discriminant Analysis (nCDA) to develop segmentation models trained to distinguish between different components within the fish fillets. By incorporating multiple segmentation models, we aimed to achieve a satisfactory balance between false negatives and false positives. This resulted in 88% precision and 79% recall for our annotated test data. This approach could improve process control by accurately identifying fillets with nematodes. Using MSI minimizes unnecessary inspection of fillets in good condition and concurrently boosts product safety and quality. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 10244 KiB  
Article
Identification of Floating Green Tide in High-Turbidity Water from Sentinel-2 MSI Images Employing NDVI and CIE Hue Angle Thresholds
by Lin Wang, Qinghui Meng, Xiang Wang, Yanlong Chen, Xinxin Wang, Jie Han and Bingqiang Wang
J. Mar. Sci. Eng. 2024, 12(9), 1640; https://doi.org/10.3390/jmse12091640 - 13 Sep 2024
Cited by 4 | Viewed by 971
Abstract
Remote sensing technology is widely used to obtain information on floating green tides, and thresholding methods based on indices such as the normalized difference vegetation index (NDVI) and the floating algae index (FAI) play an important role in such studies. However, as the [...] Read more.
Remote sensing technology is widely used to obtain information on floating green tides, and thresholding methods based on indices such as the normalized difference vegetation index (NDVI) and the floating algae index (FAI) play an important role in such studies. However, as the methods are influenced by many factors, the threshold values vary greatly; in particular, the error of data extraction clearly increases in situations of high-turbidity water (HTW) (NDVI > 0). In this study, high spatial resolution, multispectral images from the Sentinel-2 MSI mission were used as the data source. It was found that the International Commission on Illumination (CIE) hue angle calculated using remotely sensed equivalent multispectral reflectance data and the RGB method is extremely effective in distinguishing floating green tides from areas of HTW. Statistical analysis of Sentinel-2 MSI images showed that the threshold value of the hue angle that can effectively eliminate the effect of HTW is 218.94°. A test demonstration of the method for identifying the floating green tide in HTW in a Sentinel-2 MSI image was carried out using the identified threshold values of NDVI > 0 and CIE hue angle < 218.94°. The demonstration showed that the method effectively eliminates misidentification caused by HTW pixels (NDVI > 0), resulting in better consistency of the identification of the floating green tide and its distribution in the true color image. The method enables rapid and accurate extraction of information on floating green tide in HTW, and offers a new solution for the monitoring and tracking of green tides in coastal areas. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

