Flexible and Wearable Tactile Sensors for Intelligent Interfaces
Abstract
1. Introduction
2. Basic Working Principles of Flexible Tactile Sensors
2.1. Piezoresistive Tactile Sensor
2.2. Capacitive Tactile Sensors
2.3. Piezoelectric Tactile Sensor
2.4. Triboelectric Tactile Sensor
3. Multifunctional Flexible Tactile Sensors
3.1. Structure Design
3.2. Material Selection
4. Tactile Sensor Applications
4.1. Health Monitoring
4.2. Human Machine Interaction
4.3. Environmental Monitoring and Sensing
5. Conclusions
5.1. Research Gaps and Future Directions
5.2. Summary and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duffy, B.R. Anthropomorphism and the social robot. Robot. Auton. Syst. 2003, 42, 177–190. [Google Scholar] [CrossRef]
- Park, S.S.; Tung, C.D.; Lee, H. The adoption of AI service robots: A comparison between credence and experience service settings. Psychol. Mark. 2021, 38, 691–703. [Google Scholar] [CrossRef]
- van Pinxteren, M.M.E.; Wetzels, R.W.H.; Rüger, J.; Pluymaekers, M.; Wetzels, M. Trust in humanoid robots: Implications for services marketing. J. Serv. Mark. 2019, 33, 507–518. [Google Scholar] [CrossRef]
- Chung, H.; Kang, H.; Jun, S. Verbal anthropomorphism design of social robots: Investigating users’ privacy perception. Comput. Hum. Behav. 2023, 142, 107640. [Google Scholar] [CrossRef]
- Dou, X.; Wu, C.-F.; Lin, K.-C.; Gan, S.; Tseng, T.-M. Effects of Different Types of Social Robot Voices on Affective Evaluations in Different Application Fields. Int. J. Soc. Robot. 2021, 13, 615–628. [Google Scholar] [CrossRef]
- Christoforakos, L.; Gallucci, A.; Surmava-Grosse, T.; Ullrich, D.; Diefenbach, S. Can Robots Earn Our Trust the Same Way Humans Do? A Systematic Exploration of Competence, Warmth, and Anthropomorphism as Determinants of Trust Development in HRI. Front. Robot. AI 2021, 8, 640444. [Google Scholar] [CrossRef]
- Atman Uslu, N.; Yavuz, G.Ö.; Koçak Usluel, Y. A systematic review study on educational robotics and robots. Interact. Learn. Environ. 2023, 31, 5874–5898. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ghosh, S.K.; Chaudhuri, R.; Nguyen, B. Are CRM systems ready for AI integration? A conceptual framework of organizational readiness for effective AI-CRM integration. Bottom Line 2019, 32, 144–157. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Kelly, C.; Walls, M.; Flanagan, T.; Finnegan, W.; Harrison, N.M.; Ghabezi, P. Carbon nanotubes–Elium nanocomposite sensor for structural health monitoring of unidirectional glass fibre reinforced epoxy composite. Compos. Commun. 2025, 58, 102503. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Moriche, R.; Jiménez-Suárez, A.; Sánchez, M.; Prolongo, S.G.; Ureña, A. Sensitive response of GNP/epoxy coatings as strain sensors: Analysis of tensile-compressive and reversible cyclic behavior. Smart Mater. Struct. 2020, 29, 065012. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Faller, L.-M.; Farahani, M.; Roshanghias, A.; Araee, A.; Baniassadi, M.; Oberlercher, H.; Zangl, H. Impedance analysis for condition monitoring of single lap CNT-epoxy adhesive joint. Int. J. Adhes. Adhes. 2019, 88, 59–65. [Google Scholar] [CrossRef]
- Lim, S.; Son, D.; Kim, J.; Lee, Y.B.; Song, J.-K.; Choi, S.; Lee, D.J.; Kim, J.H.; Lee, M.; Hyeon, T.; et al. Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Adv. Funct. Mater. 2015, 25, 375–383. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.K.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z.L. Recent Progress in Electronic Skin. Adv. Sci. 2015, 2, 1500169. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xie, D.; Li, Z.; Zhu, H. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R Rep. 2017, 115, 1–37. [Google Scholar] [CrossRef]
- Huang, T.C.; Wei, R.L.; Hua, Q.L.; Yuan, Z.Q.; Shen, G.Z. A smart sponge with pressure-temperature dual-mode sensing for packaging and transportation. Chem. Eng. J. 2024, 499, 156292. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Shen, G.Z. Materials and device architecture towards a multimodal electronic skin. Mater. Today 2023, 64, 165–179. [Google Scholar] [CrossRef]
