Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (486)

Search Parameters:
Keywords = multi-sensor combined measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6561 KiB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

20 pages, 20865 KiB  
Article
Vegetation Baseline and Urbanization Development Level: Key Determinants of Long-Term Vegetation Greening in China’s Rapidly Urbanizing Region
by Ke Zeng, Mengyao Ci, Shuyi Zhang, Ziwen Jin, Hanxin Tang, Hongkai Zhu, Rui Zhang, Yue Wang, Yiwen Zhang and Min Liu
Remote Sens. 2025, 17(14), 2449; https://doi.org/10.3390/rs17142449 - 15 Jul 2025
Viewed by 70
Abstract
Urban vegetation shows significant spatial differences due to the combined effects of natural and human factors, yet fine-scale evolutionary patterns and their cross-scale feedback mechanisms remain limited. This study focuses on the Yangtze River Delta (YRD), the top economic area in China. By [...] Read more.
Urban vegetation shows significant spatial differences due to the combined effects of natural and human factors, yet fine-scale evolutionary patterns and their cross-scale feedback mechanisms remain limited. This study focuses on the Yangtze River Delta (YRD), the top economic area in China. By integrating data from multiple Landsat sensors, we built a high—resolution framework to track vegetation dynamics from 1990 to 2020. It generates annual 30-m Enhanced Vegetation Index (EVI) data and uses a new Vegetation Green—Brown Balance Index (VBI) to measure changes between greening and browning. We combined Mann-Kendall trend analysis with machine—learning based attribution analysis to look into vegetation changes across different city types and urban—rural gradients. Over 30 years, the YRD’s annual EVI increased by 0.015/10 a, with greening areas 3.07 times larger than browning. Spatially, urban centers show strong greening, while peri—urban areas experience remarkable browning. Vegetation changes showed a city-size effect: larger cities had higher browning proportions but stronger urban cores’ greening trends. Cluster analysis finds four main evolution types, showing imbalances in grey—green infrastructure allocation. Vegetation baseline in 1990 is the main factor driving the long-term trend of vegetation greenness, while socioeconomic and climate drivers have different impacts depending on city size and position on the urban—rural continuum. In areas with low urbanization levels, climate factors matter more than human factors. These multi-scale patterns challenge traditional urban greening ideas, highlighting the need for vegetation governance that adapts to specific spatial conditions and city—unique evolution paths. Full article
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 67
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

16 pages, 18636 KiB  
Article
Design of a Modular Wall-Climbing Robot with Multi-Plane Transition and Cleaning Capabilities
by Boyu Wang, Weijian Zhang, Jianghan Luo and Qingsong Xu
Biomimetics 2025, 10(7), 450; https://doi.org/10.3390/biomimetics10070450 - 8 Jul 2025
Viewed by 282
Abstract
This paper presents the design and development of a new modular wall-climbing robot—Modular Wall Climbing-1 (MC-1)—for solving the problem of autonomous wall switching observed in wall-climbing robots. Each modular robot is capable of independently adhering to vertical surfaces and maneuvering, making it a [...] Read more.
This paper presents the design and development of a new modular wall-climbing robot—Modular Wall Climbing-1 (MC-1)—for solving the problem of autonomous wall switching observed in wall-climbing robots. Each modular robot is capable of independently adhering to vertical surfaces and maneuvering, making it a fully autonomous robotic system. Multiple modules of MC-1 are connected by an electromagnet-based magnetic attachment method, and wall transitions are achieved using a servo motor mechanism. Moreover, an ultrasonic sensor is employed to measure the unknown wall-inclination angle. Mechanical analysis is conducted for MC-1 at rest individually and in combination to determine the required suction force. Experimental investigations are performed to assess the robot’s crawling ability, loading capacity, and wall-transition performance. The results demonstrate that the MC-1 robot is capable of multi-angle wall transitions for executing multiple tasks. It provides a new approach for wall-climbing robots to collaborate during wall transitions through a quick attachment-and-disassembly device and an efficient wall detection method. Full article
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 263
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

26 pages, 7645 KiB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 383
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

