Vegetation Baseline and Urbanization Development Level: Key Determinants of Long-Term Vegetation Greening in China’s Rapidly Urbanizing Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Data Sources
2.2.2. Generation of EVI Datasets
2.2.3. The Division of City Categories and Urban-Rural Gradients
2.2.4. Trend Analysis of Vegetation Spatiotemporal Dynamics at the Pixel Scale
2.2.5. The Construction of Vegetation Green-Brown Balance Index
2.2.6. Socio-Ecological Drivers of Vegetation Dynamics
3. Results
3.1. Spatiotemporal Dynamics and Overall Characteristics of Vegetation in the YRD
3.2. Multi-Scale Analysis of Greening-Browning Patterns and Urban Vegetation Evolution Modes
3.3. Driving Factors of Vegetation Dynamics in the YRD
4. Discussion
4.1. Trends in Vegetation Dynamics Along Urban Size and Urban-Rural Gradients
4.2. Impacts of Socio-Ecological Factors on Vegetation Dynamics and Policy Recommendations
4.3. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Small, C.; Sousa, D.; Yetman, G.; Elvidge, C.; MacManus, K. Decades of urban growth and development on the Asian megadeltas. Glob. Planet. Change 2018, 165, 62–89. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Ren, Z.; Wang, G.; Guo, Y.; Wang, C.; Ma, Z. Rapid urbanization and meteorological changes are reshaping the urban vegetation pattern in urban core area: A national 315-city study in China. Sci. Total Environ. 2023, 904, 167269. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, M.; Yusoff, M.M.; Shafie, A. Assessing the role of urban green spaces for human well-being: A systematic review. GeoJournal 2022, 87, 4405–4423. [Google Scholar] [CrossRef] [PubMed]
- Calfapietra, C.; Peñuelas, J.; Niinemets, Ü. Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 2015, 20, 72–75. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Guo, M.; Qin, J.; Yao, L.; Zhou, C. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 2022, 8, eabo0095. [Google Scholar] [CrossRef]
- Guan, X.; Shen, H.; Li, X.; Gan, W.; Zhang, L. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Sci. Total Environ. 2019, 669, 342–352. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Zhou, D.; Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Liu, S. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Change Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef]
- Capotorti, G.; Alós Ortí, M.M.; Copiz, R.; Fusaro, L.; Mollo, B.; Salvatori, E.; Zavattero, L. Biodiversity and ecosystem services in urban green infrastructure planning: A case study from the metropolitan area of Rome (Italy). Urban For. Urban Green. 2019, 37, 87–96. [Google Scholar] [CrossRef]
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Weng, Q.; Zheng, Q.; Li, L.; Dai, S.; Guo, B. Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Sci. Total Environ. 2019, 666, 274–284. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, Z. Long-term trends of vegetation greenness under different urban development intensities in 889 global cities. Sustain. Cities Soc. 2024, 106, 105406. [Google Scholar] [CrossRef]
- Yao, R.; Cao, J.; Wang, L.; Zhang, W.; Wu, X. Urbanization effects on vegetation cover in major African cities during 2001–2017. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 44–53. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, K.; Huntingford, C.; Wei, S.; Li, X.; Myneni, R.B.; Piao, S. Vegetation greenness in 2024. Nat. Rev. Earth Environ. 2025, 6, 255–257. [Google Scholar] [CrossRef]
- Yan, Y.; Piao, S.; Hammond, W.M.; Chen, A.; Hong, S.; Xu, H.; Munson, S.M.; Myneni, R.B.; Allen, C.D. Climate-induced tree-mortality pulses are obscured by broad-scale and long-term greening. Nat. Ecol. Evol. 2024, 8, 912–923. [Google Scholar] [CrossRef]