- Xi, J.G.; Yang, H.W.; Li, X.Y.; Wei, R.L.; Zhang, T.P.; Dong, L.; Yang, Z.J.; Yuan, Z.Q.; Sun, J.L.; Hua, Q.L. Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications. Nanomaterials 2024, 14, 465. [Google Scholar] [CrossRef]
- Jung, Y.H.; Park, B.; Kim, J.U.; Kim, T.-I. Bioinspired Electronics for Artificial Sensory Systems. Adv. Mater. 2019, 31, 1803637. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.; Lee, S.; Kim, S.; Kim, J.-K.; Algadi, H.; Al-Sayari, S.; Kim, D.-E.; Kim, D.; Lee, T. Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing. Adv. Electron. Mater. 2016, 2, 1600356. [Google Scholar] [CrossRef]
- Ren, J.Y.; Yuan, Z.Q.; Sun, B.; Shen, G.Z. Gait Sensors with Customized Protruding Structures for Quadruped Robot Applications. Adv. Fiber Mater. 2025, 7, 501–512. [Google Scholar] [CrossRef]
- Qiu, Y.; Sun, S.; Wang, X.; Shi, K.; Wang, Z.; Ma, X.; Zhang, W.; Bao, G.; Tian, Y.; Zhang, Z.; et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. npj Flex. Electron. 2022, 6, 45. [Google Scholar] [CrossRef]
- Yim, H.; Kang, H.; Moon, S.; Kim, Y.; Nguyen, T.D.; Choi, H.R. Multi-functional safety sensor coupling capacitive and inductive measurement for physical Human–Robot Interaction. Sens. Actuators A Phys. 2023, 354, 114285. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Solomon, S.A.; Min, J.; Tu, J.; Guo, W.; Xu, C.; Song, Y.; Gao, W. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495. [Google Scholar] [CrossRef]
- Zhou, Z.; Zuo, R.; Ying, B.; Zhu, J.; Wang, Y.; Wang, X.; Liu, X. A Sensory Soft Robotic Gripper Capable of Learning-Based Object Recognition and Force-Controlled Grasping. IEEE Trans. Autom. Sci. Eng. 2024, 21, 844–854. [Google Scholar] [CrossRef]
- Chen, J.; Chen, K.; Jin, J.; Wu, K.; Wang, Y.; Zhang, J.; Liu, G.; Sun, J. Outstanding Synergy of Sensitivity and Linear Range Enabled by Multigradient Architectures. Nano Lett. 2023, 23, 11958–11967. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Park, Y.-L. Single-input single-output multi-touch soft sensor systems using band-pass filters. npj Flex. Electron. 2022, 6, 65. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, Y.; Ma, Y.; Wang, J.; Zou, J.; Wu, H.; Yue, Y.; Li, B.; Gao, Y.; Zhang, X.; et al. 3D MXene-Based Flexible Network for High-Performance Pressure Sensor with a Wide Temperature Range. Adv. Sci. 2023, 10, 2205303. [Google Scholar] [CrossRef]
- Liu, Y.; Yiu, C.; Song, Z.; Huang, Y.; Yao, K.; Wong, T.; Zhou, J.; Zhao, L.; Huang, X.; Nejad, S.K.; et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci. Adv. 2022, 8, eabl6700. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, H.; Chen, S.; Liu, Y.; Meng, Y.; Cheng, J.; Feng, X. Skin-Like Electronics for Perception and Interaction: Materials, Structural Designs, and Applications. Adv. Intell. Syst. 2021, 3, 2000108. [Google Scholar] [CrossRef]
- Ning, C.; Dong, K.; Cheng, R.; Yi, J.; Ye, C.; Peng, X.; Sheng, F.; Jiang, Y.; Wang, Z.L. Flexible and Stretchable Fiber-Shaped Triboelectric Nanogenerators for Biomechanical Monitoring and Human-Interactive Sensing. Adv. Funct. Mater. 2021, 31, 2006679. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Zhang, Z.; Shi, Q.; He, T.; Liu, H.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, Y.; Qin, Y.; Liu, W.; Wen, X.; Dai, J.; Bian, Y.; Gong, J. High-Sensitivity Flexible Sponge Sensor Capable of Sensing Tiny Pressures with a Surface Microstructure. ACS Appl. Polym. Mater. 2024, 6, 12744–12755. [Google Scholar] [CrossRef]
- Cheng, M.; Yuan, Y.; Li, Q.; Chen, C.; Chen, J.; Tian, K.; Zhang, M.; Fu, Q.; Deng, H. Polyimide aerogel-based capacitive pressure sensor with enhanced sensitivity and temperature resistance. J. Mater. Sci. Technol. 2025, 217, 60–69. [Google Scholar] [CrossRef]
