Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = multiplexed immunoassay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1209 KiB  
Article
Investigation of Growth Differentiation Factor 15 as a Prognostic Biomarker for Major Adverse Limb Events in Peripheral Artery Disease
by Ben Li, Farah Shaikh, Houssam Younes, Batool Abuhalimeh, Abdelrahman Zamzam, Rawand Abdin and Mohammad Qadura
J. Clin. Med. 2025, 14(15), 5239; https://doi.org/10.3390/jcm14155239 - 24 Jul 2025
Viewed by 306
Abstract
Background/Objectives: Peripheral artery disease (PAD) impacts more than 200 million individuals globally and leads to mortality and morbidity secondary to progressive limb dysfunction and amputation. However, clinical management of PAD remains suboptimal, in part because of the lack of standardized biomarkers to predict [...] Read more.
Background/Objectives: Peripheral artery disease (PAD) impacts more than 200 million individuals globally and leads to mortality and morbidity secondary to progressive limb dysfunction and amputation. However, clinical management of PAD remains suboptimal, in part because of the lack of standardized biomarkers to predict patient outcomes. Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine that has been studied extensively in cardiovascular disease, but its investigation in PAD remains limited. This study aimed to use explainable statistical and machine learning methods to assess the prognostic value of GDF15 for limb outcomes in patients with PAD. Methods: This prognostic investigation was carried out using a prospectively enrolled cohort comprising 454 patients diagnosed with PAD. At baseline, plasma GDF15 levels were measured using a validated multiplex immunoassay. Participants were monitored over a two-year period to assess the occurrence of major adverse limb events (MALE), a composite outcome encompassing major lower extremity amputation, need for open/endovascular revascularization, or acute limb ischemia. An Extreme Gradient Boosting (XGBoost) model was trained to predict 2-year MALE using 10-fold cross-validation, incorporating GDF15 levels along with baseline variables. Model performance was primarily evaluated using the area under the receiver operating characteristic curve (AUROC). Secondary model evaluation metrics were accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). Prediction histogram plots were generated to assess the ability of the model to discriminate between patients who develop vs. do not develop 2-year MALE. For model interpretability, SHapley Additive exPlanations (SHAP) analysis was performed to evaluate the relative contribution of each predictor to model outputs. Results: The mean age of the cohort was 71 (SD 10) years, with 31% (n = 139) being female. Over the two-year follow-up period, 157 patients (34.6%) experienced MALE. The XGBoost model incorporating plasma GDF15 levels and demographic/clinical features achieved excellent performance for predicting 2-year MALE in PAD patients: AUROC 0.84, accuracy 83.5%, sensitivity 83.6%, specificity 83.7%, PPV 87.3%, and NPV 86.2%. The prediction probability histogram for the XGBoost model demonstrated clear separation for patients who developed vs. did not develop 2-year MALE, indicating strong discrimination ability. SHAP analysis showed that GDF15 was the strongest predictive feature for 2-year MALE, followed by age, smoking status, and other cardiovascular comorbidities, highlighting its clinical relevance. Conclusions: Using explainable statistical and machine learning methods, we demonstrated that plasma GDF15 levels have important prognostic value for 2-year MALE in patients with PAD. By integrating clinical variables with GDF15 levels, our machine learning model can support early identification of PAD patients at elevated risk for adverse limb events, facilitating timely referral to vascular specialists and aiding in decisions regarding the aggressiveness of medical/surgical treatment. This precision medicine approach based on a biomarker-guided prognostication algorithm offers a promising strategy for improving limb outcomes in individuals with PAD. Full article
(This article belongs to the Special Issue The Role of Biomarkers in Cardiovascular Diseases)
Show Figures

Figure 1

18 pages, 2563 KiB  
Article
The Potential Anti-Cancer Effects of Polish Ethanolic Extract of Propolis and Quercetin on Glioma Cells Under Hypoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Molecules 2025, 30(14), 3008; https://doi.org/10.3390/molecules30143008 - 17 Jul 2025
Viewed by 640
Abstract
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation [...] Read more.
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation and aggressive growth. Recent studies have indicated that natural products may hold potential as components of cancer therapy. Among these, Polish propolis and its active compound, quercetin, have demonstrated promising anti-cancer properties. The aim of this study was to evaluate the concentrations of selected cytokines—specifically IL-6, IL-9, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), interferon gamma-induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1)—produced by astrocytes of the CCF-STTG1 cell line. The cytotoxic effects of ethanolic extract of propolis (EEP) and quercetin were assessed using the MTT assay. Astrocytes were stimulated with lipopolysaccharide (LPS, 200 ng/mL) and/or IFN-α (100 U/mL), followed by treatment with EEP or quercetin (25–50 µg/mL) under hypoxic conditions for two hours. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine Kit. Our study demonstrated that Polish propolis and its component quercetin modulate the tumour microenvironment in vitro, primarily by altering the levels of specific cytokines. The HCA analysis revealed that IL-6 and MCP-1 formed a distinct cluster at the highest linkage distance (approximately 100% of Dmax), suggesting that their expression patterns are significantly different from those of the other cytokines and that they are more similar to each other than to the rest. PCA analysis showed that EEP-PL (50 μg/mL) with IFN-α and EEP-PL (50 μg/mL) with LPS exert similar activities on cytokine secretion by astrocytes. Similar effects were demonstrated for EEP-PL 50 μg/mL + LPS + IFN-α, EEP-PL 25 μg/mL + IFN-α and EEP-PL 25 μg/mL + LPS + IFN-α. Our findings suggest that Polish propolis and quercetin may serve as promising natural agents to support the treatment of stage IV malignant astrocytoma. Nonetheless, further research is needed to confirm these results. Full article
Show Figures

