Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Data Description
2.2. Feature Selection
2.3. Model Algorithms
2.4. Assessment Metrics
2.5. Shapley Additive Explanation (SHAP)
2.6. Model Workflow
3. Results and Discussion
3.1. The Correlation and Multicollinearity Analysis of the Relevant Features
3.2. Model Performance Comparison
3.2.1. PDO Time Series Analysis
3.2.2. Spatio-Temporal Analysis
3.3. Sequential Forward Selection
3.4. Interpretability Analysis
3.4.1. Local Interpretability Analysis
3.4.2. Global Interpretability Analysis
- (1)
- SHAP feature importance
- (2)
- SHAP dependence plot
4. Summary
- (1)
- Among the models considered, the GRU model tends to offer more precise predictions.
- (2)
- The Niño3.4, NPI, and SSH_KOE indices are the three most important features for PDO prediction.
- (3)
- The PDO exhibits a positive correlation with the Niño3.4, AMO, and Ther_KOE indices, whereas it displays a negative correlation with the SSH_KOE, NPI, and AO indices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc. 1997, 78, 1069–1080. [Google Scholar]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lorenzo, E.; Mantua, N.J.; Miller, A.J.; Minobe, S.; Nakamura, H.; et al. The Pacific decadal oscillation, revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Leben, R.R.; Strassburg, M.W.; Nerem, R.S.; Kim, K.Y. Contribution of the Pacific Decadal Oscillation to global mean sea level trends. Geophys. Res. Lett. 2013, 40, 5171–5175. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Z.; Li, Z. Influence of Pacific Decadal Oscillation on global precipitation extremes. Environ. Res. Lett. 2021, 16, 044031. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Xu, T.; Zhao, Y.; Newman, M.; Capotondi, A.; Stevenson, S.; Amaya, D.; Anderson, B.; Ding, R.; Furtado, J.; et al. Modes and Mechanisms of Pacific Decadal-Scale Variability. Annu. Rev. Mar. Sci. 2023, 15, 249–275. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Xue, Y.; Kumar, A. Seasonal prediction of North Pacific SSTs and PDO in the NCEP CFS hindcasts. J. Clim. 2012, 25, 5689–5710. [Google Scholar] [CrossRef]
- Choi, J.; Son, S.W. Seasonal-to-decadal prediction of El Niño-southern oscillation and pacific decadal oscillation. Npi Clim. Atmos. Sci. 2022, 5, 29. [Google Scholar] [CrossRef]
- Guemas, V.; Doblas-Reyes, F.J.; Lienert, F.; Soufflet, Y.; Du, H. Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J. Geophys. Res.-Atmos. 2012, 117, 1–17. [Google Scholar] [CrossRef]
- Liu, Z.; Di Lorenzo, E. Mechanisms and predictability of Pacific decadal variability. Curr. Clim. Change Rep. 2018, 4, 128–144. [Google Scholar] [CrossRef]
- Schneider, N.; Cornuelle, B.D. The forcing of the Pacific decadal oscillation. J. Clim. 2005, 18, 4355–4373. [Google Scholar] [CrossRef]
- Park, J.H.; An, S.I.; Yeh, S.W.; Schneider, N. Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theor. Appl. Climatol. 2013, 112, 431–445. [Google Scholar] [CrossRef]
- Alexander, M.A.; Matrosova, L.; Penland, C.; Scott, J.D.; Chang, P. Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Clim. 2008, 21, 385–402. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H. A possible approach for decadal prediction of the PDO. J. Meteorol. Res. 2020, 34, 63–72. [Google Scholar] [CrossRef]
- Ahmad, H. Machine learning applications in oceanography. Aquat. Res. 2019, 2, 161–169. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, P.; Metya, A.; Naidu, C.V.; Singh, M.; Roxy, M.K. Exploring the long-term changes in the Madden Julian Oscillation using machine learning. Sci. Rep. 2020, 10, 18567. [Google Scholar] [CrossRef]
- Li, C.; Feng, Y.; Sun, T.; Zhang, X. Long Term Indian Ocean Dipole (IOD) Index Prediction Used Deep Learning by convLSTM. Remote Sens. 2022, 14, 523. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, D.; Yao, Z.; Yang, C.; Liu, S. Research on PDO index prediction based on multivariate LSTM neural network model (in Chinese with English abstract). Acta Oceanic. Sin. 2022, 6, 58–67. [Google Scholar]
- Qin, M.; Du, Z.; Hu, L.; Cao, W.; Fu, Z.; Qin, L.; Wu, S.; Zhang, F. Deep Learning for Multi-Timescales Pacific Decadal Oscillation Forecasting. Geophys. Res. Lett. 2022, 49, e2021GL096479. [Google Scholar] [CrossRef]
- Qin, M.; Hu, L.; Qin, Z.; Wan, L.; Qin, L.; Cao, W.; Wu, S.; Du, Z. Pacific decadal oscillation forecasting with spatiotemporal embedding network. Geophys. Res. Lett. 2023, 50, e2023GL103170. [Google Scholar] [CrossRef]
- Johnson, Z.F.; Chikamoto, Y.; Wang, S.Y.S.; McPhaden, M.J.; Mochizuki, T. Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Clim. Dynam. 2020, 55, 789–811. [Google Scholar] [CrossRef]