- Yin, H.; Li, Y.T.; Tian, Z.Y.; Li, Q.C.; Jiang, C.H.; Liang, E.F.; Guo, Y.P. Ultra-High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception. Nano-Micro Lett. 2025, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.X.; Zhu, L.P.; Wang, Y.C.; Li, J.Y.; Nie, J.J.; Wang, Z.L. A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Adv. Funct. Mater. 2021, 31, 2104928. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Xu, C.; Li, Z.; Ma, H.; Cao, Y.; Cheng, Y.; Feng, P.; Jiang, Y. Bioinspired electronic-skin for proximity and pressure detection in robot active sensing. Flex. Print. Electron. 2024, 9, 025011. [Google Scholar] [CrossRef]
- Mi, Y.; Tong, W.; Lu, Y.; Cao, X.; Wang, N. Robust conductive hydrogel advances self-powered intelligent sports monitoring and fair judging. Chem. Eng. J. 2024, 500, 156883. [Google Scholar] [CrossRef]
- Hanna, J.; Tawk, Y.; Azar, S.; Ramadan, A.H.; Dia, B.; Shamieh, E.; Zoghbi, S.; Kanj, R.; Costantine, J.; Eid, A.A. Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring. Sci. Rep. 2022, 12, 14885. [Google Scholar] [CrossRef]
- Zhao, W.; Natsuki, J.; Dinh Trung, V.; Li, H.; Tan, J.; Yang, W.; Natsuki, T. AgNPs/CNTs modified nonwoven fabric for PET-based flexible interdigitated electrodes in pressure sensor applications. Chem. Eng. J. 2024, 499, 156252. [Google Scholar] [CrossRef]
- Giraldo, J.P.; Wu, H.; Newkirk, G.M.; Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019, 14, 541–553. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Barlian, A.A.; Park, W.T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor Piezoresistance for Microsystems. Proc. IEEE 2009, 97, 513–552. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Zhao, W.; Qin, H.; Fang, X. Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement. Sensors 2016, 16, 1984. [Google Scholar] [CrossRef]
- Wei, R.L.; Zhang, J.L.; Li, H.T.; Huang, T.C.; Wang, X.P.; Liu, Z.R.; Li, Z.; Song, W.; Fu, X.B.; Huang, S.; et al. Flexible intelligent sensing patches for augmented tactile and thermal perception. Sci. China Mater. 2025, 68, 2819–2827. [Google Scholar] [CrossRef]
- Feng, W.; Zheng, W.; Gao, F.; Chen, X.; Liu, G.; Hasan, T.; Cao, W.; Hu, P. Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283. [Google Scholar] [CrossRef]
- Park, Y.; Sharma, B.; Shinde, S.; Kim, M.; Jang, B.; Kim, J.; Ahn, J. All MoS2-Based Large Area, Skin-Attachable Active-Matrix Tactile Sensor. ACS Nano 2019, 13, 3023–3030. [Google Scholar] [CrossRef]
- Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C.P.; Heine, T.; Duesberg, G.S.; et al. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films. Nano Lett. 2018, 18, 3738–3745. [Google Scholar] [CrossRef]
- Shao, B.; Chen, X.; Chen, X.; Peng, S.; Song, M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. Sensors 2024, 24, 4092. [Google Scholar] [CrossRef]
- Wang, L.; Ning, H.; Chen, S.; Huang, Y.; Chen, S.; Wang, L.; Liu, Y.; Liu, H.; Qiu, T.; Yao, R.; et al. MXene/rGO piezoresistive sensor based on Longan leaves’ hierarchical microstructure for human-motion detection. Appl. Mater. Today 2024, 41, 102474. [Google Scholar] [CrossRef]
- Huang, K.Y.; Tong, S.Y.; Shi, X.W.; Wen, J.; Bi, X.Y.; Li, A.L.; Zou, R.; Kong, W.; Yin, H.; Hu, W.; et al. The Numerical and Experimental Investigation of Piezoresistive Performance of Carbon Nanotube/Carbon Black/Polyvinylidene Fluoride Composite. Materials 2023, 16, 5581. [Google Scholar] [CrossRef]
- Xiang, D.; Zhang, Z.X.; Wu, Y.P.; Shen, J.B.; Harkin-Jones, E.; Li, Z.Y.; Wang, P.; Zhao, C.X.; Li, H.; Li, Y.T. 3D-Printed Flexible Piezoresistive Sensors for Stretching and Out-of-Plane Forces. Macromol. Mater. Eng. 2021, 306, 2100437. [Google Scholar] [CrossRef]
- Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834. [Google Scholar] [CrossRef]
- Conejo-Cuevas, G.; Lopes, A.C.; Badillo, I.; del Campo, F.J.; Ruiz-Rubio, L.; Pérez-Álvarez, L. Self-healing, piezoresistive and temperature responsive behaviour of chitosan/polyacrylic acid dynamic hydrogels. J. Colloid Interface Sci. 2025, 678, 320–333. [Google Scholar] [CrossRef]
- Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.B.; Jeon, S.; Chung, D.Y.; et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809. [Google Scholar] [CrossRef]
- Wei, H.F.; Li, X.M.; Yao, F.P.; Feng, X.Y.; Zhu, X.J. Flexible piezoresistive pressure sensor based on a graphene-carbon nanotube-polydimethylsiloxane composite. Nanotechnol. Precis. Eng. 2024, 7, 033004. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, J.H.; Ko, H.J.; Lee, S.; Bae, G.Y.; Kim, D.; Lee, G.; Lee, S.G.; Cho, K. Mechanically Robust and Linearly Sensitive Soft Piezoresistive Pressure Sensor for a Wearable Human-Robot Interaction System. ACS Nano 2024, 18, 3151–3160. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fan, X.; Zhu, Y.; Liu, Y.; Wu, P.; Jiang, R.; Wu, B.; Wu, H.-A.; Zheng, H.; Wang, J.; et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 2022, 13, 1119. [Google Scholar] [CrossRef]
- Li, W.; Jin, X.; Han, X.; Li, Y.; Wang, W.; Lin, T.; Zhu, Z. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220. [Google Scholar] [CrossRef]
- Fang, Q.Z.; Cao, S.C.; Qin, H.T.; Yin, R.X.; Zhang, W.J.; Zhang, H.B. A Novel Mechanomyography (MMG) Sensor Based on Piezo-Resistance Principle and with a Pyramidic Microarray. Micromachines 2023, 14, 1859. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.Y.; Zhao, Y.F.; Zhang, Y.J.; Zhang, Y.X.; Xu, X.Y.; Lin, Q.J.; Yao, K.; Wang, Y.H.; Han, F.; et al. Flexible pressure sensors with ultrahigh stress tolerance enabled by periodic microslits. Microsyst. Nanoeng. 2024, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.C.; Li, X.; Bao, R.R.; Pan, C.F. Innovations in Tactile Sensing: Microstructural Designs for Superior Flexible Sensor Performance. Adv. Funct. Mater. 2024, 34, 2405722. [Google Scholar] [CrossRef]
- Han, X.Y.; Yang, W.C.; Yin, C.L.; Zhang, X.J.; Yi, C.Q.; Fan, Z.X. Carbonized derivatives derived from the complex of Fe/Ni bimetallic MOFs and phenolic resin for flexible piezoresistive sensors in motion capture and health monitoring. Appl. Surf. Sci. 2025, 679, 160964. [Google Scholar] [CrossRef]
- Yang, K.; Zeng, S.; Zhou, P.; Ding, M.; Lin, J.; Hu, H.; Guo, Q.; Weng, M. Ag@MXene-cellulose nanofiber composite for electromagnetic interference shielding, sensing, and actuating. Sens. Actuators A Phys. 2024, 380, 116045. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, D.; Zhang, R.; Zhang, J.; Zhao, Q.; He, H.; Huang, H.; Yang, L.; Xu, Y. Novel Polyurethane Based, Fully Flexible, High-Performance Piezoresistive Sensor for Real-Time Pressure Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 25422–25431. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, H.; Huang, M.; Su, M.; Ma, Y.; Shi, M.; Mi, L.; Liu, C.; Liu, H. Construction of “island-bridge” microstructured conductive coating for enhanced impedance response of organohydrogel strain sensor. Chem. Eng. J. 2024, 496, 153752. [Google Scholar] [CrossRef]
- Dhanjai; Yu, N.; Mugo, S.M. A flexible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta 2019, 204, 602–606. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, C.; Li, H.; Yang, H.; Xiong, F.; Chen, D. The Progress of Research into Flexible Sensors in the Field of Smart Wearables. Sensors 2022, 22, 5089. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Chen, Z.M.; Huang, T.C.; Ren, J.Y.; Zhang, J.L.; Yuan, Z.Q.; Shen, G.Z. Battery-free flexible wireless sensors using tuning circuit for high-precision detection of dual-mode dynamic ranges. Nano Energy 2025, 133, 110492. [Google Scholar] [CrossRef]
- Zhou, Q.; Ji, B.; Wei, Y.Z.; Hu, B.; Gao, Y.B.; Xu, Q.S.; Zhou, J.; Zhou, B.P. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J. Mater. Chem. A 2019, 7, 27334–27346. [Google Scholar] [CrossRef]