Figure 1

11 pages, 1020 KiB  
Communication
XBB.1.5 COVID-19 mRNA Vaccines Induce Inadequate Mucosal Immunity in Patients with Inflammatory Bowel Disease
by Simon Woelfel, Joel Dütschler, Daniel Junker, Marius König, Georg Leinenkugel, Claudia Krieger, Samuel Truniger, Annett Franke, Seraina Koller, Katline Metzger-Peter, Nicola Frei, STAR SIGN Study Investigators, Werner C. Albrich, Matthias Friedrich, Jan Hendrik Niess, Nicole Schneiderhan-Marra, Alex Dulovic, Wolfgang Korte, Justus J. Bürgi and Stephan Brand
Vaccines 2025, 13(7), 759; https://doi.org/10.3390/vaccines13070759 - 16 Jul 2025
Viewed by 514
Abstract
Background: Mucosal immunity plays a pivotal role in preventing infections with SARS-CoV-2. While COVID-19 mRNA vaccines induce robust systemic immune responses in patients with inflammatory bowel disease (IBD), little is known about their efficacy in the mucosal immune compartment. In this sub-investigation of [...] Read more.
Background: Mucosal immunity plays a pivotal role in preventing infections with SARS-CoV-2. While COVID-19 mRNA vaccines induce robust systemic immune responses in patients with inflammatory bowel disease (IBD), little is known about their efficacy in the mucosal immune compartment. In this sub-investigation of the ongoing STAR-SIGN study, we present the first analysis of mucosal immunity elicited by XBB.1.5 mRNA vaccines in immunocompromised patients with IBD. Methods: IgG and IgA antibodies targeting the receptor-binding domain of the SARS-CoV-2 JN.1 variant were quantified longitudinally in the saliva of IBD patients using the multiplex immunoassay MultiCoV-Ab. Antibody levels were quantified before and 2–4 weeks after vaccination with XBB.1.5 mRNA vaccines. All patients previously received three doses with original COVID-19 vaccines. Results: Mucosal IgG antibodies were readily induced by XBB.1.5 mRNA vaccines (p = 0.0013 comparing pre- and post-vaccination levels). However, mucosal IgA levels were comparable before and after vaccination (p = 0.8233). Consequently, mucosal IgG and IgA antibody levels correlated only moderately before and after immunization (pre-vaccination: r = 0.5294; p = 0.0239; post-vaccination: r = 0.4863; p = 0.0407). Contrary to a previous report in healthy individuals, vaccination did not induce serum IgA in patients with IBD (p = 0.5841 comparing pre- and post-vaccination levels). These data suggest that COVID-19 mRNA vaccines fail to elicit mucosal IgA in patients with IBD. Conclusions: Since mucosal IgA plays a pivotal role in infection control, the lack of IgA induction indicates that patients lack sufficient protection against SARS-CoV-2 infections which warrants the development of mucosal COVID-19 vaccines. Full article
Show Figures