- Miao, L.; He, Y.; Kattel, G.R.; Shang, Y.; Wang, Q.; Zhang, X. Double Effect of Urbanization on Vegetation Growth in China’s 35 Cities during 2000–2020. Remote Sens. 2022, 14, 3312. [Google Scholar] [CrossRef]
- Gregg, J.W.; Jones, C.G.; Dawson, T.E. Urbanization effects on tree growth in the vicinity of New York City. Nature 2003, 424, 183–187. [Google Scholar] [CrossRef]
- Hu, T.; Dong, J.; Hu, Y.; Qiu, S.; Yang, Z.; Zhao, Y.; Cheng, X.; Peng, J. Stage response of vegetation dynamics to urbanization in megacities: A case study of Changsha City, China. Sci Total Environ. 2023, 858, 159659. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, W.; Zhu, H.; You, Y.; Zhao, C.; Gu, X.; Liu, M. Vegetation growth enhancement modulated by urban development status. Sci. Total Environ. 2023, 883, 163626. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, H.; Zhang, S.; Jin, Z.; Zhang, Y.; Wang, Y.; Shi, Y.; Jiang, J.; Chen, X.; Liu, M. Long-term trends in surface thermal environment and its potential drivers along the urban development gradients in rapidly urbanizing regions of China. Sustain. Cities Soc. 2024, 105, 105324. [Google Scholar] [CrossRef]
- She, Q.; Cao, S.; Zhang, S.; Zhang, J.; Zhu, H.; Bao, J.; Meng, X.; Liu, M.; Liu, Y. The impacts of comprehensive urbanization on PM2.5 concentrations in the Yangtze River Delta, China. Ecol. Indic. 2021, 132, 108337. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res Lett 2020, 15, 094044. [Google Scholar] [CrossRef]
- Zeng, K.; Ci, M.; Zhu, H.; Zhang, S.; Wang, Y.; Zhang, Y.; Liu, M. A dataset of annual maximum vegetation indices at a 30-meter resolution for the Yangtze River Delta region from 1984 to 2023. China Sci. Data 2025, 10, 563–576. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4407714. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Liu, L.; Cao, X.; Li, S.; Jie, N. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci. Data 2024, 11, 124. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Yi, Y.; Hu, X.; Shi, M.C.; Kang, H.Z.; Wang, B.; Zhang, C.; Liu, C.J. Vegetation dynamics and its relationship with climate factors in the middle reaches of the Yangtze River Based on MODIS NDVI. Acta Ecol. Sin. 2021, 41, 7796–7807. [Google Scholar] [CrossRef]
- Burn, D.H.; Hag Elnur, M.A. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.; Ju, W.; Peñuelas, J.; Zhu, Z.; Peng, S.; Zhu, X.; Liu, Z.; Zhou, Y.; Li, J.; et al. Competition between biogeochemical drivers and land-cover changes determines urban greening or browning. Remote Sens. Environ. 2023, 287, 113481. [Google Scholar] [CrossRef]
- Zhu, H.; Zeng, K.; Zhang, Y.; Zhang, S.; Wang, Y.; Zhao, C.; Zhang, J.; Liu, M. Evolution of vegetation dynamics and its responses to environmental factors and land cover change in Shanghai, China. Acta Ecol. Sin. 2025, 45, 898–910. [Google Scholar]
- Yi, D.; Guo, J.; Pueppke, S.G.; Han, Y.; Ding, G.; Ou, M.; Koomen, E. What dominates the variation of ecosystem services across different urban expansion patterns?—Evidence from the Yangtze River Delta region, China. Environ. Impact Assess. Rev. 2025, 110, 107674. [Google Scholar] [CrossRef]
- Marquardt, D.W. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, W.; Randall, M.; Jensen, M.B.; Brandt, M.; Wang, Q.; Fensholt, R. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Glob. Environ. Change 2021, 71, 102385. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, H.; Gou, P.; Xu, N. Conflict or Coordination? measuring the relationships between urbanization and vegetation cover in China. Ecol. Indic. 2023, 147, 109993. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, W.; Dawa, Z.; Wang, J.; Qian, Y.; Wang, W. Quantifying Urban Vegetation Dynamics from a Process Perspective Using Temporally Dense Landsat Imagery. Remote Sens. 2021, 13, 3217. [Google Scholar] [CrossRef]
