Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = multidecadal variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Viewed by 364
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Figure 1

28 pages, 12894 KiB  
Article
Evolution of Rainfall Characteristics in Catalonia, Spain, Using a Moving-Window Approach (1950–2022)
by Carina Serra, María del Carmen Casas-Castillo, Raül Rodríguez-Solà and Cristina Periago
Hydrology 2025, 12(7), 194; https://doi.org/10.3390/hydrology12070194 - 19 Jul 2025
Viewed by 499
Abstract
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation [...] Read more.
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation (CV), and trends across 43 overlapping 31-year periods. To assess trends in these moving statistics, a modified Mann–Kendall test was applied to both the 31-year means and CVs. Results revealed a significant 10% decrease in annual rainfall, with summer showing the most pronounced decline, as nearly 90% of stations exhibited negative trends, while the CV showed negative trends in coastal areas and mostly positive trends inland. At the monthly scale, February, March, June, August, and December exhibited negative trends at more than 50% of stations, with rainfall reductions ranging from 20% to 30%. Additionally, the temporal evolution of Mann–Kendall trend coefficients within each 31-year moving window displayed a fourth-degree polynomial pattern, with a periodicity of 30–35 years at annual and seasonal scales, and for some months. Finally, at the annual scale and in two centennial series, the 80-year oscillations found were inversely correlated with the large-scale climate indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). Full article
Show Figures

Figure 1

15 pages, 4746 KiB  
Article
Multi-Decade Variations in Sediment and Nutrient Export in Cascading Developmental Rivers in Southwest China: Impacts of Land Use and Dams
by Shucong Lyu, Qibiao Yu, Liangjing Zhang, Fei Xu, Yu Wang, Zhaojun Dong and Lusan Liu
Water 2025, 17(9), 1333; https://doi.org/10.3390/w17091333 - 29 Apr 2025
Cited by 1 | Viewed by 478
Abstract
Anthropogenic activities (represented by dams and land use change) and climate change have disrupted the delicate balance between natural and anthropogenic factors affecting riverine material transport, yet their effects across different river basins remain underexplored. This study investigated multi-decade (1980–2023) variations in sediment [...] Read more.
Anthropogenic activities (represented by dams and land use change) and climate change have disrupted the delicate balance between natural and anthropogenic factors affecting riverine material transport, yet their effects across different river basins remain underexplored. This study investigated multi-decade (1980–2023) variations in sediment and particulate carbon (C), nitrogen (N), and phosphorus (P) exports from the Jinsha (JSR) and Jialing River (JLR) basins, two cascading developmental river systems in Southwestern China, and evaluated the cumulative impacts of land use change and dam construction. The results revealed significant decreases in particulate fluxes from both basins, despite stable water discharge. Particulate material fluxes declined by 90.9–99.6% in the JSR (last decade vs. 1980–1989, with an abrupt change occurring during 2002–2003) and by 54.0–79.3% in the JLR (with an abrupt change occurring in 1994). Over time, the influence of precipitation and water discharge on material transport has diminished, whereas land use change and dams have become increasingly dominant. Key drivers include forest expansion, increased impervious surfaces, reservoir construction, and reductions in grassland and farmland; however, there are spatial differences in the relative importance of these drivers. This study provides crucial insights for decision making on regional ecological conservation and cascading development. Full article
Show Figures

Graphical abstract

14 pages, 4990 KiB  
Article
Evaluation of the Contributions of Year-Specific Climate Anomaly, Nationwide Warming, and Urban Warming to Hot Summers in Japan
by Fumiaki Fujibe
Atmosphere 2025, 16(4), 435; https://doi.org/10.3390/atmos16040435 - 8 Apr 2025
Viewed by 1202
Abstract
Using surface observation data for the past hundred years, the contributions of year-specific climate anomaly, nationwide warming, and urban warming to hot summers in Japan were evaluated. A number of indices in temperature were defined to indicate the severity of summer heat in [...] Read more.
Using surface observation data for the past hundred years, the contributions of year-specific climate anomaly, nationwide warming, and urban warming to hot summers in Japan were evaluated. A number of indices in temperature were defined to indicate the severity of summer heat in each year. Then, the year-to-year time series of each index was divided into a year-specific component and a temporally smoothed component, and the latter was divided into a nationwide non-urban component and an urban component. The results show that the non-urban component began to increase after the 1990s, which is approximately attributable to global warming, although there are some temperature variations on the yearly to multidecadal scales related to the Pacific Decadal Oscillation (PDO) and the Southern Oscillation (SO), whereas urban warming became apparent since the 1960s at stations in highly urbanized areas. For the recent record-breaking summer heat, the contributions of the year-specific temperature anomaly, nationwide warming, and urban warming are all evaluated to be of the order of 1 °C. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

