Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,150)

Search Parameters:
Keywords = multi-parameter sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8611 KB  
Article
Interpretable Deep Learning for Forecasting Camellia oleifera Yield in Complex Landscapes by Integrating Improved Spectral Bloom Index and Environmental Parameters
by Tong Shi, Shi Cao, Xia Lu, Lina Ping, Xiang Fan, Meiling Liu and Xiangnan Liu
Remote Sens. 2026, 18(3), 387; https://doi.org/10.3390/rs18030387 - 23 Jan 2026
Abstract
Camellia oleifera, a woody oil crop unique to China, plays a crucial role in alleviating the global pressure of edible oil supply and maintaining ecological security. However, it remains challenging to accurately forecast Camellia oleifera yield in complex landscapes using only remote [...] Read more.
Camellia oleifera, a woody oil crop unique to China, plays a crucial role in alleviating the global pressure of edible oil supply and maintaining ecological security. However, it remains challenging to accurately forecast Camellia oleifera yield in complex landscapes using only remote sensing data. The aim of this study is to develop an interpretable deep learning model, namely Shapley Additive Explanations–guided Attention–long short-term memory (SALSTM), for estimating Camellia oleifera yield by integrating an improved spectral bloom index and environmental parameters. The study area is located in Hengyang City in Hunan Province. Sentinel-2 imagery, meteorological observation from 2019 to 2023, and topographic data were collected. First, an improved spectral bloom index (ISBI) was constructed as a proxy for flowering density, while average temperature, precipitation, accumulated temperature, and wind speed were selected to represent environmental regulation variables. Second, a SALSTM model was designed to capture temporal dynamics from multi-source inputs, in which the LSTM module extracts time-dependent information and an attention mechanism assigns time-step-wise weights. Feature-level importance derived from SHAP analysis was incorporated as a guiding prior to inform attention distribution across variable dimensions, thereby enhancing model transparency. Third, model performance was evaluated using root mean square error (RMSE) and coefficient of determination (R2). The result show that the constructed SALSTM model achieved strong predictive performance in predicting Camellia oleifera yield in Hengyang City (RMSE = 0.5738 t/ha, R2 = 0.7943). Feature importance analysis results reveal that ISBI weight > 0.26, followed by average temperature and precipitation from flowering to fruit stages, these features are closely associated with C. oleifera yield. Spatially, high-yield zones were mainly concentrated in the central–southern hilly regions throughout 2019–2023, In contrast, low-yield zones were predominantly distributed in the northern and western mountainous areas. Temporally, yield hotspots exhibited a gradual increasing while low-yield zones showed mild fluctuations. This framework provides an effective and transferable approach for remote sensing-based yield estimation of flowering and fruit-bearing crops in complex landscapes. Full article
Show Figures

Figure 1

20 pages, 17058 KB  
Article
PriorSAM-DBNet: A SAM-Prior-Enhanced Dual-Branch Network for Efficient Semantic Segmentation of High-Resolution Remote Sensing Images
by Qiwei Zhang, Yisong Wang, Ning Li, Quanwen Jiang and Yong He
Sensors 2026, 26(2), 749; https://doi.org/10.3390/s26020749 (registering DOI) - 22 Jan 2026
Abstract
Semantic segmentation of high-resolution remote sensing imagery is a critical technology for the intelligent interpretation of sensor data, supporting automated environmental monitoring and urban sensing systems. However, processing data from dense urban scenarios remains challenging due to sensor signal occlusions (e.g., shadows) and [...] Read more.
Semantic segmentation of high-resolution remote sensing imagery is a critical technology for the intelligent interpretation of sensor data, supporting automated environmental monitoring and urban sensing systems. However, processing data from dense urban scenarios remains challenging due to sensor signal occlusions (e.g., shadows) and the complexity of parsing multi-scale targets from optical sensors. Existing approaches often exhibit a trade-off between the accuracy of global semantic modeling and the precision of complex boundary recognition. While the Segment Anything Model (SAM) offers powerful zero-shot structural priors, its direct application to remote sensing is hindered by domain gaps and the lack of inherent semantic categorization. To address these limitations, we propose a dual-branch cooperative network, PriorSAM-DBNet. The main branch employs a Densely Connected Swin (DC-Swin) Transformer to capture cross-scale global features via a hierarchical shifted window attention mechanism. The auxiliary branch leverages SAM’s zero-shot capability to exploit structural universality, generating object-boundary masks as robust signal priors while bypassing semantic domain shifts. Crucially, we introduce a parameter-efficient Scaled Subsampling Projection (SSP) module that employs a weight-sharing mechanism to align cross-modal features, freezing the massive SAM backbone to ensure computational viability for practical sensor applications. Furthermore, a novel Attentive Cross-Modal Fusion (ACMF) module is designed to dynamically resolve semantic ambiguities by calibrating the global context with local structural priors. Extensive experiments on the ISPRS Vaihingen, Potsdam, and LoveDA-Urban datasets demonstrate that PriorSAM-DBNet outperforms state-of-the-art approaches. By fine-tuning only 0.91 million parameters in the auxiliary branch, our method achieves mIoU scores of 82.50%, 85.59%, and 53.36%, respectively. The proposed framework offers a scalable, high-precision solution for remote sensing semantic segmentation, particularly effective for disaster emergency response where rapid feature recognition from sensor streams is paramount. Full article
19 pages, 1516 KB  
Article
Energy-Dynamics Sensing for Health-Responsive Virtual Synchronous Generator in Battery Energy Storage Systems
by Yingying Chen, Xinghu Liu and Yongfeng Fu
Batteries 2026, 12(1), 36; https://doi.org/10.3390/batteries12010036 - 21 Jan 2026
Abstract
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume [...] Read more.
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume fixed parameters and neglect the intrinsic coupling between battery aging, DC-link energy variations, and converter dynamic performance, resulting in reduced damping, degraded transient regulation, and accelerated lifetime degradation. This paper proposes a health-responsive VSG control strategy enabled by real-time energy-dynamics sensing. By reconstructing the DC-link energy state from voltage and current measurements, an intrinsic indicator of battery health and instantaneous power capability is established. This energy-dynamics indicator is then embedded into the VSG inertia and damping loops, allowing the control parameters to adapt to battery health evolution and operating conditions. The proposed method achieves coordinated enhancement of transient stability, weak-grid robustness, and lifetime management. Simulation studies on a multi-unit BESS demonstrate that the proposed strategy effectively suppresses low-frequency oscillations, accelerates transient convergence, and maintains stability across different aging stages. Full article
Show Figures