Figure 1

15 pages, 959 KiB  
Article
Growth Differentiation Factor 15 Predicts Cardiovascular Events in Peripheral Artery Disease
by Ben Li, Farah Shaikh, Houssam Younes, Batool Abuhalimeh, Abdelrahman Zamzam, Rawand Abdin and Mohammad Qadura
Biomolecules 2025, 15(7), 991; https://doi.org/10.3390/biom15070991 - 11 Jul 2025
Viewed by 423
Abstract
Peripheral artery disease (PAD) is associated with an elevated risk of major adverse cardiovascular events (MACE). Despite this, few reliable biomarkers exist to identify patients at heightened risk of MACE. Growth differentiation factor 15 (GDF15), a stress-responsive cytokine implicated in inflammation, atherosclerosis, and [...] Read more.
Peripheral artery disease (PAD) is associated with an elevated risk of major adverse cardiovascular events (MACE). Despite this, few reliable biomarkers exist to identify patients at heightened risk of MACE. Growth differentiation factor 15 (GDF15), a stress-responsive cytokine implicated in inflammation, atherosclerosis, and thrombosis, has been broadly studied in cardiovascular disease but remains underexplored in PAD. This study aimed to evaluate the prognostic utility of GDF15 for predicting 2-year MACE in PAD patients using explainable statistical and machine learning approaches. We conducted a prospective analysis of 1192 individuals (454 with PAD and 738 without PAD). At study entry, patient plasma GDF15 concentrations were measured using a validated multiplex immunoassay. The cohort was followed for two years to monitor the occurrence of MACE, defined as stroke, myocardial infarction, or death. Baseline GDF15 levels were compared between PAD and non-PAD participants using the Mann–Whitney U test. A machine learning model based on extreme gradient boosting (XGBoost) was trained to predict 2-year MACE using 10-fold cross-validation, incorporating GDF15 and clinical variables including age, sex, comorbidities (hypertension, diabetes, dyslipidemia, congestive heart failure, coronary artery disease, and previous stroke or transient ischemic attack), smoking history, and cardioprotective medication use. The model’s primary evaluation metric was the F1 score, a validated measurement of the harmonic mean of the precision and recall values of the prediction model. Secondary model performance metrics included precision, recall, positive likelihood ratio (LR+), and negative likelihood ratio (LR-). A prediction probability histogram and Shapley additive explanations (SHAP) analysis were used to assess model discrimination and interpretability. The mean participant age was 70 ± SD 11 years, with 32% (n = 386) female representation. Median plasma GDF15 levels were significantly higher in PAD patients compared to the levels in non-PAD patients (1.29 [IQR 0.77–2.22] vs. 0.99 [IQR 0.61–1.63] pg/mL; p < 0.001). During the 2-year follow-up period, 219 individuals (18.4%) experienced MACE. The XGBoost model demonstrated strong predictive performance for 2-year MACE (F1 score = 0.83; precision = 82.0%; recall = 83.7%; LR+ = 1.88; LR− = 0.83). The prediction histogram revealed distinct stratification between those who did vs. did not experience 2-year MACE. SHAP analysis identified GDF15 as the most influential predictive feature, surpassing traditional clinical predictors such as age, cardiovascular history, and smoking status. This study highlights GDF15 as a strong prognostic biomarker for 2-year MACE in patients with PAD. When combined with clinical variables in an interpretable machine learning model, GDF15 supports the early identification of patients at high risk for systemic cardiovascular events, facilitating personalized treatment strategies including multidisciplinary specialist referrals and aggressive cardiovascular risk reduction therapy. This biomarker-guided approach offers a promising pathway for improving cardiovascular outcomes in the PAD population through precision risk stratification. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cardiology 2025)
Show Figures

Figure 1

12 pages, 600 KiB  
Article
Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
by Sunao Tanaka, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser and Hideki Furuya
Diagnostics 2025, 15(14), 1749; https://doi.org/10.3390/diagnostics15141749 - 10 Jul 2025
Viewed by 421
Abstract
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, [...] Read more.
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, TX, USA) to simultaneously measure 10 protein analytes in urine [angiogenin, apolipoprotein E, carbonic anhydrase IX (CA9), interleukin-8, matrix metalloproteinase-9 and -10, alpha-1 anti-trypsin, plasminogen activator inhibitor-1, syndecan-1, and vascular endothelial growth factor]. Methods: In a pilot study (N = 36 subjects; 18 with BC), Oncuria performed essentially identically across three different common analyzers (the laser/flow-based FlexMap 3D and 200 systems, and the LED/image-based MagPix system; Luminex). The current study compared Oncuria performance across instrumentation platforms using a larger study population (N = 181 subjects; 51 with BC). Results: All three analyzers assessed all 10 analytes in identical samples with excellent concordance. The percent coefficient of variation (%CV) in protein concentrations across systems was ≤2.3% for 9/10 analytes, with only CA9 having %CVs > 2.3%. In pairwise correlation plot comparisons between instruments for all 10 biomarkers, R2 values were 0.999 for 15/30 comparisons and R2 ≥ 0.995 for 27/30 comparisons; CA9 showed the greatest variability (R2 = 0.948–0.970). Standard curve slopes were statistically indistinguishable for all 10 biomarkers across analyzers. Conclusions: The Oncuria BC assay generates comprehensive urinary protein signatures useful for assisting BC diagnosis, predicting treatment response, and tracking disease progression and recurrence. The equivalent performance of the multiplex BC assay using three popular analyzers rationalizes test adoption by CLIA (Clinical Laboratory Improvement Amendments) clinical and research laboratories. Full article
(This article belongs to the Special Issue Diagnostic Markers of Genitourinary Tumors)
Show Figures