25 pages, 19085 KiB  
Article
Spatiotemporal Vegetation Dynamics, Forest Loss, and Recovery: Multidecadal Analysis of the U.S. Triple Crown National Scenic Trail Network
by Amber R. Ignatius, Ashley N. Annis, Casey A. Helton, Alec W. Reeb and Dylan F. Ricke
Remote Sens. 2025, 17(7), 1142; https://doi.org/10.3390/rs17071142 - 24 Mar 2025
Cited by 1 | Viewed by 879
Abstract
The U.S. National Scenic Trail system, encompassing over 12,000 km of hiking trails along the Appalachian Trail (AT), Continental Divide Trail (CDT), and Pacific Crest Trail (PCT), provides critical vegetation corridors that protect diverse forest, savannah, and grassland ecosystems. These ecosystems represent essential [...] Read more.
The U.S. National Scenic Trail system, encompassing over 12,000 km of hiking trails along the Appalachian Trail (AT), Continental Divide Trail (CDT), and Pacific Crest Trail (PCT), provides critical vegetation corridors that protect diverse forest, savannah, and grassland ecosystems. These ecosystems represent essential habitats facing increasing environmental pressures. This study offers a landscape-scale analysis of the vegetation dynamics across a 2 km wide conservation corridor (20,556 km2), utilizing multidecadal Landsat and MODIS satellite data via Google Earth Engine API to assess the vegetation health, forest disturbance recovery, and phenological shifts. The results reveal that forest loss, primarily driven by wildfire, impacted 1248 km2 of land (9.5% in the AT, 39% in the CDT, and 51% in the PCT) from 2001 to 2023. Moderate and severe wildfires in the PCT (713 km2 burn area) and CDT (350 km2 burn area) corridors exacerbated the vegetation stress and facilitated the transition from forest to grassland. LandTrendr analysis at 15 sample sites revealed slow, multi-year vegetation recovery in the CDT and PCT corridors based on the temporal segmentation and vegetation spectral indices (NBR, NDVI, NDWI, Tasseled Cap). The post-disturbance NBR values remained significantly reduced, averaging 0.31 at five years post-event compared to 0.6 prior to the disturbance. Variations in the vegetation phenology were documented, with no significant trends in the seasonal advancement or delay. This study establishes a robust baseline for vegetation change across the trail system, highlighting the need for further research to explore localized trends. Given the accelerating impacts of climate change and wildfire frequency, the findings underscore the necessity of adaptive conservation strategies to guide vegetation management and ensure the long-term stability and sustainability of vegetation cover in these vital conservation areas. Full article
Show Figures

Graphical abstract

31 pages, 14554 KiB  
Article
The Spatiotemporal Fluctuations of Extreme Rainfall and Their Potential Influencing Factors in Sichuan Province, China, from 1970 to 2022
by Lin Bai, Tao Liu, Agamo Sha and Dinghong Li
Remote Sens. 2025, 17(5), 883; https://doi.org/10.3390/rs17050883 - 1 Mar 2025
Viewed by 1344
Abstract
Utilizing daily data gathered from 63 meteorological stations across Sichuan Province between 1970 and 2022, this study investigates the spatial and temporal shifts in extreme precipitation patterns, alongside the connections between changes in extreme precipitation indices (EPIs) and the underlying drivers, such as [...] Read more.
Utilizing daily data gathered from 63 meteorological stations across Sichuan Province between 1970 and 2022, this study investigates the spatial and temporal shifts in extreme precipitation patterns, alongside the connections between changes in extreme precipitation indices (EPIs) and the underlying drivers, such as geographic characteristics and atmospheric circulation influences, within the region. The response of precipitation to these factors was examined through various methods, including linear trend analysis, the Mann–Kendall test, cumulative anomaly analysis, the Pettitt test, R/S analysis, Pearson correlation analysis, and wavelet transformation. The findings revealed that (1) Sichuan Province’s EPIs generally show an upward trend, with the simple daily intensity index (SDII) demonstrating the most pronounced increase. Notably, the escalation in precipitation indices was more substantial during the summer months compared to other seasons. (2) The magnitude of extreme precipitation variations showed a rising pattern in the plateau regions of western and northern Sichuan, whereas a decline was observed in the central and southeastern basin areas. (3) The number of days with precipitation exceeding 5 mm (R5mm), 10 mm (R10mm), and 20 mm (R20mm) all exhibited a significant change point in 2012, surpassing the 95% significance threshold. The future projections for EPIs, excluding consecutive dry days (CDDs), align with historical trends and suggest a continuing possibility of an upward shift. (4) Most precipitation indices, with the exception of CDDs, demonstrated a robust positive correlation with longitude and a negative correlation with both latitude and elevation. Except for the duration indicators (CDDs, CWDs), EPIs generally showed a gradual decrease with increasing altitude. (5) Atmospheric circulation patterns were found to have a substantial impact on extreme precipitation events in Sichuan Province, with the precipitation indices showing the strongest associations with the Atlantic Multidecadal Oscillation (AMO), the Sea Surface Temperature of the East Central Tropical Pacific (Niño 3.4), and the South China Sea Summer Monsoon Index (SCSSMI). Rising global temperatures and changes in subtropical high pressure in the western Pacific may be deeper factors contributing to changes in extreme precipitation. These insights enhance the understanding and forecasting of extreme precipitation events in the region. Full article
Show Figures