24 pages, 5237 KiB  
Article
Effect of the Bioprotective Properties of Lactic Acid Bacteria Strains on Quality and Safety of Feta Cheese Stored under Different Conditions
by Angeliki Doukaki, Olga S. Papadopoulou, Antonia Baraki, Marina Siapka, Ioannis Ntalakas, Ioannis Tzoumkas, Konstantinos Papadimitriou, Chrysoula Tassou, Panagiotis Skandamis, George-John Nychas and Nikos Chorianopoulos
Microorganisms 2024, 12(9), 1870; https://doi.org/10.3390/microorganisms12091870 - 10 Sep 2024
Cited by 5 | Viewed by 2347
Abstract
Lately, the inclusion of additional lactic acid bacteria (LAB) strains to cheeses is becoming more popular since they can affect cheese’s nutritional, technological, and sensory properties, as well as increase the product’s safety. This work studied the effect of Lactiplantibacillus pentosus L33 and [...] Read more.
Lately, the inclusion of additional lactic acid bacteria (LAB) strains to cheeses is becoming more popular since they can affect cheese’s nutritional, technological, and sensory properties, as well as increase the product’s safety. This work studied the effect of Lactiplantibacillus pentosus L33 and Lactiplantibacillus plantarum L125 free cells and supernatants on feta cheese quality and Listeria monocytogenes fate. In addition, rapid and non-invasive techniques such as Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used to classify the cheese samples based on their sensory attributes. Slices of feta cheese were contaminated with 3 log CFU/g of L. monocytogenes, and then the cheese slices were sprayed with (i) free cells of the two strains of the lactic acid bacteria (LAB) in co-culture (F, ~5 log CFU/g), (ii) supernatant of the LAB co-culture (S) and control (C, UHT milk) or wrapped with Na-alginate edible films containing the pellet (cells, FF) or the supernatant (SF) of the LAB strains. Subsequently, samples were stored in air, in brine, or in vacuum at 4 and 10 °C. During storage, microbiological counts, pH, and water activity (aw) were monitored while sensory assessment was conducted. Also, in every sampling point, spectral data were acquired by means of FTIR and MSI techniques. Results showed that the initial microbial population of Feta was ca. 7.6 log CFU/g and consisted of LAB (>7 log CFU/g) and yeast molds in lower levels, while no Enterobacteriaceae were detected. During aerobic, brine, and vacuum storage for both temperatures, pathogen population was slightly postponed for S and F samples and reached lower levels compared to the C ones. The yeast mold population was slightly delayed in brine and vacuum packaging. For aerobic storage at 4 °C, an elongation in the shelf life of F samples by 4 days was observed compared to C and S samples. At 10 °C, the shelf life of both F and S samples was extended by 13 days compared to C samples. FTIR and MSI analyses provided reliable estimations of feta quality using the PLS-DA method, with total accuracy (%) ranging from 65.26 to 84.31 and 60.43 to 89.12, respectively. In conclusion, the application of bioprotective LAB strains can result in the extension of feta’s shelf life and provide a mild antimicrobial action against L. monocytogenes and spoilage microbiota. Furthermore, the findings of this study validate the effectiveness of FTIR and MSI techniques, in tandem with data analytics, for the rapid assessment of the quality of feta samples. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

31 pages, 3112 KiB  
Article
Fusing Multispectral and LiDAR Data for CNN-Based Semantic Segmentation in Semi-Arid Mediterranean Environments: Land Cover Classification and Analysis
by Athanasia Chroni, Christos Vasilakos, Marianna Christaki and Nikolaos Soulakellis
Remote Sens. 2024, 16(15), 2729; https://doi.org/10.3390/rs16152729 - 25 Jul 2024
Cited by 2 | Viewed by 2281
Abstract
Spectral confusion among land cover classes is quite common, let alone in a complex and heterogenous system like the semi-arid Mediterranean environment; thus, employing new developments in remote sensing, such as multispectral imagery (MSI) captured by unmanned aerial vehicles (UAVs) and airborne light [...] Read more.
Spectral confusion among land cover classes is quite common, let alone in a complex and heterogenous system like the semi-arid Mediterranean environment; thus, employing new developments in remote sensing, such as multispectral imagery (MSI) captured by unmanned aerial vehicles (UAVs) and airborne light detection and ranging (LiDAR) techniques, with deep learning (DL) algorithms for land cover classification can help to address this problem. Therefore, we propose an image-based land cover classification methodology based on fusing multispectral and airborne LiDAR data by adopting CNN-based semantic segmentation in a semi-arid Mediterranean area of northeastern Aegean, Greece. The methodology consists of three stages: (i) data pre-processing, (ii) semantic segmentation, and (iii) accuracy assessment. The multispectral bands were stacked with the calculated Normalized Difference Vegetation Index (NDVI) and the LiDAR-based attributes height, intensity, and number of returns converted into two-dimensional (2D) images. Then, a hyper-parameter analysis was performed to investigate the impact on the classification accuracy and training time of the U-Net architecture by varying the input tile size and the patch size for prediction, including the learning rate and algorithm optimizer. Finally, comparative experiments were conducted by altering the input data type to test our hypothesis, and the CNN model performance was analyzed by using accuracy assessment metrics and visually comparing the segmentation maps. The findings of this investigation showed that fusing multispectral and LiDAR data improves the classification accuracy of the U-Net, as it yielded the highest overall accuracy of 79.34% and a kappa coefficient of 0.6966, compared to using multispectral (OA: 76.03%; K: 0.6538) or LiDAR (OA: 37.79%; K: 0.0840) data separately. Although some confusion still exists among the seven land cover classes observed, the U-Net delivered a detailed and quite accurate segmentation map. Full article
(This article belongs to the Special Issue Remote Sensing in Environmental Modelling)
Show Figures

