Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = multifunctional detection robot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1770 KB  
Article
A Peano-Gosper Fractal-Inspired Stretchable Electrode with Integrated Three-Directional Strain and Normal Pressure Sensing
by Chunge Wang, Yuanyuan Huang, Zixia Zhao, Haoyu Li, Chen Liu, Zhixin Jia, Yanping Wang, Qianqian Wang and Sheng Zhang
Nanomaterials 2025, 15(17), 1370; https://doi.org/10.3390/nano15171370 - 5 Sep 2025
Viewed by 683
Abstract
A novel stretchable flexible electrode capable of simultaneously detecting isotropic three-directional strain and normal pressure has been developed. Inspired by the recursive symmetry of the Peano-Gosper fractal, the electrode integrates liquid metal (EGaIn) microchannels within a PDMS matrix to achieve uniform strain distribution [...] Read more.
A novel stretchable flexible electrode capable of simultaneously detecting isotropic three-directional strain and normal pressure has been developed. Inspired by the recursive symmetry of the Peano-Gosper fractal, the electrode integrates liquid metal (EGaIn) microchannels within a PDMS matrix to achieve uniform strain distribution and mechanically robust conductive pathways under large deformation. Within a strain range of 0–60%, the electrode exhibits highly consistent three-directional responses, with resistance variation across axes kept below 4% and a gauge factor (GF) standard deviation of only 0.0252. The device demonstrates low hysteresis (minimum DH = 0.94%), good cyclic durability, and reliable electromechanical stability. For normal pressure sensing (0–20 kPa), it provides a linear response (R2 ≈ 0.99) with a moderate sensitivity of 0.198 kPa−1. Wearable tests on the wrist, finger, and fingertip confirm the electrode’s reliable operation in multidimensional mechanical monitoring. This integrated fractal–liquid metal design offers a promising route for multifunctional sensing in applications such as soft robotics, human–machine interaction, and wearable electronics. Full article
(This article belongs to the Special Issue Gas-Sensing Properties of Nanomaterials)
Show Figures

Figure 1

26 pages, 10383 KB  
Review
Flexible and Wearable Tactile Sensors for Intelligent Interfaces
by Xu Cui, Wei Zhang, Menghui Lv, Tianci Huang, Jianguo Xi and Zuqing Yuan
Materials 2025, 18(17), 4010; https://doi.org/10.3390/ma18174010 - 27 Aug 2025
Viewed by 995
Abstract
Rapid developments in intelligent interfaces across service, healthcare, and industry have led to unprecedented demands for advanced tactile perception systems. Traditional tactile sensors often struggle with adaptability on curved surfaces and lack sufficient feedback for delicate interactions. Flexible and wearable tactile sensors are [...] Read more.
Rapid developments in intelligent interfaces across service, healthcare, and industry have led to unprecedented demands for advanced tactile perception systems. Traditional tactile sensors often struggle with adaptability on curved surfaces and lack sufficient feedback for delicate interactions. Flexible and wearable tactile sensors are emerging as a revolutionary solution, driven by innovations in flexible electronics and micro-engineered materials. This paper reviews recent advancements in flexible tactile sensors, focusing on their mechanisms, multifunctional performance and applications in health monitoring, human–machine interactions, and robotics. The first section outlines the primary transduction mechanisms of piezoresistive (resistance changes), capacitive (capacitance changes), piezoelectric (piezoelectric effect), and triboelectric (contact electrification) sensors while examining material selection strategies for performance optimization. Next, we explore the structural design of multifunctional flexible tactile sensors and highlight potential applications in motion detection and wearable systems. Finally, a detailed discussion covers specific applications of these sensors in health monitoring, human–machine interactions, and robotics. This review examines their promising prospects across various fields, including medical care, virtual reality, precision agriculture, and ocean monitoring. Full article
(This article belongs to the Special Issue Advances in Flexible Electronics and Electronic Devices)
Show Figures