Figure 1

19 pages, 12098 KiB  
Article
Divergent Responses of Grassland Productivity to Large-Scale Atmospheric Circulations Across Ecoregions on the Mongolian Plateau
by Cuicui Jiao, Xiaobo Yi, Ji Luo, Ying Wang, Yuanjie Deng and Xiao Guo
Atmosphere 2025, 16(1), 32; https://doi.org/10.3390/atmos16010032 - 30 Dec 2024
Viewed by 734
Abstract
The Mongolian Plateau grassland (MPG) is critical for ecological conservation and sustainability of regional pastoral economies. Aboveground net primary productivity (ANPP) is a key indicator of grassland health and function, which is highly sensitive to variabilities in large-scale atmospheric circulations, commonly referred to [...] Read more.
The Mongolian Plateau grassland (MPG) is critical for ecological conservation and sustainability of regional pastoral economies. Aboveground net primary productivity (ANPP) is a key indicator of grassland health and function, which is highly sensitive to variabilities in large-scale atmospheric circulations, commonly referred to as teleconnections (TCs). In this study, we analyzed the spatial and temporal variations of ANPP and their response to local meteorological and large-scale climatic variabilities across the MPG from 1982 to 2015. Our analysis indicated the following: (1) Throughout the entire study period, ANPP displayed an overall upward trend across nine ecoregions. In the Sayan montane steppe and Sayan alpine meadow ecoregions, ANPP displayed a distinct inflection point in the mid-1990s. In the Ordos Plateau arid steppe ecoregion, ANPP continuously increased without any inflection points. In the six other ecoregions, trends in ANPP exhibited two inflection points, one in the mid-1990s and one in the late-2000s. (2) Precipitation was the principal determinant of ANPP across the entire MPG. Temperature was a secondary yet important factor influencing ANPP variations in the Ordos Plateau arid steppe. Cloud cover affected ANPP in Sukhbaatar and central Dornod, Mongolia. (3) The Atlantic Multidecadal Oscillation affected ANPP by regulating temperature in the Ordos Plateau arid steppe ecoregion, whereas precipitation occurred in the other ecoregions. The Pacific/North America, North Atlantic Oscillation, East Atlantic/Western Russia, and Pacific Decadal Oscillation predominantly affected precipitation patterns in various ecoregions, indicating regional heterogeneities of the effects of TCs on ANPP fluctuations. When considering seasonal variances, winter TCs dominated ANPP variations in the Selenge–Orkhon forest steppe, Daurian forest steppe, and Khangai Mountains alpine meadow ecoregions. Autumn TCs, particularly the Pacific/North America and North Atlantic Oscillation, had a greater impact in arid regions like the Gobi Desert steppe and the Great Lakes Basin desert steppe ecoregions. This study’s findings will enhance the theoretical framework for examining the effects of TCs on grassland ecosystems. Full article
Show Figures