19 pages, 2377 KiB  
Article
Field Evaluation of a Portable Multi-Sensor Soil Carbon Analyzer: Performance, Precision, and Limitations Under Real-World Conditions
by Lucas Kohl, Clarissa Vielhauer, Atilla Öztürk, Eva-Maria L. Minarsch, Christian Ahl, Wiebke Niether, John Clifton-Brown and Andreas Gattinger
Soil Syst. 2025, 9(3), 67; https://doi.org/10.3390/soilsystems9030067 - 27 Jun 2025
Viewed by 324
Abstract
Soil organic carbon (SOC) monitoring is central to carbon farming Monitoring, Reporting, and Verification (MRV), yet high laboratory costs and sparse sampling limit its scalability. We present the first independent field validation of the Stenon FarmLab multi-sensor probe across 100 temperate European arable-soil [...] Read more.
Soil organic carbon (SOC) monitoring is central to carbon farming Monitoring, Reporting, and Verification (MRV), yet high laboratory costs and sparse sampling limit its scalability. We present the first independent field validation of the Stenon FarmLab multi-sensor probe across 100 temperate European arable-soil samples, benchmarking its default outputs and a simple pH-corrected model against three laboratory reference methods: acid-treated TOC, temperature-differentiated TOC (SoliTOC), and total carbon dry combustion. Uncorrected FarmLab algorithms systematically overestimated SOC by +0.20% to +0.27% (SD = 0.25–0.28%), while pH adjustment reduced bias to +0.11% and tightened precision to SD = 0.23%. Volumetric moisture had no significant effect on measurement error (r = −0.14, p = 0.16). Bland–Altman and Deming regression demonstrated improved agreement after pH correction, but formal equivalence testing (accuracy, precision, concordance) showed that no in-field model fully matched laboratory standards—the pH-corrected variant passed accuracy and concordance evaluation yet failed the precision criterion (p = 0.0087). At ~EUR 3–4 per measurement versus ~EUR 44 for lab analysis, FarmLab facilitates dense spatial sampling. We recommend a hybrid monitoring strategy combining routine, pH-corrected in-field mapping with laboratory-based recalibrations alongside expanded calibration libraries, integrated bulk density measurement, and adaptive machine learning to achieve both high-resolution and certification-grade rigor. Full article
Show Figures

Figure 1

25 pages, 2711 KiB  
Article
Enhancing Multi-User Activity Recognition in an Indoor Environment with Augmented Wi-Fi Channel State Information and Transformer Architectures
by MD Irteeja Kobir, Pedro Machado, Ahmad Lotfi, Daniyal Haider and Isibor Kennedy Ihianle
Sensors 2025, 25(13), 3955; https://doi.org/10.3390/s25133955 - 25 Jun 2025
Viewed by 309
Abstract
Human Activity Recognition (HAR) is crucial for understanding human behaviour through sensor data, with applications in healthcare, smart environments, and surveillance. While traditional HAR often relies on ambient sensors, wearable devices or vision-based systems, these approaches can face limitations in dynamic settings and [...] Read more.
Human Activity Recognition (HAR) is crucial for understanding human behaviour through sensor data, with applications in healthcare, smart environments, and surveillance. While traditional HAR often relies on ambient sensors, wearable devices or vision-based systems, these approaches can face limitations in dynamic settings and raise privacy concerns. Device-free HAR systems, utilising Wi-Fi Channel State Information (CSI) to human movements, have emerged as a promising privacy-preserving alternative for next-generation health activity monitoring and smart environments, particularly for multi-user scenarios. However, current research faces challenges such as the need for substantial annotated training data, class imbalance, and poor generalisability in complex, multi-user environments where labelled data is often scarce. This paper addresses these gaps by proposing a hybrid deep learning approach which integrates signal preprocessing, targeted data augmentation, and a customised integration of CNN and Transformer models, designed to address the challenges of multi-user recognition and data scarcity. A random transformation technique to augment real CSI data, followed by hybrid feature extraction involving statistical, spectral, and entropy-based measures to derive suitable representations from temporal sensory input, is employed. Experimental results show that the proposed model outperforms several baselines in single-user and multi-user contexts. Our findings demonstrate that combining real and augmented data significantly improves model generalisation in scenarios with limited labelled data. Full article
(This article belongs to the Special Issue Sensors and Data Analysis for Biomechanics and Physical Activity)
Show Figures