- Zhang, R.; Delworth, T.L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 2007, 34, L23708. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. NOAA extended reconstructed sea surface temperature (ERSST), version 5. NOAA Natl. Cent. Environ. Inf. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteor. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B.S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A.; Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 2016, 7, 11718. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.J. Artificial Neural Networks: Methods and Applications; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar]
- Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and regression analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Shapley, L. A Value for n-Person Games. Contributions to Theory Games. In Classics in Game Theory; Harold, W.K., Ed.; Princeton University Press: Princeton, NJ, USA, 1997; Volume II, pp. 307–318. [Google Scholar]
- Kleinbaum, D.G.; Kupper, L.L.; Muller, K.E. Applied Regression Analysis and Other Multivariate Methods; PES-KENT Publishing Company: Boston, MA, USA, 1988. [Google Scholar]
- Hashemi, M.R.; Spulding, M.L.; Shaw, A.; Farhadi, H.; Lewis, M. An efficient artificial intelligence model for prediction of tropical storm surge. Nat. Hazards 2016, 82, 471–491. [Google Scholar] [CrossRef]
- Luo, C.; Li, X.; Wen, Y.; Ye, Y.; Zhang, X. A novel LSTM model with interaction dual attention for radar echo extrapolation. Remote Sens. 2021, 13, 164. [Google Scholar] [CrossRef]
- Ramos-Valle, A.N.; Curchitser, E.N.; Bruyère, C.L.; McOwen, S. Implementation of an Artificial Neural Network for Storm Surge Forecasting. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033266. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536. [Google Scholar]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Association for Computational Linguistics: Lille, France, 2015. [Google Scholar]
- Marcano-Cedeño, A.; Quintanilla-Domínguez, J.; Cortina-Januchs, M.G.; Andina, D. Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In Proceedings of the IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010. [Google Scholar]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.; Compo, G.P.; Alexander, M.A. ENSO-forced variability of the Pacific decadal oscillation. J. Clim. 2003, 16, 3853–3857. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, N.; Yang, Q.; Ma, Z.; Kurths, J. Early warning of the Pacific Decadal Oscillation phase transition using complex network analysis. Geophys. Res. Lett. 2021, 48, e2020GL091674. [Google Scholar] [CrossRef]
Indices | Index Definition | Datasets | Spatial Resolution | Time Resolution | Duration |
---|---|---|---|---|---|
Pacific Decadal Oscillation (PDO) index | PC1 of SST anomalies in the North Pacific (NP, poleward of 20°N). | ERSST v5 | 2° × 2° | Monthly | 1871–2010 |
Niño3.4 index (Niño3.4) | Average SST anomalies in the region (4°N–4°S, 170°W–120°W). | ||||
Atlantic Multi-decadal Oscillation (AMO) index | Mean of Atlantic SST anomalies north of the equator. | ||||
Arctic Oscillation (AO) index | PC1 of SLP anomalies in the North Hemisphere (NH, poleward of 20°N). | NOAA-CIRES | 1° × 1° | Monthly | 1871–2010 |
North Pacific index (NPI) | Average SLP anomalies in the region (30°N–65°N, 160°E–140°W). | ||||
SSH_KOE | PC1 of the SSH anomaly patterns in the region (30.25°N–44.75°N, 140.25°E–169.75°E). | SODA2.2.4 | 0.5° × 0.5° | Monthly | 1871–2010 |
Thermocline_KOE (Ther_KOE) | Average thermocline depth anomalies in the region (35.25°N–39.75°N, 140.25°E–169.75°E). |
ANN | SVR | XGBoost | CNN | LSTM | GRU | |
---|---|---|---|---|---|---|
R | 0.350 | 0.351 | 0.252 | 0.325 | 0.367 | 0.391 |
RMSE | 0.511 | 0.502 | 0.664 | 0.525 | 0.508 | 0.499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Xu, D.; Wang, J.; Ren, J.; Yu, Z.; Yang, C.; Xu, M.; Wang, H.; Tan, X. Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning. Remote Sens. 2024, 16, 2261. https://doi.org/10.3390/rs16132261
Yao Z, Xu D, Wang J, Ren J, Yu Z, Yang C, Xu M, Wang H, Tan X. Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning. Remote Sensing. 2024; 16(13):2261. https://doi.org/10.3390/rs16132261
Chicago/Turabian StyleYao, Zhixiong, Dongfeng Xu, Jun Wang, Jian Ren, Zhenlong Yu, Chenghao Yang, Mingquan Xu, Huiqun Wang, and Xiaoxiao Tan. 2024. "Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning" Remote Sensing 16, no. 13: 2261. https://doi.org/10.3390/rs16132261
APA StyleYao, Z., Xu, D., Wang, J., Ren, J., Yu, Z., Yang, C., Xu, M., Wang, H., & Tan, X. (2024). Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning. Remote Sensing, 16(13), 2261. https://doi.org/10.3390/rs16132261