Figure 1

18 pages, 5148 KiB  
Article
Trends and Periodicities of Tropical Cyclone Frequencies and the Correlations with Ocean Drivers
by Guoyou Li, Huabin Shi and Zhiguo He
J. Mar. Sci. Eng. 2024, 12(10), 1707; https://doi.org/10.3390/jmse12101707 - 26 Sep 2024
Viewed by 1975
Abstract
This study presents a comprehensive analysis on the variations in the tropical cyclone (TC) frequencies during 1980–2021, including the linear trends, periodicities, and their variabilities on both global and basin-wise scales. An increasing trend in the annual number of global TCs is identified, [...] Read more.
This study presents a comprehensive analysis on the variations in the tropical cyclone (TC) frequencies during 1980–2021, including the linear trends, periodicities, and their variabilities on both global and basin-wise scales. An increasing trend in the annual number of global TCs is identified, with a significant rising trend in the numbers of tropical storms (maximum sustained wind 35 ktsUmax<64 kts) and intense typhoons (Umax96 kts) and a deceasing trend for weak typhoons (64 ktsUmax<96 kts). There is no statistically significant trend shown in the global Accumulated Cyclone Energy (ACE). On a regional scale, the Western North Pacific (WNP) and Eastern North Pacific (ENP) are the regions of the first- and second-largest numbers of TCs, respectively, while the increased TC activity in the North Atlantic (NA) contributes the most to the global increase in TCs. It is revealed in the wavelet transformation for periodicity analysis that the variations in the annual number of TCs with different intensities mostly show an inter-annual period of 3–7 years and an inter-decadal one of 10–13 years. The inter-annual and inter-decadal periods are consistent with those in the ENSO-related ocean drivers (via the Niño 3.4 index), Southern Oscillation Index (SOI), and Inter-decadal Pacific Oscillation (IPO) index. The inter-decadal variation in 10–13 years is also observed in the North Atlantic Oscillation (NAO) index. The Tropical North Atlantic (TNA) index and Atlantic Multi-decadal Oscillation (AMO) index, on the other hand, present the same inter-annual period of 7–10 years as that in the frequencies of all the named TCs in the NA. Further, the correlations between TC frequencies and ocean drivers are also quantified using the Pearson correlation coefficient. These findings contribute to an enhanced understanding of TC activity, thereby facilitating efforts to predict particular TC activity and mitigate the inflicted damage. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

31 pages, 5387 KiB  
Article
Roles of Earth’s Albedo Variations and Top-of-the-Atmosphere Energy Imbalance in Recent Warming: New Insights from Satellite and Surface Observations
by Ned Nikolov and Karl F. Zeller
Geomatics 2024, 4(3), 311-341; https://doi.org/10.3390/geomatics4030017 - 20 Aug 2024
Cited by 1 | Viewed by 64106
Abstract
Past studies have reported a decreasing planetary albedo and an increasing absorption of solar radiation by Earth since the early 1980s, and especially since 2000. This should have contributed to the observed surface warming. However, the magnitude of such solar contribution is presently [...] Read more.
Past studies have reported a decreasing planetary albedo and an increasing absorption of solar radiation by Earth since the early 1980s, and especially since 2000. This should have contributed to the observed surface warming. However, the magnitude of such solar contribution is presently unknown, and the question of whether or not an enhanced uptake of shortwave energy by the planet represents positive feedback to an initial warming induced by rising greenhouse-gas concentrations has not conclusively been answered. The IPCC 6th Assessment Report also did not properly assess this issue. Here, we quantify the effect of the observed albedo decrease on Earth’s Global Surface Air Temperature (GSAT) since 2000 using measurements by the Clouds and the Earth’s Radiant Energy System (CERES) project and a novel climate-sensitivity model derived from independent NASA planetary data by employing objective rules of calculus. Our analysis revealed that the observed decrease of planetary albedo along with reported variations of the Total Solar Irradiance (TSI) explain 100% of the global warming trend and 83% of the GSAT interannual variability as documented by six satellite- and ground-based monitoring systems over the past 24 years. Changes in Earth’s cloud albedo emerged as the dominant driver of GSAT, while TSI only played a marginal role. The new climate sensitivity model also helped us analyze the physical nature of the Earth’s Energy Imbalance (EEI) calculated as a difference between absorbed shortwave and outgoing longwave radiation at the top of the atmosphere. Observations and model calculations revealed that EEI results from a quasi-adiabatic attenuation of surface energy fluxes traveling through a field of decreasing air pressure with altitude. In other words, the adiabatic dissipation of thermal kinetic energy in ascending air parcels gives rise to an apparent EEI, which does not represent “heat trapping” by increasing atmospheric greenhouse gases as currently assumed. We provide numerical evidence that the observed EEI has been misinterpreted as a source of energy gain by the Earth system on multidecadal time scales. Full article
Show Figures