Figure 1

18 pages, 1016 KiB  
Article
Exploring Molecular Signatures Associated with Inflammation and Angiogenesis in the Aqueous Humor of Patients with Non-Proliferative Diabetic Retinopathy
by Víctor Alegre-Ituarte, Irene Andrés-Blasco, David Peña-Ruiz, Salvatore Di Lauro, Sara Crespo-Millas, Alessio Martucci, Jorge Vila-Arteaga, María Dolores Pinazo-Durán, David Galarreta and Julián García-Feijoo
Int. J. Mol. Sci. 2025, 26(13), 6461; https://doi.org/10.3390/ijms26136461 - 4 Jul 2025
Viewed by 512
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous [...] Read more.
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous humor (AH) of patients with non-proliferative diabetic retinopathy (NPDR). We conducted an observational, multicenter, case–control study including 116 participants classified into T2DM with NPDR, T2DM without DR, and non-diabetic controls (SCG) undergoing cataract surgery. AH samples were collected intraoperatively and analyzed for 27 cytokines using multiplex immunoassay. Eighteen immune mediators were detected in AH samples, and several were significantly elevated in the NPDR group, including the interleukins (IL) -1β, -6, -8, -15, -17, as well as the granulocyte–macrophage colony stimulating factor (GM-CSF), basic fibroblast growth factor (bFGF), interferon gamma-induced protein (IP-10), macrophage inflammatory protein 1 beta (MIP-1b), monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell-expressed and -secreted protein (RANTES), and the vascular endothelial growth factor (VEGF). These molecules are involved in retinal INF, blood–retinal barrier breakdown, and pathological neovascularization. Our findings reveal a distinct pro-INF and pro-ANG profile in the AH of NPDR patients, suggesting that these cytokines may serve as early diagnostic/prognostic biomarkers for DR. Targeting these molecules could provide novel therapeutic strategies to mitigate retinal damage and vision loss in diabetic patients. Full article
(This article belongs to the Special Issue Advanced Research in Retina: 3rd Edition)
Show Figures

Figure 1

12 pages, 1344 KiB  
Article
Quinazolinedione Derivatives as Potential Anticancer Agents Through Apoptosis Induction in MCF-7
by Tanapol Limboonreung, Teetat Suansilpong, Panitan Jumjitvi, Duangporn Lohawittayanan, Sucheewin Krobthong and Sitthivut Charoensutthivarakul
Int. J. Mol. Sci. 2025, 26(13), 6038; https://doi.org/10.3390/ijms26136038 - 24 Jun 2025
Viewed by 506
Abstract
Breast cancer remains a leading cause of mortality among women worldwide. Surgery, radiation therapy, chemotherapy, and hormone-based treatments are standard therapeutic approaches, but drug resistance and adverse effects necessitate the search for novel anticancer agents. Quinazolinedione derivatives have emerged as potential anticancer compounds [...] Read more.
Breast cancer remains a leading cause of mortality among women worldwide. Surgery, radiation therapy, chemotherapy, and hormone-based treatments are standard therapeutic approaches, but drug resistance and adverse effects necessitate the search for novel anticancer agents. Quinazolinedione derivatives have emerged as potential anticancer compounds due to their cytotoxic and apoptosis-inducing properties. This study aimed to evaluate the apoptotic induction of previously reported quinazolinedione derivatives on MCF-7 breast cancer cells. The cytotoxic effect was assessed using the MTT assay, apoptosis was quantified by Annexin V-PE/7AAD staining and flow cytometry, and apoptosis-related protein expression was analyzed via multiplexed bead-based immunoassays. These findings indicate that two derivatives in the series significantly reduced the cell viability in a dose-dependent manner. Apoptosis was induced primarily through the intrinsic apoptotic pathway as evidenced by the upregulation of caspase-9 and p53 and the downregulation of Bcl-2 and p-Akt. These results highlight quinazolinedione derivatives as promising candidates for breast cancer therapy prompting further investigation into their molecular mechanisms and potential clinical applications. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 398 KiB  
Communication
Pain and Sleep Biomarkers in Participants Undergoing Orthopedic Surgeries
by Manish Bhomia, Nicholas A. Giordano, Krista B. Highland, Keren Lee, Matthew Van Shufflin, Yanru Feng, Alexandra Kane, Raymond B. Kroma and Barbara Knollmann-Ritschel
Int. J. Mol. Sci. 2025, 26(13), 5959; https://doi.org/10.3390/ijms26135959 - 21 Jun 2025
Viewed by 282
Abstract
The bidirectional relationship between chronic pain and poor sleep are well reported. Disrupted sleep and chronic pain, either alone or in conjunction, are often associated with poor post-surgical outcomes. However, the relationship between peripheral blood biomarkers and chronic pain and sleep disturbances after [...] Read more.
The bidirectional relationship between chronic pain and poor sleep are well reported. Disrupted sleep and chronic pain, either alone or in conjunction, are often associated with poor post-surgical outcomes. However, the relationship between peripheral blood biomarkers and chronic pain and sleep disturbances after orthopedic surgery has not been extensively studied. The goal of this observational prospective study was to conduct an analysis on the relationship of blood cytokines and chemokines with chronic pain and sleep outcomes among US service members undergoing orthopedic surgery. Active-duty service members (N = 114) who underwent orthopedic extremity or spinal surgery were recruited, of whom 69 completed pre-surgery and 64 completed 6-week post-surgery surveys and blood draws. Blood cytokine and chemokine analyses were performed using multiplex immunoassays. Non-parametric correlations with blood cytokine and chemokine showed significant associations with both pre- and post-surgical pain scores whereas no significant correlations were observed with sleep disturbance scores. Increased pain intensity 6 weeks after surgery was positively associated with increased hepatocyte growth factor (ρs = 0.11; p < 0.05) and negatively correlated with interleukin-2r (ρs= −0.42; p < 0.001). This study found that inflammatory biomarkers are associated with pre- and post-surgical pain but not sleep disturbances. Full article
(This article belongs to the Special Issue Chronic Pain: Diagnosis, Pathophysiological Mechanisms and Treatment)
Show Figures