Figure 1

12 pages, 5474 KB  
Article
Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
by Yaojia Mou, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu and Ji’an Duan
Materials 2025, 18(15), 3707; https://doi.org/10.3390/ma18153707 - 7 Aug 2025
Viewed by 833
Abstract
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection [...] Read more.
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa−1), broad operational bandwidth (50–600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems. Full article
(This article belongs to the Special Issue Advanced Materials for Flexible Sensing Applications and Electronics)
Show Figures

Figure 1

22 pages, 4827 KB  
Article
Development of a Multifunctional Mobile Manipulation Robot Based on Hierarchical Motion Planning Strategy and Hybrid Grasping
by Yuning Cao, Xianli Wang, Zehao Wu and Qingsong Xu
Robotics 2025, 14(7), 96; https://doi.org/10.3390/robotics14070096 - 15 Jul 2025
Viewed by 1803
Abstract
A mobile manipulation robot combines the navigation capability of unmanned ground vehicles and manipulation advantage of robotic arms. However, the development of a mobile manipulation robot is challenging due to the integration requirement of numerous heterogeneous subsystems. In this paper, we propose a [...] Read more.
A mobile manipulation robot combines the navigation capability of unmanned ground vehicles and manipulation advantage of robotic arms. However, the development of a mobile manipulation robot is challenging due to the integration requirement of numerous heterogeneous subsystems. In this paper, we propose a multifunctional mobile manipulation robot by integrating perception, mapping, navigation, object detection, and grasping functions into a seamless workflow to conduct search-and-fetch tasks. To realize navigation and collision avoidance in complex environments, a new hierarchical motion planning strategy is proposed by fusing global and local planners. Control Lyapunov Function (CLF) and Control Barrier Function (CBF) are employed to realize path tracking and to guarantee safety during navigation. The convolutional neural network and the gripper’s kinematic constraints are adopted to construct a learning-optimization hybrid grasping algorithm to generate precise grasping poses. The efficiency of the developed mobile manipulation robot is demonstrated by performing indoor fetching experiments, showcasing its promising capabilities in real-world applications. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

15 pages, 6418 KB  
Article
Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate
by Seung-Woo Lee, Ju-Seong Lee, Hyeon-Wook Yu, Tae-Hee Kim and Hyun-Seok Kim
Polymers 2025, 17(13), 1825; https://doi.org/10.3390/polym17131825 - 30 Jun 2025
Viewed by 611
Abstract
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing [...] Read more.
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing capabilities. This study introduces a multifunctional sensor that combines high stretchability for strain and pressure detection with ultraviolet (UV) sensing capability. To achieve simultaneous detection of strain, pressure, and UV light, a multi-sensing approach was employed: a capacitive method for strain and pressure detections and a resistive method utilizing a pn-heterojunction diode for UV detection. In the capacitive method, polyaniline (PANI) served as parallel-plate electrodes, while silicon-based elastomer acted as the dielectric layer. This configuration enabled up to 100% elongation and enhanced operational stability through encapsulation. The sensor demonstrated a strong linear relationship between capacitance value changes reasonably based on the area of PANI, and showed a good linearity with an R-squared value of 0.9918. It also detected pressure across a wide range, from low (0.4 kPa) to high (9.4 kPa). Furthermore, for wearable applications, the sensor reliably captured capacitance variations during finger bending at different angles. For UV detection, a pn-heterojunction diode composed of p-type silicon and n-type zinc oxide nanorods exhibited a rapid response time of 6.1 s and an on/off ratio of 13.8 at −10 V. Durability under 100% tensile strain was confirmed through Von Mises stress calculations using finite element modeling. Overall, this multifunctional sensor offers significant potential for a variety of applications, including human motion detection, wearable technology, and robotics. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