- Feng, F.; Yang, X.; Jia, B.; Li, X.; Li, X.; Xu, C.; Wang, K. Variability of urban fractional vegetation cover and its driving factors in 328 cities in China. Sci. China Earth Sci. 2024, 54, 486–502. [Google Scholar] [CrossRef]
- Yang, K.; Sun, W.; Luo, Y.; Zhao, L. Impact of urban expansion on vegetation: The case of China (2000–2018). J. Environ. Manag. 2021, 291, 112598. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Zhan, W.; Zhou, B.; Ju, Y.; Liu, Z.; Middel, A.; Huang, K.; Zhao, L.; Chakraborty, T.C.; Wang, Z.; et al. Exacerbated heat stress induced by urban browning in the Global South. Nat. Cities 2025, 2, 157–169. [Google Scholar] [CrossRef]
- Wu, J.; Li, W.; Du, H.; Wan, Y.; Yang, S.; Xiao, Y. Nonlinear responses of coupled socioecological systems to land use and climate changes in the Yangtze river basin. Sci. Rep. 2025, 15, 6940. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, Q.; Yu, J.; Chen, L.; Peng, Y. Multiscale assessment of the spatiotemporal coupling relationship between urbanization and ecosystem service value along an urban–rural gradient:A case study of the Yangtze River Delta urban agglomeration, China. Ecol. Indic. 2024, 160, 111864. [Google Scholar] [CrossRef]
- Wei, W.; Wang, N.; Yin, L.; Guo, S.; Bo, L. Spatio-temporal evolution characteristics and driving mechanisms of Urban–Agricultural–Ecological space in ecologically fragile areas: A case study of the upper reaches of the Yangtze River Economic Belt, China. Land Use Policy 2024, 145, 107282. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Xia, F.; Bai, Y. Exploring VIIRS Night Light Long-Term Time Series with CNN/SI for Urban Change Detection and Aerosol Monitoring. Remote Sens. 2022, 14, 3126. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. Forest 2001, 23, 18–22. [Google Scholar]
- Huang, Y.; Wu, J. Spatial and temporal driving mechanisms of ecosystem service trade-off/synergy in national key urban agglomerations: A case study of the Yangtze River Delta urban agglomeration in China. Ecol. Indic. 2023, 154, 110800. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, Y.; Li, D.; Wang, S.; Liu, W. Spatiotemporal variation and evolutionary analysis of the coupling coordination between urban social-economic development and ecological environments in the Yangtze River Delta cities. Sustain. Cities Soc. 2024, 111, 105561. [Google Scholar] [CrossRef]
- Todeschini, C.C.; Fett-Neto, A.G. Life at the Top: Extensive Green Roof Plant Species and Their Traits for Urban Use. Plants 2025, 14, 735. [Google Scholar] [CrossRef]
- Leppänen, P.-K.; Kinnunen, A.; Hautamäki, R.; Järvi, L.; Havu, M.; Junnila, S.; Tahvonen, O. Impact of changing urban typologies on residential vegetation and its climate-effects—A case study from Helsinki, Finland. Urban For. Urban Green. 2024, 96, 128343. [Google Scholar] [CrossRef]
- Ruzieva, M.; Ruziev, U. Assessing environmental problems: Primary indicators and their role in ecosystem management. E3S Web Conf. 2024, 587, 02012. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Alshahrani, A. Humanizing sustainable development through green spaces: A case study of Saudi cities. Front. Sustain. Cities 2024, 6, 1416983. [Google Scholar] [CrossRef]