Figure 1

17 pages, 1237 KiB  
Article
Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence
by Sasiprapa Ninwattana, Spencer L. Sterling, Khwankamon Rattanatumhi, Nattakarn Thippamom, Piyapha Hirunpatrawong, Pakamas Sangsub, Thaniwan Cheun-Arom, Dominic Esposito, Chee Wah Tan, Wee Chee Yap, Feng Zhu, Lin-Fa Wang, Eric D. Laing, Supaporn Wacharapluesadee and Opass Putcharoen
Viruses 2025, 17(6), 837; https://doi.org/10.3390/v17060837 - 10 Jun 2025
Viewed by 1104
Abstract
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study [...] Read more.
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study aimed to determine the seroprevalence of betacoronaviruses in an occupational cohort in contact with bats before and after the emergence of SARS-CoV-2. Serum samples from pre- and post-COVID-19 pandemic were screened using antigen-based multiplex microsphere immunoassays (MMIAs) and a multiplex surrogate virus neutralization test (sVNT). Pre-pandemic samples showed no SARS-CoV-2 antibodies, while post-pandemic samples from vaccinated participants displayed binding and neutralizing antibodies against SARS-CoV-2 and a related bat CoV. Furthermore, one participant (1/237, 0.43%) had persistent antibodies against MERS-CoV in 2017, 2018 and 2021 but was seronegative in 2023, despite reporting no history of traveling abroad or severe pneumonia. The observed sustained antibody levels indicate a possible exposure to MERS-CoV or a MERS-CoV-like virus, although the etiology and clinical relevance of this finding remains unclear. Ongoing surveillance in high-risk populations remains crucial for understanding virus epidemiology and mitigating zoonotic transmission risk. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 922 KiB  
Review
Isoforms of Phosphorylated Tau as Potential Biomarkers for Alzheimer’s Disease: The Contribution of Mass Spectrometry-Based Proteomics
by Marco Agostini, Pietro Traldi and Mahmoud Hamdan
NeuroSci 2025, 6(2), 50; https://doi.org/10.3390/neurosci6020050 - 3 Jun 2025
Viewed by 1581
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, heterogeneous at the molecular level and characterized by diverse and complex pathological features. Such features are known to accumulate silently in the brain over years or even decades before the onset of detectable symptoms. Despite [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, heterogeneous at the molecular level and characterized by diverse and complex pathological features. Such features are known to accumulate silently in the brain over years or even decades before the onset of detectable symptoms. Despite long years of intense research activities, the disease remains orphaned of either disease-modifying therapies or a specific blood test capable of predicting the disease in the pre-symptomatic stages. This disappointing outcome of such efforts can be attributed to a number of factors. One of these factors is the failure of earlier research to capture the heterogeneity of the disease. Such failure has the direct consequence of poor patient stratification, which in turn impacts negatively on the development of specific and effective therapy. The second factor is the absence of detailed and accurate information on proteins and associated post-translational modifications, which may influence the initiation and progress of the disease. Recent studies have demonstrated that the quantification of various isoforms of phosphorylated tau protein in plasma and other biofluids can be considered as potential biomarkers for the early detection of Alzheimer’s disease. Mass spectrometry-based proteomics and immunoassay-based multiplex proteomics are the two technologies in current use for probing the human proteome, both in tissues and biofluids. In the present review, we discuss the contribution of MS-based proteomics to efforts aimed at the identification and eventual characterization of the heterogeneity of the disease, and the key role of the same technique in the analysis of protein post-translational modifications associated with the disease is also discussed. Full article
Show Figures