Figure 1

19 pages, 4984 KiB  
Article
Monitoring the Bioprotective Potential of Lactiplantibacillus pentosus Culture on Pathogen Survival and the Shelf-Life of Fresh Ready-to-Eat Salads Stored under Modified Atmosphere Packaging
by Angeliki Doukaki, Olga S. Papadopoulou, Chrysavgi Tzavara, Aikaterini-Malevi Mantzara, Konstantina Michopoulou, Chrysoula Tassou, Panagiotis Skandamis, George-John Nychas and Nikos Chorianopoulos
Pathogens 2024, 13(7), 557; https://doi.org/10.3390/pathogens13070557 - 2 Jul 2024
Cited by 2 | Viewed by 1764
Abstract
Globally, fresh vegetables or minimally processed salads have been implicated in several foodborne disease outbreaks. This work studied the effect of Lactiplantibacillus pentosus FMCC-B281 cells (F) and its supernatant (S) on spoilage and on the fate of Listeria monocytogenes and Escherichia coli O157:H7 [...] Read more.
Globally, fresh vegetables or minimally processed salads have been implicated in several foodborne disease outbreaks. This work studied the effect of Lactiplantibacillus pentosus FMCC-B281 cells (F) and its supernatant (S) on spoilage and on the fate of Listeria monocytogenes and Escherichia coli O157:H7 on fresh-cut ready-to-eat (RTE) salads during storage. Also, Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used as rapid and non-destructive techniques to estimate the microbiological status of the samples. Fresh romaine lettuce, rocket cabbage, and white cabbage were used in the present study and were inoculated with L. pentosus and the two pathogens. The strains were grown at 37 °C for 24 h in MRS and BHI broths, respectively, and then were centrifuged to collect the supernatant and the pellet (cells). Cells (F, ~5 log CFU/g), the supernatant (S), and a control (C, broth) were used to spray the leaves of each fresh vegetable that had been previously contaminated (sprayed) with the pathogen (3 log CFU/g). Subsequently, the salads were packed under modified atmosphere packaging (10%CO2/10%O2/80%N2) and stored at 4 and 10 °C until spoilage. During storage, microbiological counts and pH were monitored in parallel with FTIR and MSI analyses. The results showed that during storage, the population of the pathogens increased for lettuce and rocket independent of the treatment. For cabbage, pathogen populations remained stable throughout storage. Regarding the spoilage microbiota, the Pseudomonas population was lower in the F samples, while no differences in the populations of Enterobacteriaceae and yeasts/molds were observed for the C, F, and S samples stored at 4 °C. According to sensory evaluation, the shelf-life was shorter for the control samples in contrast to the S and F samples, where their shelf-life was elongated by 1–2 days. Initial pH values were ca. 6.0 for the three leafy vegetables. An increase in the pH of ca. 0.5 values was recorded until the end of storage at both temperatures for all cases of leafy vegetables. FTIR and MSI analyses did not satisfactorily lead to the estimation of the microbiological quality of salads. In conclusion, the applied bioprotective strain (L. pentosus) can elongate the shelf-life of the RTE salads without an effect on pathogen growth. Full article
Show Figures