Figure 1

16 pages, 16941 KiB  
Article
Fine-Tuning of Sub-Annual Resolution Spectral Index Time Series from Eifel Maar Sediments, Western Germany, to the NGRIP δ18O Chronology, 26–60 ka
by Johannes Albert, Paul D. Zander, Martin Grosjean and Frank Sirocko
Quaternary 2024, 7(3), 33; https://doi.org/10.3390/quat7030033 - 1 Aug 2024
Cited by 1 | Viewed by 1831
Abstract
Recent technological advancements in spectral imaging core-scanning techniques have proved to be a promising tool to study lake sediments at extremely high resolution. We used this novel analytical approach to scan core AU3 of the Pleistocene Auel maar, Western Germany. The resulting ultra-high-resolution [...] Read more.
Recent technological advancements in spectral imaging core-scanning techniques have proved to be a promising tool to study lake sediments at extremely high resolution. We used this novel analytical approach to scan core AU3 of the Pleistocene Auel maar, Western Germany. The resulting ultra-high-resolution RABD670 spectral index, a proxy for the lake’s primary production, shows an almost complete succession of Greenland Interstadials of the NGRIP ice core chronology back to around 60,000 years. Using the ELSA-20 chronology and its anchor points to the NGRIP record as a stratigraphic basis, we were able to compare and fine-tune prominent climate signals occurring in both regions. This in-depth correlation yields strong evidence that the climates of Greenland and Central Europe were not only strongly coupled on timescales of stadials and interstadials but even on multidecadal scales, showing prominent climate cycles between 20 and 125 years. As climate changes in these regions were ultimately driven by variations in the North Atlantic meridional heat transport, their strong coupling becomes most apparent during cold and arid intervals. In contrast, longer-lasting warmer and more humid phases caused the activation of various regional feedback mechanisms (e.g., soil formation, forest growth), resulting in more complex patterns in the proxy records. Full article
Show Figures

Figure 1

19 pages, 5022 KiB  
Article
Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning
by Zhixiong Yao, Dongfeng Xu, Jun Wang, Jian Ren, Zhenlong Yu, Chenghao Yang, Mingquan Xu, Huiqun Wang and Xiaoxiao Tan
Remote Sens. 2024, 16(13), 2261; https://doi.org/10.3390/rs16132261 - 21 Jun 2024
Viewed by 1487
Abstract
The Pacific Decadal Oscillation (PDO), the dominant pattern of sea surface temperature anomalies in the North Pacific basin, is an important low-frequency climate phenomenon. Leveraging data spanning from 1871 to 2010, we employed machine learning models to predict the PDO based on variations [...] Read more.
The Pacific Decadal Oscillation (PDO), the dominant pattern of sea surface temperature anomalies in the North Pacific basin, is an important low-frequency climate phenomenon. Leveraging data spanning from 1871 to 2010, we employed machine learning models to predict the PDO based on variations in several climatic indices: the Niño3.4, North Pacific index (NPI), sea surface height (SSH), and thermocline depth over the Kuroshio–Oyashio Extension (KOE) region (SSH_KOE and Ther_KOE), as well as the Arctic Oscillation (AO) and Atlantic Multi-decadal Oscillation (AMO). A comparative analysis of the temporal and spatial performance of six machine learning models was conducted, revealing that the Gated Recurrent Unit model demonstrated superior predictive capabilities compared to its counterparts, through the temporal and spatial analysis. To better understand the inner workings of the machine learning models, SHapley Additive exPlanations (SHAP) was adopted to present the drivers behind the model’s predictions and dynamics for modeling the PDO. Our findings indicated that the Niño3.4, North Pacific index, and SSH_KOE were the three most pivotal features in predicting the PDO. Furthermore, our analysis also revealed that the Niño3.4, AMO, and Ther_KOE indices were positively associated with the PDO, whereas the NPI, SSH_KOE, and AO indices exhibited negative correlations. Full article
(This article belongs to the Special Issue Remote Sensing and Numerical Simulation for Tidal Dynamics)
Show Figures