23 pages, 29181 KB  
Article
Design and Implementation of a Bionic Marine Iguana Robot for Military Micro-Sensor Deployment
by Gang Chen, Xin Tang, Baohang Guo, Guoqi Li, Zhengrui Wu, Weizhe Huang, Yidong Xu, Ming Lu, Jianfei Liang and Zhen Liu
Machines 2025, 13(6), 505; https://doi.org/10.3390/machines13060505 - 9 Jun 2025
Viewed by 1393
Abstract
Underwater sensor deployment in military applications requires high precision, yet existing robotic solutions often lack the maneuverability and adaptability required for complex aquatic environments. To address this gap, this study proposes a bio-inspired underwater robot modeled after the marine iguana, which exhibits effective [...] Read more.
Underwater sensor deployment in military applications requires high precision, yet existing robotic solutions often lack the maneuverability and adaptability required for complex aquatic environments. To address this gap, this study proposes a bio-inspired underwater robot modeled after the marine iguana, which exhibits effective crawling and swimming capabilities. The research aims to develop a compact, multi-functional robot capable of precise sensor deployment and environmental detection. The methodology integrates a biomimetic mechanical design—featuring leg-based crawling, tail-driven swimming, a deployable head mechanism, and buoyancy control—with a multi-sensor control system for navigation and data acquisition. Gait and trajectory planning are optimized using kinematic modeling for both terrestrial and aquatic locomotion. Experimental results demonstrate the robot’s ability to perform accurate underwater sensor deployment, validating its potential for military applications. This work provides a novel approach to underwater deployment robotics, bridging the gap between biological inspiration and functional engineering. Full article
(This article belongs to the Special Issue Design and Application of Bionic Robots)
Show Figures

Figure 1

23 pages, 12272 KB  
Article
Optimized Design and Deep Vision-Based Operation Control of a Multi-Functional Robotic Gripper for an Automatic Loading System
by Yaohui Wang, Sheng Guo, Jinliang Zhang, Hongbo Ding, Bo Zhang, Ao Cao, Xiaohu Sun, Guangxin Zhang, Shihe Tian, Yongxu Chen, Jixuan Ma and Guangrong Chen
Actuators 2025, 14(6), 259; https://doi.org/10.3390/act14060259 - 23 May 2025
Viewed by 690
Abstract
This study presents an optimized design and vision-guided control strategy for a multi-functional robotic gripper integrated into an automatic loading system for warehouse environments. The system adopts a modular architecture, including standardized platforms, transport containers, four collaborative 6-DOF robotic arms, and a multi-sensor [...] Read more.
This study presents an optimized design and vision-guided control strategy for a multi-functional robotic gripper integrated into an automatic loading system for warehouse environments. The system adopts a modular architecture, including standardized platforms, transport containers, four collaborative 6-DOF robotic arms, and a multi-sensor vision module. Methodologically, we first developed three gripper prototypes, selecting the optimal design (30° angle between the gripper and container side) through workspace and interference analysis. A deep vision-based recognition system, enhanced by an improved YOLOv5 algorithm and multi-feature fusion, was employed for real-time object detection and pose estimation. Kinematic modeling and seventh-order polynomial trajectory planning ensured smooth and precise robotic arm movements. Key results from simulations and experiments demonstrated a 95.72% success rate in twist lock operations, with a positioning accuracy of 1.2 mm. The system achieved a control cycle of 35 ms, ensuring efficiency compared with non-vision-based methods. Practical implications include enabling fully autonomous container handling in logistics, reducing labor costs, and enhancing operational safety. Limitations include dependency on fixed camera setups and sensitivity to extreme lighting conditions. Full article
Show Figures

Figure 1

15 pages, 3407 KB  
Article
Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication
by Hao Ling, Jie Li, Chuanxin Guo, Yuntian Wang, Tao Chen and Minglu Zhu
Actuators 2024, 13(11), 454; https://doi.org/10.3390/act13110454 - 13 Nov 2024
Cited by 2 | Viewed by 1431
Abstract
Immersive human–machine interaction relies on comprehensive sensing and feedback systems, which enable transmission of multiple pieces of information. However, the integration of increasing numbers of feedback actuators and sensors causes a severe issue in terms of system complexity. In this work, we propose [...] Read more.
Immersive human–machine interaction relies on comprehensive sensing and feedback systems, which enable transmission of multiple pieces of information. However, the integration of increasing numbers of feedback actuators and sensors causes a severe issue in terms of system complexity. In this work, we propose a pressure-sensing and feedback glove that enables multi-dimensional pressure sensing and feedback with a minimalist design of the functional units. The proposed glove consists of modular strain and pressure sensors based on films of liquid metal microchannels and coin vibrators. Strain sensors located at the finger joints can simultaneously project the bending motion of the individual joint into the virtual space or robotic hand. For subsequent tactile interactions, the design of two symmetrically distributed pressure sensors and vibrators at the fingertips possesses capabilities for multi-directional pressure sensing and feedback by evaluating the relationship of the signal variations between two sensors and tuning the feedback intensities of two vibrators. Consequently, both dynamic and static multi-dimensional pressure communication can be realized, and the vibrational actuation can be monitored by a liquid-metal-based sensor via a triboelectric sensing mechanism. A demonstration of object interaction indicates that the proposed glove can effectively detect dynamic force in varied directions at the fingertip while offering the reconstruction of a similar perception via the haptic feedback function. This device introduces an approach that adopts a minimalist design to achieve a multi-functional system, and it can benefit commercial applications in a more cost-effective way. Full article
Show Figures