- Cui, X.; Zheng, J.; Huang, Y.; Wang, R.; Zhang, H. MXene/MWCNTs-based capacitive pressure sensors combine high sensitivity and wide detection range for human health and motion monitoring. Sens. Actuators A Phys. 2024, 379, 115858. [Google Scholar] [CrossRef]
- Ma, C.; Xiong, C.; Zhao, R.; Wang, K.; Yang, M.; Liang, Y.; Li, M.; Han, D.; Wang, H.; Zhang, R.; et al. Capacitive pressure sensors based on microstructured polymer-derived SiCN ceramics for high-temperature applications. J. Colloid Interface Sci. 2025, 678, 503–510. [Google Scholar] [CrossRef]
- Lan, R.; Zhang, J.; Chen, J.; Tang, W.; Wu, Q.; Zhou, X.; Kang, X.; Wang, J.; Wang, H.; Li, H. High-Sensitivity Flexible Capacitive Pressure Sensors Based on Biomimetic Hibiscus Flower Microstructures. ACS Omega 2024, 9, 13704–13713. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Duan, Z.; Huang, Q.; Yang, H.; Yuan, Z.; Jiang, Y.; Tai, H. Integrated surface microstructure and enhanced dielectric constant for constructing simple, low-cost, and high-performance flexible capacitive pressure sensor. Sens. Actuators A Phys. 2024, 376, 115629. [Google Scholar] [CrossRef]
- Jung, Y.H.; Hong, S.K.; Wang, H.S.; Han, J.H.; Pham, T.X.; Park, H.; Kim, J.; Kang, S.; Yoo, C.D.; Lee, K.J. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Adv. Mater. 2020, 32, e1904020. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, Z.L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 24, 23–24. [Google Scholar] [CrossRef]
- Wampo, F.L.H.; Ntenga, R.; Effa, J.Y.; Lapusta, Y.; Ntamack, G.E.; Maréchal, P. Generalized homogenization model of piezoelectric materials for ultrasonic transducer applications. J. Compos. Mater. 2022, 56, 713–726. [Google Scholar] [CrossRef]
- Topolov, V.Y.; Bowen, C.R.; Krivoruchko, A.V.; Isaeva, A.N. Orientation effects and figures of merit in advanced 2-2-type composites based on [011]-poled domain-engineered single crystals. CrystEngComm 2022, 24, 1177–1188. [Google Scholar] [CrossRef]
- Shee, C.; Banerjee, S.; Bairagi, S.; Baburaj, A.; Naveen, K.S.K.; Aliyana, A.K.; Mulvihill, D.M.; Alagirusamy, R.; Ali, S.W. A critical review on polyvinylidene fluoride (PVDF)/zinc oxide (ZnO)-based piezoelectric and triboelectric nanogenerators. J. Phys.-Energy 2024, 6, 032001. [Google Scholar] [CrossRef]
- Lee, S.; Jung, J.; Ryu, S. Micromechanics-based prediction of the effective properties of piezoelectric composite having interfacial imperfections. Compos. Struct. 2020, 240, 112076. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wu, S.; Wang, X.X.; Wang, Z.S.; Zhu, Q.X.; Sun, J.S.; Huang, P.F.; Wang, X.W.; Huang, W.; Lu, Q.B. Review on piezoelectric actuators: Materials, classifications, applications, and recent trends. Front. Mech. Eng. 2024, 19, 6. [Google Scholar] [CrossRef]
- Zhu, Q.; Song, X.; Chen, X.; Li, D.; Tang, X.; Chen, J.; Yuan, Q. A high performance nanocellulose-PVDF based piezoelectric nanogenerator based on the highly active CNF@ZnO via electrospinning technology. Nano Energy 2024, 127, 109741. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, C.; Sun, Q.; Wang, M. Arrayed multi-layer piezoelectric sensor based on electrospun P(VDF-TrFE)/ZnO with enhanced piezoelectricity. Sens. Actuators A Phys. 2024, 379, 115970. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Z.Q.; Han, X.; Wang, C.F.; Huo, Z.H.; Lu, Q.C.; Xiong, M.L.; Ma, X.L.; Gao, W.C.; Pan, C.F. Biologically Inspired Stretchable, Multifunctional, and 3D Electronic Skin by Strain Visualization and Triboelectric Pressure Sensing. Small Sci. 2022, 2, 2100083. [Google Scholar] [CrossRef]
- Meng, X.J.; Cai, C.C.; Luo, B.; Liu, T.; Shao, Y.Z.; Wang, S.F.; Nie, S.X. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. Nano-Micro Lett. 2023, 15, 124. [Google Scholar] [CrossRef]
- Seong, J.; Bak, B.-U.; Lee, D.; Jin, J.; Kim, J. Tribo-piezoelectric synergistic BaTiO3/PDMS micropyramidal structure for high-performance energy harvester and high-sensitivity tactile sensing. Nano Energy 2024, 122, 109264. [Google Scholar] [CrossRef]