Figure 1

26 pages, 9310 KiB  
Article
Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation
by Angela Gabrielly Pires Silva, Lênio Soares Galvão, Laerte Guimarães Ferreira Júnior, Nathália Monteiro Teles, Vinícius Vieira Mesquita and Isadora Haddad
Remote Sens. 2024, 16(13), 2256; https://doi.org/10.3390/rs16132256 - 21 Jun 2024
Cited by 7 | Viewed by 2071
Abstract
Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation [...] Read more.
Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation to discriminate between five classes of pasture degradation: non-degraded pasture (NDP); pastures with low- (LID) and moderate-intensity degradation (MID); severe agronomic degradation (SAD); and severe biological degradation (SBD). Using a set of 259 cloud-free images acquired in 2022 across five sites located in central Brazil, the study aims to: (i) identify the most suitable period for discriminating between various degradation classes; (ii) evaluate the Random Forest (RF) classification performance of different SuperDove attributes; and (iii) compare metrics of accuracy derived from two predicted scenarios of pasture degradation: a more challenging one involving five classes (NDP, LID, MID, SAD, and SBD), and another considering only non-degraded and severely degraded pastures (NDP, SAD, and SBD). The study assessed individual and combined sets of SuperDove attributes, including band reflectance, vegetation indices, endmember fractions from spectral mixture analysis (SMA), and image texture variables from Gray-level Co-occurrence Matrix (GLCM). The results highlighted the effectiveness of the transition from the rainy to the dry season and the period towards the beginning of a new seasonal rainy cycle in October for discriminating pasture degradation. In comparison to the dry season, more favorable discrimination scenarios were observed during the rainy season. In the dry season, increased amounts of non-photosynthetic vegetation (NPV) complicate the differentiation between NDP and SBD, which is characterized by high soil exposure. Pastures exhibiting severe biological degradation showed greater sensitivity to water stress, manifesting earlier reflectance changes in the visible and near-infrared bands of SuperDove compared to other classes. Reflectance-based classification yielded higher overall accuracy (OA) than the approaches using endmember fractions, vegetation indices, or texture metrics. Classifications using combined attributes achieved an OA of 0.69 and 0.88 for the five-class and three-class scenarios, respectively. In the five-class scenario, the highest F1-scores were observed for NDP (0.61) and classes of agronomic (0.71) and biological (0.88) degradation, indicating the challenges in separating low and moderate stages of pasture degradation. An initial comparison of RF classification results for the five categories of degraded pastures, utilizing reflectance data from MultiSpectral Instrument (MSI)/Sentinel-2 (400–2500 nm) and SuperDove (400–900 nm), demonstrated an enhanced OA (0.79 versus 0.66) with Sentinel-2 data. This enhancement is likely to be attributed to the inclusion of shortwave infrared (SWIR) spectral bands in the data analysis. Our findings highlight the potential of satellite constellation data, acquired at high spatial resolution, for remote identification of pasture degradation. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

14 pages, 5025 KiB  
Article
Scanning Micro X-ray Fluorescence and Multispectral Imaging Fusion: A Case Study on Postage Stamps
by Theofanis Gerodimos, Ioanna Vasiliki Patakiouta, Vassilis M. Papadakis, Dimitrios Exarchos, Anastasios Asvestas, Georgios Kenanakis, Theodore E. Matikas and Dimitrios F. Anagnostopoulos
J. Imaging 2024, 10(4), 95; https://doi.org/10.3390/jimaging10040095 - 22 Apr 2024
Cited by 3 | Viewed by 3333
Abstract
Scanning micrο X-ray fluorescence (μ-XRF) and multispectral imaging (MSI) were applied to study philately stamps, selected for their small size and intricate structures. The μ-XRF measurements were accomplished using the M6 Jetstream Bruker scanner under optimized conditions for spatial resolution, while the MSI [...] Read more.
Scanning micrο X-ray fluorescence (μ-XRF) and multispectral imaging (MSI) were applied to study philately stamps, selected for their small size and intricate structures. The μ-XRF measurements were accomplished using the M6 Jetstream Bruker scanner under optimized conditions for spatial resolution, while the MSI measurements were performed employing the XpeCAM-X02 camera. The datasets were acquired asynchronously. Elemental distribution maps can be extracted from the μ-XRF dataset, while chemical distribution maps can be obtained from the analysis of the multispectral dataset. The objective of the present work is the fusion of the datasets from the two spectral imaging modalities. An algorithmic co-registration of the two datasets is applied as a first step, aiming to align the multispectral and μ-XRF images and to adapt to the pixel sizes, as small as a few tens of micrometers. The dataset fusion is accomplished by applying k-means clustering of the multispectral dataset, attributing a representative spectrum to each pixel, and defining the multispectral clusters. Subsequently, the μ-XRF dataset within a specific multispectral cluster is analyzed by evaluating the mean XRF spectrum and performing k-means sub-clustering of the μ-XRF dataset, allowing the differentiation of areas with variable elemental composition within the multispectral cluster. The data fusion approach proves its validity and strength in the context of philately stamps. We demonstrate that the fusion of two spectral imaging modalities enhances their analytical capabilities significantly. The spectral analysis of pixels within clusters can provide more information than analyzing the same pixels as part of the entire dataset. Full article
(This article belongs to the Section Color, Multi-spectral, and Hyperspectral Imaging)
Show Figures