Figure 1

11 pages, 3130 KB  
Article
Uncharged Monolithic Carbon Fibers Are More Sensitive to Cross-Junction Compression than Charged
by Oleksandr Syzoniuk, Saoni Banerji, Alvo Aabloo and Indrek Must
Sensors 2024, 24(12), 3937; https://doi.org/10.3390/s24123937 - 18 Jun 2024
Viewed by 1108
Abstract
Textile-based wearable robotics increasingly integrates sensing and energy materials to enhance functionality, particularly in physiological monitoring, demanding higher-performing and abundant robotic textiles. Among the alternatives, activated carbon cloth stands out due to its monolithic nature and high specific surface area, enabling uninterrupted electron [...] Read more.
Textile-based wearable robotics increasingly integrates sensing and energy materials to enhance functionality, particularly in physiological monitoring, demanding higher-performing and abundant robotic textiles. Among the alternatives, activated carbon cloth stands out due to its monolithic nature and high specific surface area, enabling uninterrupted electron transfer and energy storage capability in the electrical double layer, respectively. Yet, the potential of monolithic activated carbon cloth electrodes (MACCEs) in wearables still needs to be explored, particularly in sensing and energy storage. MACCE conductance increased by 29% when saturated with Na2SO4 aqueous electrolyte and charged from 0 to 0.375 V. MACCE was validated for measuring pressure up to 28 kPa at all assessed charge levels. Electrode sensitivity to compression decreased by 30% at the highest potential due to repulsive forces between like charges in electrical double layers at the MACCE surface, counteracting compression. MACCE’s controllable sensitivity decrease can be beneficial for garments in avoiding irrelevant signals and focusing on essential health changes. A MACCE charge-dependent sensitivity provides a method for assessing local electrode charge. Our study highlights controlled charging and electrolyte interactions in MACCE for multifunctional roles, including energy transmission and pressure detection, in smart wearables. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

14 pages, 11462 KB  
Article
Self-Powered Pressure–Temperature Bimodal Sensing Based on the Piezo-Pyroelectric Effect for Robotic Perception
by Xiang Yu, Yun Ji, Xinyi Shen and Xiaoyun Le
Sensors 2024, 24(9), 2773; https://doi.org/10.3390/s24092773 - 26 Apr 2024
Cited by 2 | Viewed by 2152
Abstract
Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3 [...] Read more.
Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals for simultaneous pressure and temperature sensing. The outstanding piezoelectric and pyroelectric properties of PMN-PT result in rapid response speed and high sensitivity, with values of 46 ms and 28.4 nA kPa−1 for pressure sensing, and 1.98 s and 94.66 nC °C−1 for temperature detection, respectively. By leveraging the distinct differences in the response speed of piezoelectric and pyroelectric responses, the piezo-pyroelectric effect of PMN-PT can effectively detect pressure and temperature from mixed-force thermal stimuli, which enables a robotic hand for stimuli classification. With appealing multifunctionality, fast speed, high sensitivity, and compact structure, the proposed self-powered bimodal sensor therefore holds significant potential for high-performance artificial perception. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Graphical abstract