Figure 1

22 pages, 4380 KiB  
Article
Utilization of Multisensor Satellite Data for Developing Spatial Distribution of Methane Emission on Rice Paddy Field in Subang, West Java
by Khalifah Insan Nur Rahmi, Parwati Sofan, Hilda Ayu Pratikasiwi, Terry Ayu Adriany, Dandy Aditya Novresiandi, Rendi Handika, Rahmat Arief, Helena Lina Susilawati, Wage Ratna Rohaeni, Destika Cahyana, Vidya Nahdhiyatul Fikriyah, Iman Muhardiono, Asmarhansyah, Shinichi Sobue, Kei Oyoshi, Goh Segami and Pegah Hashemvand Khiabani
Remote Sens. 2025, 17(13), 2154; https://doi.org/10.3390/rs17132154 - 23 Jun 2025
Viewed by 445
Abstract
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and [...] Read more.
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and regionally. However, limited studies have been conducted to measure locally specific EFs (EFlocal) through on-site assessments and modeling their spatial distribution effectively. This study aims to investigate the potential of multisensor satellite data to develop a spatial model of CH4 emission estimation on rice paddy fields under different water management practices, i.e., continuous flooding (CF) and alternate wetting and drying (AWD) in Subang, West Java, Indonesia. The model employed the national EF (EFnational) and EFlocal using the IPCC guidelines. In this study, we employed the multisensor satellite data to derive the key parameters for estimating CH4 emission, i.e., rice cultivation area, rice age, and EF. Optical high-resolution images were used to delineate the rice cultivation area, Sentinel-1 SAR imagery was used for identifying transplanting and harvesting dates for rice age estimation, and ALOS-2/PALSAR-2 was used to map the water regime for determining the scaling factor of the EF. The closed-chamber method has been used to measure the daily CH4 flux rate on the local sites. The results revealed spatial variability in CH4 emissions, ranging from 1–5 kg/crop/season to 20–30 kg/crop/season, depending on the water regime. Fields under CF exhibited higher CH4 emissions than those under AWD, underscoring the critical role of water management in mitigating CH4 emissions. This study demonstrates the feasibility of combining remote sensing data with the IPCC model to spatially estimate CH4 emissions, providing a robust framework for sustainable rice cultivation and greenhouse gas (GHG) mitigation strategies. Full article
Show Figures

Figure 1

20 pages, 3416 KiB  
Article
Deflection Prediction of Highway Bridges Using Wireless Sensor Networks and Enhanced iTransformer Model
by Cong Mu, Chen Chang, Jiuyuan Huo and Jiguang Yang
Buildings 2025, 15(13), 2176; https://doi.org/10.3390/buildings15132176 - 22 Jun 2025
Viewed by 330
Abstract
As an important part of national transportation infrastructure, the operation status of bridges is directly related to transportation safety and social stability. Structural deflection, which reflects the deformation behavior of bridge systems, serves as a key indicator for identifying stiffness degradation and the [...] Read more.
As an important part of national transportation infrastructure, the operation status of bridges is directly related to transportation safety and social stability. Structural deflection, which reflects the deformation behavior of bridge systems, serves as a key indicator for identifying stiffness degradation and the progression of localized damage. The accurate modeling and forecasting of deflection are thus essential for effective bridge health monitoring and intelligent maintenance. To address the limitations of traditional methods in handling multi-source data fusion and nonlinear temporal dependencies, this study proposes an enhanced iTransformer-based prediction model, termed LDAiT (LSTM Differential Attention iTransformer), which integrates Long Short-Term Memory (LSTM) networks and a differential attention mechanism for high-fidelity deflection prediction under complex working conditions. Firstly, a multi-source heterogeneous time series dataset is constructed based on wireless sensor network (WSN) technology, enabling the real-time acquisition and fusion of key structural response parameters such as deflection, strain, and temperature across critical bridge sections. Secondly, LDAiT enhances the modeling capability of long-term dependence through the introduction of LSTM and combines with the differential attention mechanism to improve the precision of response to the local dynamic changes in disturbance. Finally, experimental validation is carried out based on the measured data of Xintian Yellow River Bridge, and the results show that LDAiT outperforms the existing mainstream models in the indexes of R2, RMSE, MAE, and MAPE and has good accuracy, stability and generalization ability. The proposed approach offers a novel and effective framework for deflection forecasting in complex bridge systems and holds significant potential for practical deployment in structural health monitoring and intelligent decision-making applications. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