Figure 1

22 pages, 15570 KiB  
Article
Time-Series Cross-Radiometric Calibration and Validation of GF-6/WFV Using Multi-Site
by Yingxian Wang, Yaokai Liu, Weiwei Zhao, Jian Zeng, Huixian Wang, Renfei Wang, Zhaopeng Xu and Qijin Han
Remote Sens. 2024, 16(7), 1287; https://doi.org/10.3390/rs16071287 - 5 Apr 2024
Cited by 3 | Viewed by 2048
Abstract
The GaoFen6 (GF-6) satellite, equipped with a wide full-swath (WFV) sensor, offers high spatial resolution and extensive coverage, making it widely utilized in agricultural and forestry classification, land resource monitoring, and other fields. Accurate on-orbit radiometric calibration of GF-6/WFV is crucial for these [...] Read more.
The GaoFen6 (GF-6) satellite, equipped with a wide full-swath (WFV) sensor, offers high spatial resolution and extensive coverage, making it widely utilized in agricultural and forestry classification, land resource monitoring, and other fields. Accurate on-orbit radiometric calibration of GF-6/WFV is crucial for these quantitative applications. Currently, the absolute radiometric calibration of GF-6/WFV relies primarily on vicarious calibration conducted by the China Center for Resources Satellite Data and Application (CRESDA). However, annual vicarious calibration may not adequately capture the radiometric performance of GF-6/WFV due to performance degradation. Therefore, increasing the frequency of on-orbit radiometric calibration throughout the lifetime of GF-6/WFV is essential. This study proposes a method for conducting long-term cross-radiometric calibrations of GF-6/WFV by taking the multispectral imager (MSI) onboard the Sentinel-2 satellite as a reliable reference sensor and the sites from RadCalNet as reference ground targets. Firstly, we conducted 62 on-orbit cross-radiometric calibrations of GF-6/WFV since its launch by tracking with the Sentinel-2/MSI sensor after correcting the discrepancy spectrum and solar zenith angle. Then, validation of cross-radiometric calibration results against RadCalNet products indicated an average absolute relative error between 3.55% and 4.64%. Cross-validation with additional reference sensors, including Landsat-8/OLI and MODIS, confirmed the reliability of calibration, demonstrating relative differences from GF-6/WFV of less than 5%. Furthermore, the overall uncertainty of the cross-radiometric calibration was estimated to be from 4.08% to 4.89%. Finally, trend analysis of the time-series radiometric performance was also conducted and revealed an annual degradation rate ranging from 0.57% to 2.31%. This degradation affects surface reflectance retrieval, introducing a bias of approximately 0.0073 to 0.0084. Our findings highlight the operational effectiveness of the proposed method in achieving long-time-series on-orbit radiometric calibration and degradation monitoring of GF-6/WFV. The study also demonstrates that the radiometric performance of GF-6/WFV is relatively stable and suitable for further quantitative applications, especially for long-term monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

Back to TopTop