Figure 1

14 pages, 1054 KiB  
Article
Elevated IL-6 and IL-10 Levels as Prognostic Biomarkers in COVID-19 Pneumonia: A Comparative Study in Mexican Patients
by Charmina Aguirre-Alvarado, Miguel Ángel Cortes-Vázquez, Yessica Sara Pérez-González, David Eduardo Meza-Sánchez, Juan Carlos Nuñez-Enriquez, Sandra María Pinto-Cardoso and Vilma Carolina Bekker-Méndez
Healthcare 2025, 13(11), 1245; https://doi.org/10.3390/healthcare13111245 - 26 May 2025
Viewed by 512
Abstract
Background/Objectives: Proinflammatory cytokines have been associated with poor prognosis in community-acquired and COVID-19 pneumonia. There is a paucity of reports on the cytokine release syndrome, also called cytokine storm in the Mexican population with pneumonia and COVID-19; therefore, our objective was to compare [...] Read more.
Background/Objectives: Proinflammatory cytokines have been associated with poor prognosis in community-acquired and COVID-19 pneumonia. There is a paucity of reports on the cytokine release syndrome, also called cytokine storm in the Mexican population with pneumonia and COVID-19; therefore, our objective was to compare proinflammatory cytokine levels in Mexican patients without COVID-19 (non-COVID-19) and those with moderate, severe, and critical COVID-19 pneumonia. Methods: This study included 30 patients with non-COVID-19 pneumonia and 57 with COVID-19 pneumonia. Disease diagnosis and severity were determined using the radiographic pulmonary edema assessment (RALE) score. Quantification of IL-6, IL-10, and TNF-α was performed using multiplex immunoassays. A receiver operating characteristic curve was constructed to classify subjects with elevated cytokine levels. Logistic regression was used to find associations between elevated cytokine levels and the presence of COVID-19 pneumonia. Results: The severity classification of patients with COVID-19 pneumonia was as follows: moderate (n = 20), severe (n = 19), and critical (n = 18). The proinflammatory cytokines IL-6 and IL-10 were significantly increased in COVID-19 patients compared to non-COVID-19 patients (p < 0.005), while TNF-α levels were lower in critically ill patients with COVID-19 pneumonia. High levels of IL-6 and IL-10, adjusted for age, sex, the presence of comorbidities, and the neutrophil-to-lymphocyte ratio (NLR), showed an elevated risk (OR IL-6 = 4.02; OR IL-10 = 9.36) of presenting pneumonia and COVID-19 compared to pneumonia without COVID-19 in patients. Likewise, 61% of COVID-19 patients with elevated proinflammatory cytokines (IL-6 and IL-10) had a fatal outcome. Conclusions: Elevated levels of both IL-6 and IL-10 are a differential risk factor for developing COVID-19 pneumonia. These elevated levels were more frequently observed in Mexican COVID-19 pneumonia patients who died at the onset of the COVID-19 pandemic. It is important that they are monitored from initial diagnosis as they may be markers of a fatal outcome in severe and critical COVID-19 patients. Full article
(This article belongs to the Special Issue Human Health Before, During, and After COVID-19)
Show Figures