Figure 1

21 pages, 31531 KiB  
Article
Dynamic Monitoring and Change Analysis of Lake Area on the Inner-Mongolian Plateau over the Past 22 Years
by Naichen Xing, Fuping Gan, Bokun Yan, Juan Bai, Yi Guo, Yue Zhuo and Ruoyi Li
Remote Sens. 2024, 16(12), 2210; https://doi.org/10.3390/rs16122210 - 18 Jun 2024
Viewed by 1382
Abstract
Lakes are essential components of the terrestrial water cycle. Their size and quantity reflect natural climate change and anthropogenic activities in time. Lakes on the Inner-Mongolian Plateau (IMP) have experienced significant changes in recent decades, but the current situation remains elusive. In this [...] Read more.
Lakes are essential components of the terrestrial water cycle. Their size and quantity reflect natural climate change and anthropogenic activities in time. Lakes on the Inner-Mongolian Plateau (IMP) have experienced significant changes in recent decades, but the current situation remains elusive. In this study, we conducted multi-decadal intensive monitoring of lake area and performed comprehensive variation analysis on the IMP. The study involved pre-processing, lake area extraction, post-processing, and lake area analysis procedures using multi-source satellite images. The results reveal the detailed variation in the lake from various aspects. The temporal analysis indicates that the lake area has undergone two distinct periods of decline followed by subsequent increase, and the variation pattern from January to December was diverse. The spatial analysis suggests that the lake area expanded slightly in the western and southern parts, while the area shrank in the other two. Variations in lakes of different sizes exhibited spatial heterogeneity. To some extent, effective actions have led to lake rehabilitation, but it has not yet reached or surpassed the level of 2000. This study provides a substantial data basis and technological guidance for conducting lacustrine surveys. The results can play important roles in fostering further analyses of the water cycle and the carbon cycle. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

18 pages, 4421 KiB  
Article
Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age
by Chaoling Jiang, Haoyuan Xu, Yuanhe Tong and Jinjian Li
Forests 2024, 15(6), 972; https://doi.org/10.3390/f15060972 - 31 May 2024
Cited by 1 | Viewed by 2340
Abstract
As a feature of global warming, climate change has been a severe issue in the 21st century. A more comprehensive reconstruction is necessary in the climate assessment process, considering the heterogeneity of climate change scenarios across various meteorological elements and seasons. To better [...] Read more.
As a feature of global warming, climate change has been a severe issue in the 21st century. A more comprehensive reconstruction is necessary in the climate assessment process, considering the heterogeneity of climate change scenarios across various meteorological elements and seasons. To better comprehend the change in minimum temperature in winter in the Jinsha River Basin (China), we built a standard tree-ring chronology from Picea likiangensis var. balfouri and reconstructed the regional mean minimum temperature of the winter half-years from 1606 to 2016. This reconstruction provides a comprehensive overview of the changes in winter temperature over multiple centuries. During the last 411 years, the regional climate has undergone seven warm periods and six cold periods. The reconstructed temperature sensitively captures the climate warming that emerged at the end of the 20th century. Surprisingly, during 1650–1750, the lowest winter temperature within the research area was about 0.44 °C higher than that in the 20th century, which differs significantly from the concept of the “cooler” Little Ice Age during this period. This result is validated by the temperature results reconstructed from other tree-ring data from nearby areas, confirming the credibility of the reconstruction. The Ensemble Empirical Mode Decomposition method (EEMD) was adopted to decompose the reconstructed sequence into oscillations of different frequency domains. The decomposition results indicate that the temperature variations in this region exhibit significant periodic changes with quasi-3a, quasi-7a, 15.5-16.8a, 29.4-32.9a, and quasi-82a cycles. Factors like El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and solar activity, along with Atlantic Multidecadal Oscillation (AMO), may be important driving forces. To reconstruct this climate, this study integrates the results of three machine learning algorithms and traditional linear regression methods. This novel reconstruction method can provide valuable insights for related research endeavors. Furthermore, other global climate change scenarios can be explored through additional proxy reconstructions. Full article
(This article belongs to the Special Issue Response of Tree Rings to Climate Change and Climate Extremes)
Show Figures