- Yu, Y.F.; Feng, Y.Y.; Liu, F.; Wang, H.; Yu, H.T.; Dai, K.; Zheng, G.Q.; Feng, W. Carbon Dots-Based Ultrastretchable and Conductive Hydrogels for High-Performance Tactile Sensors and Self-Powered Electronic Skin. Small 2023, 19, 2204365. [Google Scholar] [CrossRef]
- Maity, S.; Singh, R.K.; Gadhewal, M.; Tiwari, S.P. Highly biodegradable piezoelectric flexible wearable tactile sensors with amino acid crystals: A paradigm shift towards smart transient electronics. Chem. Eng. J. 2025, 512, 162531. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wei, S.; Liu, C.C.; Shang, C.; He, Z.Q.; Duan, Y.; Peng, Z.C. Porous nanocomposites with enhanced intrinsic piezoresistive sensitivity for bioinspired multimodal tactile sensors. Microsyst. Nanoeng. 2024, 10, 19. [Google Scholar] [CrossRef]
- Huang, J.; Feng, J.; Chen, Z.; Dai, Z.; Yang, S.; Chen, Z.; Zhang, H.; Zhou, Z.; Zeng, Z.; Li, X.; et al. A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 2024, 126, 109684. [Google Scholar] [CrossRef]
- Kim, D.B.; Han, J.; Sung, S.M.; Kim, M.S.; Choi, B.K.; Park, S.J.; Hong, H.R.; Choi, H.J.; Kim, B.K.; Park, C.H.; et al. Weave-pattern-dependent fabric piezoelectric pressure sensors based on polyvinylidene fluoride nanofibers electrospun with 50 nozzles. NPJ Flex. Electron. 2022, 6, 69. [Google Scholar] [CrossRef]
- Ji, H.; Lv, P.; Zhang, L.; Shen, L.; Gao, Z.; Wen, Z.; Sun, X. A no-crosstalk multi-functional tactile sensor for precise physiological monitoring. Chem. Eng. J. 2024, 501, 157760. [Google Scholar] [CrossRef]
- Xu, J.; Peng, L.; Yuan, S.; Li, S.; Zhu, H.; Fu, L.; Zhang, T.; Li, T. Advanced Optical-Thermal Integrated Flexible Tactile Sensor for High-Fine Recognition of Liquid Property in Non-Contact Mode. Adv. Funct. Mater. 2024, 34, 2410885. [Google Scholar] [CrossRef]
- Yin, A.; Chen, R.; Yin, R.; Zhou, S.; Ye, Y.; Wang, Y.; Wang, P.; Qi, X.; Liu, H.; Liu, J.; et al. An ultra-soft conductive elastomer for multifunctional tactile sensors with high range and sensitivity. Mater. Horiz. 2024, 11, 1975–1988. [Google Scholar] [CrossRef]
- Deng, S.; Li, Y.; Li, S.; Yuan, S.; Zhu, H.; Bai, J.; Xu, J.; Peng, L.; Li, T.; Zhang, T. A multifunctional flexible sensor based on PI-MXene/SrTiO3 hybrid aerogel for tactile perception. Innovation 2024, 5, 100596. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cui, X.; Yang, Y. Oblique Pyramid Microstructure-Patterned Flexible Sensors for Pressure and Visual Temperature Sensing. ACS Appl. Mater. Interfaces 2023, 15, 59760–59767. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, T.; Xu, H. Flexible Anisotropic Magnetic Micropillar Arrays for Precision Directional Recognition in Human-Machine Interactions. ACS Appl. Polym. Mater. 2024, 6, 14707–14715. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, L.; Luo, G.; Dong, L.; Xia, Y.; Li, M.; Li, Z.; Wang, K.; Maeda, R.; Jiang, Z. Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. Microsyst. Nanoeng. 2023, 9, 113. [Google Scholar] [CrossRef]
- Laganà, F.; Pratticò, D.; Oliva, G.; Calcagno, S.; Angiulli, G.; Carlo, D.D.; Fiorillo, A.S.; Pullano, S.A. Developing an electronic device for the acquisition and processing of ECG signals: A Soft Computing approach. In Proceedings of the 2024 International Workshop on Quantum & Biomedical Applications, Technologies, and Sensors (Q-BATS), Durres, Albania, 10–11 October 2024; pp. 44–49. [Google Scholar]
- Pellicanò, D.; Calcagno, S.; Carlo, D.D.; Laganà, F. Analysis and Study of an Integrated System Based on Eddy Current for the Osteogenesis Process. In Proceedings of the 2023 International Workshop on Biomedical Applications, Technologies and Sensors (BATS), Catanzaro, Italy, 28–29 September 2023; pp. 89–94. [Google Scholar]
- Qin, Y.; Howlader, M.M.R.; Deen, M.J.; Haddara, Y.M.; Selvaganapathy, P.R. Polymer integration for packaging of implantable sensors. Sens. Actuators B Chem. 2014, 202, 758–778. [Google Scholar] [CrossRef]