20 pages, 6021 KB  
Review
Recent Advances in Flexible Multifunctional Sensors
by Ya Chang, Xiangyu Qi, Linglu Wang, Chuanbo Li and Yang Wang
Micromachines 2023, 14(11), 2116; https://doi.org/10.3390/mi14112116 - 18 Nov 2023
Cited by 7 | Viewed by 2933
Abstract
Wearable electronics have received extensive attention in human–machine interactions, robotics, and health monitoring. The use of multifunctional sensors that are capable of measuring a variety of mechanical or environmental stimuli can provide new functionalities for wearable electronics. Advancements in material science and system [...] Read more.
Wearable electronics have received extensive attention in human–machine interactions, robotics, and health monitoring. The use of multifunctional sensors that are capable of measuring a variety of mechanical or environmental stimuli can provide new functionalities for wearable electronics. Advancements in material science and system integration technologies have contributed to the development of high-performance flexible multifunctional sensors. This review presents the main approaches, based on functional materials and device structures, to improve sensing parameters, including linearity, detection range, and sensitivity to various stimuli. The details of electrical, biocompatible, and mechanical properties of self-powered sensors and wearable wireless systems are systematically elaborated. Finally, the current challenges and future developmental directions are discussed to offer a guide to fabricate advanced multifunctional sensors. Full article
Show Figures

Figure 1

12 pages, 4099 KB  
Communication
Development of Multifunctional Detection Robot for Roller Coaster Track
by Weike Song, Zhao Zhao, Kun Zhang, Huajie Wang and Yifeng Sun
Sensors 2023, 23(20), 8346; https://doi.org/10.3390/s23208346 - 10 Oct 2023
Cited by 3 | Viewed by 2611
Abstract
Recent advances in roller coasters accelerate the creation of complex tracks to provide stimulation and excitement for humans. As the main load-bearing component, tracks are prone to damage such as loose connecting bolts, paint peeling, corroded sleeper welds, corroded butt welds, reduced track [...] Read more.
Recent advances in roller coasters accelerate the creation of complex tracks to provide stimulation and excitement for humans. As the main load-bearing component, tracks are prone to damage such as loose connecting bolts, paint peeling, corroded sleeper welds, corroded butt welds, reduced track wall thickness and surface cracks under complex environments and long-term alternating loads. However, inspection of the roller coaster tracks, especially the high-altitude rolling tracks, is a crucial problem that traditional manual detection methods have difficulty solving. In addition, traditional inspection is labor-intensive, time-consuming, and provides only discrete information. Here, a concept of the multifunctional detection robot with a mechanical structure, electrical control system, camera, electromagnetic ultrasonic probes and an array of eddy current probes for detecting large roller coaster tracks is reported. By optimizing the design layout, integrating multiple systems and completing machine testing, the multifunctional roller coaster track detection robot exhibits outstanding performance in track appearance, thickness and crack detection. This study provides great potential for intelligent detection in amusement equipment, railcar, train and so on. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

17 pages, 24155 KB  
Article
3D Printed Robotic Hand with Piezoresistive Touch Capability
by Gonçalo Fonseca, João Nunes-Pereira and Abílio P. Silva
Appl. Sci. 2023, 13(14), 8002; https://doi.org/10.3390/app13148002 - 8 Jul 2023
Cited by 6 | Viewed by 2311
Abstract
This work proposes the design of a low-cost sensory glove system that complements the operation of a 3D-printed mechanical hand prosthesis, providing it with the ability to detect touch, locate it and even measure the intensity of associated forces. Firstly, the production of [...] Read more.
This work proposes the design of a low-cost sensory glove system that complements the operation of a 3D-printed mechanical hand prosthesis, providing it with the ability to detect touch, locate it and even measure the intensity of associated forces. Firstly, the production of the prosthetic model was performed using 3D printing, which allowed for quick and cheap production of a robotic hand with the implementation of a mechanical system that allows controlled movements with high performance and with the possibility of easily replacing each piece individually. Secondly, we performed the construction and instrumentation of a complementary sensory mimicry add-on system, focusing on the ability to sense touch as the primary target. Using piezoresistive sensors attached to the palm of the glove, a multi-sensor system was developed that was able to locate and quantify forces exerted on the glove. This system showed promising results and could be used as a springboard to develop a more complex and multifunctional system in the future. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