- Wong, C. A framework for ‘City Prosperity Index’: Linking indicators, analysis and policy. Habitat Int. 2015, 45, 3–9. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Vlaeminck, J.; Canters, F. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels. Sensors 2008, 8, 3880–3902. [Google Scholar] [CrossRef]
- Cao, H.; Li, P.; Chen, J.; Chen, C.; Song, W. Spatiotemporal evolution of the rural-urban interface and its effects on ecological landscape structure and function: A case study of Nanjing, China. Ecol. Indic. 2024, 166, 112267. [Google Scholar] [CrossRef]
Data Type | Data Name | Spatial Resolution | Year | Unit | Reference |
---|---|---|---|---|---|
Vegetation index data | Annual maximum EVI | 30 m | 1990–2020 | — | (Zeng et al., 2024) [26] |
Land cover data | China Land Cover Dataset (CLCD) | 30 m | 1990, 2020 | — | (Yang & Huang, 2021) [24] |
Urban boundary | Global Urban Boundary (GUB) | — | 1990, 2000, 2010, 2020 | — | (Li et al., 2020) [25] |
Urban population | Urbanization rate (UR) | — | 2021 | % | China Statistical Yearbook (2021) |
Natural ecological drivers | Initial EVI (EVI1990) | 30 m | 1990 | — | (Zeng et al., 2024) [26] |
Digital Elevation Model (DEM) | 30 m | 2015 | m | National Earth System Science Data Center, National science & Technology Infrastructure of China (http://www.geodata.cn, accessed on 1 August 2024) | |
Precipitation (PRE) | 1 km | 1990–2020 | 0.1 mm | (Peng et al., 2019) [27] | |
Temperature (TEM) | 1 km | 1990–2020 | 0.1 °C | (Peng et al., 2019) [27] | |
Socioeconomic drivers | Night-time light (NTL) | 1 km | 1992–2020 | — | (Wu et al., 2022) [28] |
Real Gross Domestic Product (GDP) | 1 km | 1992–2019 | millions of 2017 US dollars | (Chen et al., 2022) [29] | |
Population density (POP) | 1 km | 1990–2020 | People/km2 | (Liu et al., 2024) [30] |
Modes | UC | RA | City Names |
---|---|---|---|
Dual Greening (26/41) | VBI > 0 | VBI > 0 | Anqing, Bengbu, Chizhou, Chuzhou, Hangzhou, Huaian, Huainan, Huangshan, Huzhou, Jinhua, Lianyungang, Maanshan, Nanjing, Ningbo, Quzhou, Shanghai, Shaoxing, Suqian, Taizhou, Tongling, Wuhu, Wuxi, Xuancheng, Yancheng, Yangzhou, Zhoushan |
Core Greening (5/41) | VBI > 0 | VBI < 0 | Changzhou, Jiaxing, Nantong, Suzhou, Zhenjiang. |
Rural greening (8/41) | VBI < 0 | VBI > 0 | Bozhou, Hefei, Huaibei, Lishui, Luan, Suuzhou, Wenzhou, Xuzhou |
Total Browning (2/41) | VBI < 0 | VBI < 0 | Fuyang, Taiizhou |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, K.; Ci, M.; Zhang, S.; Jin, Z.; Tang, H.; Zhu, H.; Zhang, R.; Wang, Y.; Zhang, Y.; Liu, M. Vegetation Baseline and Urbanization Development Level: Key Determinants of Long-Term Vegetation Greening in China’s Rapidly Urbanizing Region. Remote Sens. 2025, 17, 2449. https://doi.org/10.3390/rs17142449
Zeng K, Ci M, Zhang S, Jin Z, Tang H, Zhu H, Zhang R, Wang Y, Zhang Y, Liu M. Vegetation Baseline and Urbanization Development Level: Key Determinants of Long-Term Vegetation Greening in China’s Rapidly Urbanizing Region. Remote Sensing. 2025; 17(14):2449. https://doi.org/10.3390/rs17142449
Chicago/Turabian StyleZeng, Ke, Mengyao Ci, Shuyi Zhang, Ziwen Jin, Hanxin Tang, Hongkai Zhu, Rui Zhang, Yue Wang, Yiwen Zhang, and Min Liu. 2025. "Vegetation Baseline and Urbanization Development Level: Key Determinants of Long-Term Vegetation Greening in China’s Rapidly Urbanizing Region" Remote Sensing 17, no. 14: 2449. https://doi.org/10.3390/rs17142449
APA StyleZeng, K., Ci, M., Zhang, S., Jin, Z., Tang, H., Zhu, H., Zhang, R., Wang, Y., Zhang, Y., & Liu, M. (2025). Vegetation Baseline and Urbanization Development Level: Key Determinants of Long-Term Vegetation Greening in China’s Rapidly Urbanizing Region. Remote Sensing, 17(14), 2449. https://doi.org/10.3390/rs17142449