Figure 1

14 pages, 6061 KiB  
Article
Precipitation Variations in the Central Qilian Mountains since the 7th Century and Regional Differences: Evidence from Tree-Ring Data
by Taibang Zhang, Yong Zhang, Xuemei Shao and Xiuqi Fang
Forests 2024, 15(4), 624; https://doi.org/10.3390/f15040624 - 29 Mar 2024
Cited by 1 | Viewed by 1547
Abstract
The Qilian Mountains, located in northwest China and serving as a crucial water recharge area, have exhibited significant regional differences in precipitation patterns in recent decades. However, the limited temporal coverage of instrumental data has hindered a deep understanding of hydroclimate variations and [...] Read more.
The Qilian Mountains, located in northwest China and serving as a crucial water recharge area, have exhibited significant regional differences in precipitation patterns in recent decades. However, the limited temporal coverage of instrumental data has hindered a deep understanding of hydroclimate variations and regional differences. Further investigation into their long-term spatial and temporal precipitation characteristics is urgently needed. In this study, a new tree-ring-width chronology spanning 1743 years was established in the central Qilian Mountains using Qilian juniper (Juniperus przewalskii Kom.) samples. Significant correlations were found between the tree-ring indices and precipitation during both the growing and pre-growing seasons. Based on these correlations, annual precipitation from August of the previous year to July of the current year was reconstructed. The reconstruction model successfully explains 34.5% of the variation in precipitation during the calibration period. The analysis of the reconstructed series reveals notable interannual to multi-decadal dry–wet variability during the period from 614 AD to 2016 AD. The mid- to late-15th century emerges as the longest-lasting dry period, while the last decade stands out as the wettest. Comparative analysis with other precipitation reconstructions in the eastern and western Qilian Mountains reveals that regional drought events tend to be more pronounced and enduring. Low-frequency fluctuations on decadal to century scales show distinct wet and dry periods in the 12th–18th centuries in both the eastern and western parts of the Qilian Mountains, with weaker fluctuations in subsequent centuries. However, the central part of the Qilian Mountains exhibits opposite trends, possibly due to the complex interactions of multiple circulation systems. Full article
Show Figures

Figure 1

12 pages, 3274 KiB  
Article
Multidecadal Monsoon Variations during the Early Last Deglaciation Revealed by Speleothem Record from Southwestern China
by Yijia Liang, Zhenqiu Zhang, Jinbiao Li, Bin Zhao, Quan Wang, Yongjin Wang and Hai Cheng
Minerals 2024, 14(4), 346; https://doi.org/10.3390/min14040346 - 27 Mar 2024
Viewed by 1391
Abstract
The Asian monsoon (AM) has direct and profound effects on the livelihoods of residents in South Asia and East Asia. Modern observations have shown multi-decadal alternations of flood and drought periods in these regions, likely influenced by climatic processes such as the Atlantic [...] Read more.
The Asian monsoon (AM) has direct and profound effects on the livelihoods of residents in South Asia and East Asia. Modern observations have shown multi-decadal alternations of flood and drought periods in these regions, likely influenced by climatic processes such as the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation. However, our understanding of the multi-decadal variability of the AM under different climatic conditions remains uncertain. In this study, we collected an annually laminated and 780-mm stalagmite (sample number: BJ7) from Binjia (BJ) Cave in southwestern China, which is deeply influenced by the Asian monsoon system. Based on this sample, we established 6-year resolution and multi-proxy records for the Asian summer monsoon (ASM) variabilities during the early last termination, spanning from 18.2 to 16.1 ka BP. Measurements of five pairs of uranium and thorium solutions for 230Th dating were conducted using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP- MS), and 374 pairs of stable isotope (δ18O and δ13C) analyses were run on a Kiel Carbonate Device connected with Finnigan MAT-253 at Nanjing Normal University. The chronology for this sample was established by annual layer counting anchored with 230Th dating results. Our BJ7 δ18O record replicates well with other Chinese δ18O records on the general trend, all of which are superimposed by frequent multidecadal-scale fluctuations at approximately 60 years periodicity. Inspection of the 60-year band in BJ7 δ18O and δ13C records and results of the cross-wavelet analysis indicate coherent changes in the ASM and biomass production/karst processes during most of the studied period. In addition, the 60-year band of BJ7 and NGRIP δ18O records are consistent, implying the impacts of the high-latitude North Atlantic or Atlantic Multidecadal Oscillation on the ASM. Our study suggests that the 60-year variability should be an intrinsic feature of the climate system regardless of glacial or interglacial backgrounds. Full article
(This article belongs to the Special Issue Stalagmite Geochemistry and Its Paleoenvironmental Implication)
Show Figures

Figure 1

Back to TopTop