15 pages, 3844 KiB  
Article
A Low-Cost and Environmentally Friendly Electrochemical Biosensor for the Determination of Estradiol
by Cecylia Wardak, Hubert Wólczyński, Szymon Malinowski, Beata Paczosa-Bator and Magdalena Wardak
Materials 2025, 18(13), 2932; https://doi.org/10.3390/ma18132932 - 20 Jun 2025
Cited by 1 | Viewed by 467
Abstract
Estradiol is a natural estrogen belonging to the group of natural steroid hormones. This paper presents new electrochemical biosensors—simple and low-cost tools for the determination of β-estradiol. The receptor layer of the sensor is the enzyme laccase, which was immobilized on the substrate [...] Read more.
Estradiol is a natural estrogen belonging to the group of natural steroid hormones. This paper presents new electrochemical biosensors—simple and low-cost tools for the determination of β-estradiol. The receptor layer of the sensor is the enzyme laccase, which was immobilized on the substrate surface using the soft plasma polymerization technique. This technique is innovative and environmentally friendly as it allows for the effective deposition of the enzyme onto unmodified and modified electrode substrates. Three types of substrates were used: an unmodified glassy carbon electrode and two electrodes modified with composite layers—multi-walled carbon nanotubes combined with CuO nanoparticles and multi-walled carbon nanotubes combined with carbon nanofibers, respectively. Biosensors modified with such materials have not been described previously. In the course of the study, electrochemical measurement conditions (composition, concentration and pH of the base electrolyte, sensor response time, and interference effects) were optimized, and sensor parameters were determined. It was found that the modification of the substrate electrode increased the sensitivity of the sensor by more than 25 times in both cases and led to a lower detection limit for the sensor modified with the carbon nanotubes/carbon nanofiber composite. The best performance was achieved with the sensor containing the carbon nanotube/carbon nanofiber composite layer, which showed a linearity range of 0.1–5 µM, a sensitivity of 7.32 ± 0.22 µA/µM, and a limit of quantification of 0.078 µM. The analytical utility of this biosensor was confirmed by its successful application in the determination of estradiol in pharmaceutical preparations and river water samples. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

22 pages, 6243 KiB  
Review
A Review on UAS Trajectory Estimation Using Decentralized Multi-Sensor Systems Based on Robotic Total Stations
by Lucas Dammert, Tomas Thalmann, David Monetti, Hans-Berndt Neuner and Gottfried Mandlburger
Sensors 2025, 25(13), 3838; https://doi.org/10.3390/s25133838 - 20 Jun 2025
Viewed by 391
Abstract
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where [...] Read more.
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300–500 m) and speeds (>2.5 m s−1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

40 pages, 4919 KiB  
Article
NGSTGAN: N-Gram Swin Transformer and Multi-Attention U-Net Discriminator for Efficient Multi-Spectral Remote Sensing Image Super-Resolution
by Chao Zhan, Chunyang Wang, Bibo Lu, Wei Yang, Xian Zhang and Gaige Wang
Remote Sens. 2025, 17(12), 2079; https://doi.org/10.3390/rs17122079 - 17 Jun 2025
Viewed by 446
Abstract
The reconstruction of high-resolution (HR) remote sensing images (RSIs) from low-resolution (LR) counterparts is a critical task in remote sensing image super-resolution (RSISR). Recent advancements in convolutional neural networks (CNNs) and Transformers have significantly improved RSISR performance due to their capabilities in local [...] Read more.
The reconstruction of high-resolution (HR) remote sensing images (RSIs) from low-resolution (LR) counterparts is a critical task in remote sensing image super-resolution (RSISR). Recent advancements in convolutional neural networks (CNNs) and Transformers have significantly improved RSISR performance due to their capabilities in local feature extraction and global modeling. However, several limitations remain, including the underutilization of multi-scale features in RSIs, the limited receptive field of Swin Transformer’s window self-attention (WSA), and the computational complexity of existing methods. To address these issues, this paper introduces the NGSTGAN model, which employs an N-Gram Swin Transformer as the generator and a multi-attention U-Net as the discriminator. The discriminator enhances attention to multi-scale key features through the addition of channel, spatial, and pixel attention (CSPA) modules, while the generator utilizes an improved shallow feature extraction (ISFE) module to extract multi-scale and multi-directional features, enhancing the capture of complex textures and details. The N-Gram concept is introduced to expand the receptive field of Swin Transformer, and sliding window self-attention (S-WSA) is employed to facilitate interaction between neighboring windows. Additionally, channel-reducing group convolution (CRGC) is used to reduce the number of parameters and computational complexity. A cross-sensor multispectral dataset combining Landsat-8 (L8) and Sentinel-2 (S2) is constructed for the resolution enhancement of L8’s blue (B), green (G), red (R), and near-infrared (NIR) bands from 30 m to 10 m. Experiments show that NGSTGAN outperforms the state-of-the-art (SOTA) method, achieving improvements of 0.5180 dB in the peak signal-to-noise ratio (PSNR) and 0.0153 in the structural similarity index measure (SSIM) over the second best method, offering a more effective solution to the task. Full article
Show Figures