- Ouyang, H.; Li, Z.; Gu, M.; Hu, Y.; Xu, L.; Jiang, D.; Cheng, S.; Zou, Y.; Deng, Y.; Shi, B.; et al. A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Adv. Mater. 2021, 33, 2102302. [Google Scholar] [CrossRef]
- Lu, D.; Li, S.; Yang, Q.; Arafa, H.M.; Xu, Y.; Yan, Y.; Ostojich, D.; Bai, W.; Guo, H.; Wu, C.; et al. Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosens. Bioelectron. 2022, 206, 114145. [Google Scholar] [CrossRef]
- Laganà, F.; Carlo, D.D.; Calcagno, S.; Oliva, G.; Pullano, S.A.; Fiorillo, A.S. Modeling of Electrical Impedance Tomography for Carcinoma Detection. In Proceedings of the 2022 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 17–18 November 2022; pp. 1–4. [Google Scholar]
- Zhang, Y.; Sun, M.; Zhou, H.; Zhang, Y.; Qiu, J.; Cheng, X.; Wang, C.; Ning, Y.; Xing, J.; Xu, S.; et al. Microfluidic biosensing platform integrated with flexible sensing array for cancer biomarker point-of-care testing. Sens. Actuators B Chem. 2025, 427, 137148. [Google Scholar] [CrossRef]
- Nan, X.; Wang, X.; Kang, T.; Zhang, J.; Dong, L.; Dong, J.; Xia, P.; Wei, D. Review of Flexible Wearable Sensor Devices for Biomedical Application. Micromachines 2022, 13, 1395. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Silva, A.P.; Nunes-Pereira, J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens. 2024, 9, 1104–1133. [Google Scholar] [CrossRef]
- Yang, T.; Deng, W.; Chu, X.; Wang, X.; Hu, Y.; Fan, X.; Song, J.; Gao, Y.; Zhang, B.; Tian, G.; et al. Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics. ACS Nano 2021, 15, 11555–11563. [Google Scholar] [CrossRef]
- Laganà, F.; Pellicanò, D.; Carlo, D.D.; Pratticò, D.; Calcagno, S. Evaluation and monitoring of SAR and temperature during an indoor Wi-Fi call. In Proceedings of the 2024 International Workshop on Quantum & Biomedical Applications, Technologies, and Sensors (Q-BATS), Durres, Albania, 10–11 October 2024; pp. 105–110. [Google Scholar]
- Han, H.; Baik, S.; Xu, B.; Seo, J.; Lee, S.; Shin, S.; Lee, J.; Koo, J.H.; Mei, Y.; Pang, C.; et al. Bioinspired Geometry-Switchable Janus Nanofibers for Eye-Readable H2 Sensors. Adv. Funct. Mater. 2017, 27, 1701618. [Google Scholar] [CrossRef]
- Yue, O.; Wang, X.; Liu, X.; Hou, M.; Zheng, M.; Wang, Y.; Cui, B. Spider-Web and Ant-Tentacle Doubly Bio-Inspired Multifunctional Self-Powered Electronic Skin with Hierarchical Nanostructure. Adv. Sci. 2021, 8, 2004377. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Saha, T.; Ding, S.; Sandhu, S.S.; Chang, A.-Y.; Wang, J. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 2024, 7, 735–750. [Google Scholar] [CrossRef]
- Mostufa, S.; Rezaei, B.; Ciannella, S.; Yari, P.; Gómez-Pastora, J.; He, R.; Wu, K. Advancements and Perspectives in Optical Biosensors. ACS Omega 2024, 9, 24181–24202. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hu, R. Intelligent robotic virtual reality. Matter 2022, 5, 1642–1644. [Google Scholar] [CrossRef]
- Lee, K.-T.; Lim, E.-H.; Tan, C.-H.; Low, J.-H.; Wong, K.-L.; Guan, C.; Chee, P.-S. WiFi-Powered Sensor Integrated into a Smart Glove with a Fully Fabric Antenna for the Human–Machine Interface. ACS Appl. Mater. Interfaces 2024, 16, 62914–62924. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.D.; Pan, J.; Cui, T.R.; Zhang, S.; Yang, Y.; Ren, T.L. Recent Progress of Tactile and Force Sensors for Human-Machine Interaction. Sensors 2023, 23, 1868. [Google Scholar] [CrossRef]
- Ding, Z.; Ji, Y.; Gan, Y.; Wang, Y.; Xia, Y. Current status and trends of technology, methods, and applications of Human–Computer Intelligent Interaction (HCII): A bibliometric research. Multimed. Tools Appl. 2024, 83, 69111–69144. [Google Scholar] [CrossRef]
- Pratticò, D.; Laganà, F.; Oliva, G.; Fiorillo, A.S.; Pullano, S.A.; Calcagno, S.; Carlo, D.D.; Foresta, F.L. Integration of LSTM and U-Net Models for Monitoring Electrical Absorption with a System of Sensors and Electronic Circuits. IEEE Trans. Instrum. Meas. 2025, 74, 1–11. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Wang, J.; Xiao, X.; Li, Q.; Ding, W.; Fu, H.Y. Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy 2021, 89, 106330. [Google Scholar] [CrossRef]