Figure 1

33 pages, 1948 KiB  
Article
Highly Sensitive Suspension Immunoassay for Multiplex Detection, Differentiation, and Quantification of Eight Staphylococcus aureus Enterotoxins (SEA to SEI)
by Paulin Dettmann, Martin Skiba, Daniel Stern, Jasmin Weisemann, Hans Werner Mages, Nadja Krez, Martin B. Dorner, Sara Schaarschmidt, Marc A. Avondet, Marcus Fulde, Andreas Rummel, Birgit Strommenger, Sven Maurischat and Brigitte G. Dorner
Toxins 2025, 17(6), 265; https://doi.org/10.3390/toxins17060265 - 24 May 2025
Viewed by 1027
Abstract
Staphylococcal enterotoxins (SEs) are major contributors to foodborne intoxications. Reliable detection methods for SEs are essential to maintain food safety and protect public health. Since the heat-stable toxins also exert their toxic effect in the absence of the bacterium, reliance on DNA detection [...] Read more.
Staphylococcal enterotoxins (SEs) are major contributors to foodborne intoxications. Reliable detection methods for SEs are essential to maintain food safety and protect public health. Since the heat-stable toxins also exert their toxic effect in the absence of the bacterium, reliance on DNA detection alone can be misleading: it does not allow for determining which specific toxins encoded by a given strain are produced and epidemiologically linked with a given outbreak. Commercially available diagnostic assays for SE detection are so far limited in sensitivity and specificity as well as in the range of targeted toxins (SEA–SEE), thus non-targeted SEs linked to foodborne illness remain undetected at the protein level. This study aimed to develop a highly sensitive and specific multiplex suspension immunoassay (SIA) for SEA to SEI. To this end, high-affinity monoclonal antibodies (mAbs) for the specific detection of the individual SEs were generated. When implemented in sandwich ELISAs and multiplex SIA, these mAbs demonstrated exceptional sensitivity with detection limits in the low picogram per millilitre range. When applied for the analysis of SE production in liquid cultures of a panel of 145 whole-genome sequenced strains of Staphylococcus spp. and Enterococcus faecalis, the novel multiplex SIA detected and differentiated the eight SEs with assay accuracies of 86.9–100%. Notably, the multiplex SIA covered one to four sequence variants for each of the individual SEs. Validation confirmed high recovery rates and reliable performance in three representative complex food matrices. The implementation of the novel mAbs in a multiplex SIA enabled, for the first time, simultaneous detection, differentiation, and quantification of multiple SEs from minimal sample volumes using Luminex® technology. As a result, the multiplex SIA will help strengthen food safety protocols and public health response capabilities. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

18 pages, 2496 KiB  
Article
IgA Antibodies to Bovine Serum Albumin in Adult Patients with Celiac Disease
by Elena Savvateeva, Marina Yukina, Nurana Nuralieva, Svetlana Bykova, Ivan Abramov, Vera Polyakova, Natalia Bodunova, Maxim Donnikov, Lyudmila Kovalenko, Elena Mazurenko, Elizaveta Pavlova, Elena Kulagina, Ekaterina Troshina and Dmitry Gryadunov
Int. J. Mol. Sci. 2025, 26(11), 4988; https://doi.org/10.3390/ijms26114988 - 22 May 2025
Viewed by 772
Abstract
This study investigated the IgA antibodies targeting bovine serum albumin (BSA) in 27 adult celiac disease (CD) patients adhering to a gluten-free diet (GFD), compared to 123 controls (including individuals with autoimmune disorders, those with gastrointestinal cancers, and healthy donors). Serum samples were [...] Read more.
This study investigated the IgA antibodies targeting bovine serum albumin (BSA) in 27 adult celiac disease (CD) patients adhering to a gluten-free diet (GFD), compared to 123 controls (including individuals with autoimmune disorders, those with gastrointestinal cancers, and healthy donors). Serum samples were evaluated using a multiplex assay based on a microarray comprising 66 immobilized antigens, including autoantigens associated with autoimmune diseases, different albumins, cytokines, and inflammatory markers. Elevated IgA-BSA levels were detected in 22% of CD patients versus 3.25% of controls. IgA-BSA did not cross-react with milk proteins like casein, β-lactoglobulin, and γ-globulin, nor with autoantigens and human albumin, ruling out autoimmunity against self-proteins. The observed cross-reactivity with porcine albumin suggests that antibodies target epitopes shared by bovine and porcine albumin. Increased IgA-BSA levels may interfere with immunoassays performed using BSA as a stabilizer, necessitating protein-free buffers to avoid false results when testing CD patients. Elevated IgA-BSA levels may reflect ongoing gut barrier dysfunction in CD patients on a GFD, allowing dietary proteins like BSA to trigger immune responses. This study identifies a novel immune response in CD patients on a GFD, emphasizing the need for tailored diagnostic approaches (BSA-free assays) and further research into the clinical and dietary implications of IgA-BSA elevation. Full article
Show Figures