Figure 1

32 pages, 22722 KiB  
Article
Hyperspectral Soil Heavy Metal Prediction via Privileged-Informed Residual Correction
by Alen Mangafić, Krištof Oštir, Mitja Kolar and Marko Zupan
Remote Sens. 2025, 17(12), 1987; https://doi.org/10.3390/rs17121987 - 8 Jun 2025
Viewed by 923
Abstract
This study integrates hyperspectral remote sensing with chemical and pedological data to estimate Zn, Pb, and Cd concentrations in the upper soil layers. Conducted in agricultural fields east and northeast of Celje, Slovenia, an area impacted by past industrial activities such as zinc [...] Read more.
This study integrates hyperspectral remote sensing with chemical and pedological data to estimate Zn, Pb, and Cd concentrations in the upper soil layers. Conducted in agricultural fields east and northeast of Celje, Slovenia, an area impacted by past industrial activities such as zinc ore smelting, the research integrates remote sensing and soil sampling to rapidly identify and map soil pollution over large surfaces. A multi-sensor approach was employed, combining two hyperspectral cameras (VNIR and SWIR, aerial), laboratory spectrometry, soil parameters, and content of chemical covariates measured with portable XRF and ICP-OES with a direct comparison of both techniques for this specific purpose. Accurate atmospheric and signal transformations were performed to improve modeling. The importance of covariates was thoroughly evaluated using conditional permutations to assess their contribution to the prediction of metal concentrations. The proposed framework utilizes spectral data and privileged information during training, improving prediction accuracy through a multi-stage model architecture. Here, a base model trained on spectral data is corrected using privileged information. During inference, the model functions without relying on privileged data providing a scalable and cost-effective solution for large-scale environmental monitoring. Our model achieved a reduction of predicted RMSE for Zn and Cd maps in comparison to the baseline models, translating to more precise identification of possibly polluted zones. However, for Pb, no improvements were observed, potentially due to variability in the data, including spectral issues or imbalances in the training and test datasets. Full article
Show Figures

Figure 1

21 pages, 7482 KiB  
Article
Kohler-Polarization Sensor for Glint Removal in Water-Leaving Radiance Measurement
by Shuangkui Liu, Yuchen Lin, Ye Jiang, Yuan Cao, Jun Zhou, Hang Dong, Xu Liu, Zhe Wang and Xin Ye
Remote Sens. 2025, 17(12), 1977; https://doi.org/10.3390/rs17121977 - 6 Jun 2025
Viewed by 393
Abstract
High-precision hyperspectral remote sensing reflectance measurement of water bodies serves as the fundamental technical basis for accurately retrieving spatiotemporal distribution characteristics of water quality parameters, providing critical data support for dynamic monitoring of aquatic ecosystems and pollution source tracing. To address the critical [...] Read more.
High-precision hyperspectral remote sensing reflectance measurement of water bodies serves as the fundamental technical basis for accurately retrieving spatiotemporal distribution characteristics of water quality parameters, providing critical data support for dynamic monitoring of aquatic ecosystems and pollution source tracing. To address the critical issue of water surface glint interference significantly affecting measurement accuracy in aquatic remote sensing, this study innovatively developed a novel sensor system based on multi-field-of-view Kohler-polarization technology. The system incorporates three Kohler illumination lenses with exceptional surface uniformity exceeding 98.2%, effectively eliminating measurement errors caused by water surface brightness inhomogeneity. By integrating three core technologies—multi-field polarization measurement, skylight blocking, and high-precision radiometric calibration—into a single spectral measurement unit, the system achieves radiation measurement accuracy better than 3%, overcoming the limitations of traditional single-method glint suppression approaches. A glint removal efficiency (GRE) calculation model was established based on a skylight-blocked approach (SBA) and dual-band power function fitting to systematically evaluate glint suppression performance. Experimental results show that the system achieves GRE values of 93.1%, 84.9%, and 78.1% at ±3°, ±7°, and ±12° field-of-view angles, respectively, demonstrating that the ±3° configuration provides a 9.2% performance improvement over the ±7° configuration. Comparative analysis with dual-band power-law fitting reveals a GRE difference of 2.1% (93.1% vs. 95.2%) at ±3° field-of-view, while maintaining excellent consistency (ΔGRE < 3.2%) and goodness-of-fit (R2 > 0.96) across all configurations. Shipborne experiments verified the system’s advantages in glint suppression (9.2%~15% improvement) and data reliability. This research provides crucial technical support for developing an integrated water remote sensing reflectance monitoring system combining in situ measurements, UAV platforms, and satellite observations, significantly enhancing the accuracy and reliability of ocean color remote sensing data. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Figure 1

Back to TopTop