12 pages, 3754 KB  
Article
Printed Directional Bending Sensor with High Sensitivity and Low Hysteresis for Human Motion Detection and Soft Robotic Perception
by Yi-Fei Wang, Ayako Yoshida, Yasunori Takeda, Tomohito Sekine, Daisuke Kumaki and Shizuo Tokito
Sensors 2023, 23(11), 5041; https://doi.org/10.3390/s23115041 - 24 May 2023
Cited by 11 | Viewed by 3479
Abstract
We present a high-performance flexible bending strain sensor for directional motion detection of human hands and soft robotic grippers. The sensor was fabricated using a printable porous conductive composite composed of polydimethylsiloxane (PDMS) and carbon black (CB). The utilization of a deep eutectic [...] Read more.
We present a high-performance flexible bending strain sensor for directional motion detection of human hands and soft robotic grippers. The sensor was fabricated using a printable porous conductive composite composed of polydimethylsiloxane (PDMS) and carbon black (CB). The utilization of a deep eutectic solvent (DES) in the ink formulation induced a phase segregation between the CB and PDMS and led to a porous structure inside the printed films after being vapored. This simple and spontaneously formed conductive architecture provided superior directional bend-sensing characteristics compared to conventional random composites. The resulting flexible bending sensors displayed high bidirectional sensitivity (gauge factor of 45.6 under compressive bending and 35.2 under tensile bending), negligible hysteresis, good linearity (>0.99), and excellent bending durability (over 10,000 cycles). The multifunctional applications of these sensors, including human motion detection, object-shape monitoring, and robotic perceptions, are demonstrated as a proof-of-concept. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Wearable Robotics)
Show Figures

Figure 1

17 pages, 6964 KB  
Article
Development of Embroidery-Type Pressure Sensor Dependent on Interdigitated Capacitive Method
by TranThuyNga Truong, Ji-Seon Kim and Jooyong Kim
Polymers 2022, 14(17), 3446; https://doi.org/10.3390/polym14173446 - 23 Aug 2022
Cited by 14 | Viewed by 3905
Abstract
Many studies have been conducted to develop electronic skin (e-skin) and flexible wearable textiles which transform into actual “skin”, using different approaches. Moreover, many reports have investigated self-healing materials, multifunctional sensors, etc. This study presents a systematic approach to embroidery pressure sensors dependent [...] Read more.
Many studies have been conducted to develop electronic skin (e-skin) and flexible wearable textiles which transform into actual “skin”, using different approaches. Moreover, many reports have investigated self-healing materials, multifunctional sensors, etc. This study presents a systematic approach to embroidery pressure sensors dependent on interdigitated capacitors (IDCs), for applications surrounding intelligent wearable devices, robots, and e-skins. The method proposed a broad range of highly sensitive pressure sensors based on porous Ecoflex, carbon nanotubes (CNTs), and interdigitated electrodes. Firstly, characterizations of ICDs embroidering on a cotton fabric using silver conductive thread are evaluated by a precision LCR meter throughout the frequency range from 1 kHz to 300 kHz. The effect of thread density on the performance of embroidered sensors is included. Secondly, the 16451B dielectric test fixture from Keysight is utilized to evaluate the composite samples’ dielectric constant accurately. The effect of frequency on sensor performance was evaluated to consider the influence of the dielectric constant as a function of the capacitance change. This study shows that the lower the frequency, the higher the sensitivity, but at the same time, it also leads to instability in the sensor’s operation. Thirdly, assessing the volume fraction of CNTs on composites’ properties is enclosed. The presence of volume portion CNTs upgrades the bond strength of composites and further develops sensor deformability. Finally, the presented sensor can accomplish excellent performance with an ultra-high sensitivity of 0.24 kPa1 in low pressure (<25 kPa) as well as a wide detection range from 1 to 1000 kPa, which is appropriate for general tactile pressure rages. In order to achieve high sensor performance, factors such as density, frequency, fabric substrate, and the structure of the dielectric layer need to be carefully evaluated. Full article
(This article belongs to the Special Issue Smart Textiles: Synthesis, Characterization and Application)
Show Figures

Figure 1

Back to TopTop