Figure 1

21 pages, 828 KiB  
Article
Elevated Expression of TGFB1 in PBMCs Is Associated with Intracranial Aneurysm Formation, but TGFB3 Expression Implicated Rupture
by Kinga Sutkowska, Olga Martyna Koper-Lenkiewicz, Marta Żebrowska-Nawrocka, Marta Jakoniuk, Tomasz Łysoń, Marzena Tylicka, Ewa Balcerczak, Joanna Matowicka-Karna and Joanna Kamińska
Biomedicines 2025, 13(6), 1273; https://doi.org/10.3390/biomedicines13061273 - 22 May 2025
Viewed by 546
Abstract
Introduction: The transforming growth factor beta (TGF-β) signaling pathway plays a critical role in cellular processes, including maintaining vascular integrity and regulating vascular remodeling. Aneurysm rupture is associated with pathological changes in the arterial wall. Aims: We aimed to investigate the gene expression [...] Read more.
Introduction: The transforming growth factor beta (TGF-β) signaling pathway plays a critical role in cellular processes, including maintaining vascular integrity and regulating vascular remodeling. Aneurysm rupture is associated with pathological changes in the arterial wall. Aims: We aimed to investigate the gene expression of transforming growth factors (TGFB1, TGFB2, TGFB3) in peripheral blood mononuclear cells (PBMCs) isolated from the blood of patients with unruptured intracranial aneurysms (UIAs) and ruptured intracranial aneurysms (RIAs), and from a control group. Additionally, we evaluated serum levels of TGF-β1, TGF-β2, and TGF-β3 and analyzed their associations with various risk factors, including sex, age, aneurysm size, number, shape, smoking, and hypertension. Materials and Methods: The study group consisted of patients diagnosed with intracranial aneurysms (IAs) who were eligible for embolization at the Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok. The control group consisted of healthy volunteers, recruited from the employees of the Clinical Hospital of the Medical University of Bialystok. Expression levels were assessed using quantitative real-time polymerase chain reaction techniques in PBMCs. Serum concentrations of TGF-β isoforms were evaluated using a multiplexed bead-based immunoassay. Results: Among 32 patients, 24 had unruptured intracranial aneurysms (UIAs), including 18 women and 6 men, while 8 presented with ruptured intracranial aneurysms (RIAs), evenly distributed between women and men (4 each). The mean age of the patients was 53 years (range: 24–71 years). The control group consisted of 20 healthy volunteers, 14 females and 6 males, with a mean age of 51 years (range: 24–71 years). The expression of TGFB1 was significantly higher in the IA versus C group, but TGFB3 expression was significantly higher in the RIA versus C group. The serum level of TGF-β1 and TGF-β3 was significantly higher in the RIA versus UIA group. Serum TGF-β1 levels were higher in men and individuals < 60 years of age. Positive correlations were observed between serum TGF-β1, TGF-β3 and aneurysm size, with significantly higher TGF-β3 levels in patients with giant aneurysms. Conclusions: Our study highlights the distinct roles of TGFB1 and TGFB3 in aneurysm pathophysiology, identifying TGFB1 as a molecular contributor to aneurysm formation and TGFB3 with rupture. Increased serum TGF-β1 and TGF-β3 concentrations could serve as promising noninvasive parameters for assessing the risk of aneurysm rupture. Further research with larger cohorts is needed to define cut-off values and validate the method, enabling the use of blood TGF-β levels as a tool for clinical decision-making. Full article
(This article belongs to the Special Issue Understanding Diseases Affecting the Central Nervous System)
Show Figures

Graphical abstract

17 pages, 2445 KiB  
Protocol
Development and Characterization of a Ten-Plex Assay to Measure Klebsiella pneumoniae Antigen-Specific IgG in Human Sera
by Luca Rovetini, Gianina Florentina Belciug, Luisa Massai, Francesca Nonne, Renzo Alfini, Heena Ranchod, Denasha L. Reddy, Mariagrazia Molfetta, Davide Oldrini, Makrina Totsika, Miren Iturriza, Ziyaad Dangor, Carlo Giannelli, Shabir A. Madhi, Francesca Micoli, Martina Carducci and Omar Rossi
Methods Protoc. 2025, 8(3), 52; https://doi.org/10.3390/mps8030052 - 19 May 2025
Viewed by 723
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections, neonatal sepsis, and childhood mortality worldwide. A drastic rise in antibiotic-resistant isolates poses an urgent threat to humanity, and the World Health Organization (WHO) has classified this as a critical-priority antimicrobial-resistant (AMR) pathogen. Recent [...] Read more.
Klebsiella pneumoniae is a leading cause of nosocomial infections, neonatal sepsis, and childhood mortality worldwide. A drastic rise in antibiotic-resistant isolates poses an urgent threat to humanity, and the World Health Organization (WHO) has classified this as a critical-priority antimicrobial-resistant (AMR) pathogen. Recent advancements in developing vaccines against Klebsiella pneumoniae have highlighted the lack of standardized assays to evaluate immunogenicity, complicating comparison among different vaccines under development and the establishment of a serological threshold of risk reduction (SToRR). Here, we describe the development of a ten-plex multiplex assay to measure IgG against capsular polysaccharides (K2, K25, K102, K149), O antigens (O1v1, O1v2, O2v1, O2v2 and O5), and a conserved protein (MrkA). A standard curve was established by pooling human sera from naturally exposed subjects and then calibrated in terms of Relative Luminex Units/mL. The assay was fully characterized in terms of specificity, precision, linearity, and repeatability. This immunoassay demonstrates performance suitable for future clinical trials, as well as to perform sero-epidemiological studies to gain insights into naturally occurring immunity, potentially contributing to the establishment of a serological threshold of risk reduction against Klebsiella pneumoniae. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

Back to TopTop