- Araromi, O.A.; Graule, M.A.; Dorsey, K.L.; Castellanos, S.; Foster, J.R.; Hsu, W.-H.; Passy, A.E.; Vlassak, J.J.; Weaver, J.C.; Walsh, C.J.; et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Kim, J.; Jung, H.; Yoon, K.J.; Gandla, S.; Park, H.; Kim, S. Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system. NPJ Flex. Electron. 2023, 7, 20. [Google Scholar] [CrossRef]
- Kadavath, M.R.K.; Nasor, M.; Imran, A. Enhanced Hand Gesture Recognition with Surface Electromyogram and Machine Learning. Sensors 2024, 24, 5231. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Chen, T.; Lee, C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat. Commun. 2021, 12, 2692. [Google Scholar] [CrossRef]
- Laganà, F.; Pellicanò, D.; Arruzzo, M.; Pratticò, D.; Pullano, S.A.; Fiorillo, A.S. FEM-Based Modelling and AI-Enhanced Monitoring System for Upper Limb Rehabilitation. Electronics 2025, 14, 2268. [Google Scholar] [CrossRef]
- Yan, X.X.; Pang, Y.W.; Niu, K.W.; Hu, B.W.; Zhu, Z.B.; Tan, Z.J.; Lei, H.W. Wearable Sensors for Plants: Status and Prospects. Biosensors 2025, 15, 53. [Google Scholar] [CrossRef]
- Perdomo, S.A.; De la Paz, E.; Del Caño, R.; Seker, S.; Saha, T.; Wang, J.; Jaramillo-Botero, A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens. Bioelectron. 2023, 231, 115300. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, C.; Zhao, F.; Shao, Y.; Ying, Y.; Ping, J. A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy 2020, 73, 104738. [Google Scholar] [CrossRef]
- Tsong, J.L.; Khor, S.M. Modern analytical and bioanalytical technologies and concepts for smart and precision farming. Anal Methods 2023, 15, 3125–3148. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Li, M.-Z.; Li, J.-Y.; Gao, Y.-Y.; Liu, C.-R.; Hao, G.-F. Wearable sensor supports in-situ and continuous monitoring of plant health in precision agriculture era. Plant Biotechnol. J. 2024, 22, 1516–1535. [Google Scholar] [CrossRef] [PubMed]
Sensor Types | Materials | Sensitivity | Sensing Range | Response Time | Durability (Cycles) | Ref. |
---|---|---|---|---|---|---|
Piezoresistive tactile sensor | NC-GF/PDMS | 4.2 kPa−1 (0.5–25 kPa) | >0.5 Pa | 150 ms | 10,000 | [57] |
MXene aerogel | 1900 kPa−1 | 0.0063~0.02 Pa | <100 ms | 10,000 | [58] | |
ILs-MWCNTs-PUs | 7.023 kPa−1 (0–0.1 kPa) | 0.1~420 kPa | 60 ms | 80,000 | [65] | |
Capacitive tactile sensors | MXene/MWCNTs | 4.2 kPa−1 (0–1 kPa) | 0~700 kPa | 46 ms | 4500 | [71] |
AgNWs/PVDF-HFP | 48.57 kPa−1 (0–1 kPa) | >5.5 mg | <58 ms | >3000 | [73] | |
Polyester fiber/carbon | 1.47 kPa−1 (0.1–10 kPa) | 0.1~100 kPa | ~35 ms | 4000 | [74] | |
Piezoelectric tactile sensor | P(VDF-TrFE)/ZnO | 8.30 mV/kPa | 0~30 N | ~5 ms | >10,000 | [83] |
β-glycine-gelatine | 41.3 mV/kPa | 2.5~55 kPa | 1 ms | / | [90] | |
Triboelectric tactile sensor | BaTiO3/PDMS | 3.71 V/kPa (0–15 kPa) | 0.1~100 kPa | / | 5000 | [88] |
Carbon quantum dot-reinforced hydrogel | 5.16 V/kPa (0–15 kPa) | 1~25 N | 210 ms | >7500 | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Zhang, W.; Lv, M.; Huang, T.; Xi, J.; Yuan, Z. Flexible and Wearable Tactile Sensors for Intelligent Interfaces. Materials 2025, 18, 4010. https://doi.org/10.3390/ma18174010
Cui X, Zhang W, Lv M, Huang T, Xi J, Yuan Z. Flexible and Wearable Tactile Sensors for Intelligent Interfaces. Materials. 2025; 18(17):4010. https://doi.org/10.3390/ma18174010
Chicago/Turabian StyleCui, Xu, Wei Zhang, Menghui Lv, Tianci Huang, Jianguo Xi, and Zuqing Yuan. 2025. "Flexible and Wearable Tactile Sensors for Intelligent Interfaces" Materials 18, no. 17: 4010. https://doi.org/10.3390/ma18174010
APA StyleCui, X., Zhang, W., Lv, M., Huang, T., Xi, J., & Yuan, Z. (2025). Flexible and Wearable Tactile Sensors for Intelligent Interfaces. Materials, 18(17), 4010. https://doi.org/10.3390/ma18174010