Figure 1

14 pages, 1097 KB  
Article
Low-Power Embedded Sensor Node for Real-Time Environmental Monitoring with On-Board Machine-Learning Inference
by Manuel J. C. S. Reis
Sensors 2026, 26(2), 703; https://doi.org/10.3390/s26020703 - 21 Jan 2026
Abstract
This paper presents the design and optimisation of a low-power embedded sensor-node architecture for real-time environmental monitoring with on-board machine-learning inference. The proposed system integrates heterogeneous sensing elements for air quality and ambient parameters (temperature, humidity, gas concentration, and particulate matter) into a [...] Read more.
This paper presents the design and optimisation of a low-power embedded sensor-node architecture for real-time environmental monitoring with on-board machine-learning inference. The proposed system integrates heterogeneous sensing elements for air quality and ambient parameters (temperature, humidity, gas concentration, and particulate matter) into a modular embedded platform based on a low-power microcontroller coupled with an energy-efficient neural inference accelerator. The design emphasises end-to-end energy optimisation through adaptive duty-cycling, hierarchical power domains, and edge-level data reduction. The embedded machine-learning layer performs lightweight event/anomaly detection via on-device multi-class classification (normal/anomalous/critical) using quantised neural models in fixed-point arithmetic. A comprehensive system-level analysis, performed via MATLAB Simulink simulations, evaluates inference accuracy, latency, and energy consumption under realistic environmental conditions. Results indicate that the proposed node achieves 94% inference accuracy, 0.87 ms latency, and an average power consumption of approximately 2.9 mWh, enabling energy-autonomous operation with hybrid solar–battery harvesting. The adaptive LoRaWAN communication strategy further reduces data transmissions by ≈88% relative to periodic reporting. The results indicate that on-device inference can reduce network traffic while maintaining reliable event detection under the evaluated operating conditions. The proposed architecture is intended to support energy-efficient environmental sensing deployments in smart-city and climate-monitoring contexts. Full article
(This article belongs to the Special Issue Applications of Sensors Based on Embedded Systems)
Show Figures

Figure 1

24 pages, 5196 KB  
Article
An Optical–SAR Remote Sensing Image Automatic Registration Model Based on Multi-Constraint Optimization
by Yaqi Zhang, Shengbo Chen, Xitong Xu, Jiaqi Yang, Yuqiao Suo, Jinchen Zhu, Menghan Wu, Aonan Zhang and Qiqi Li
Remote Sens. 2026, 18(2), 333; https://doi.org/10.3390/rs18020333 - 19 Jan 2026
Viewed by 34
Abstract
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric [...] Read more.
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric inconsistencies, which severely limit the robustness of traditional feature or region-based registration methods in cross-modal scenarios. To address these challenges, this paper proposes an end-to-end Optical–SAR Registration Network (OSR-Net) based on multi-constraint joint optimization. The proposed framework explicitly decouples cross-modal feature alignment and geometric correction, enabling robust registration under large appearance variation. Specifically, a multi-modal feature extraction module constructs a shared high-level representation, while a multi-scale channel attention mechanism adaptively enhances cross-modal feature consistency. A multi-scale affine transformation prediction module provides a coarse-to-fine geometric initialization, which stabilizes parameter estimation under complex imaging conditions. Furthermore, an improved spatial transformer network is introduced to perform structure-preserving geometric refinement, mitigating spatial distortion induced by modality discrepancies. In addition, a multi-constraint loss formulation is designed to jointly enforce geometric accuracy, structural consistency, and physical plausibility. By employing a dynamic weighting strategy, the optimization process progressively shifts from global alignment to local structural refinement, effectively preventing degenerate solutions and improving robustness. Extensive experiments on public optical–SAR datasets demonstrate that the proposed method achieves accurate and stable registration across diverse scenes, providing a reliable geometric foundation for subsequent multi-source remote sensing data fusion. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

35 pages, 14165 KB  
Article
Spatiotemporal Patterns of Aboveground Carbon Storage in Hainan Mangroves Based on Machine Learning and Multi-Source Remote Sensing Data
by Zhikuan Liu, Zhaode Yin, Wenlu Zhao, Zhongke Feng, Huiqing Pei, Pietro Grimaldi and Zixuan Qiu
Forests 2026, 17(1), 131; https://doi.org/10.3390/f17010131 - 19 Jan 2026
Viewed by 47
Abstract
As an essential blue carbon ecosystem, mangroves play a vital role in coastal protection, biodiversity conservation, and climate regulation. However, their complex and variable growth environments pose challenges for precise monitoring. Hainan Island represents a region within China where mangrove forests are the [...] Read more.
As an essential blue carbon ecosystem, mangroves play a vital role in coastal protection, biodiversity conservation, and climate regulation. However, their complex and variable growth environments pose challenges for precise monitoring. Hainan Island represents a region within China where mangrove forests are the most concentrated and diverse in type. In recent years, ecological restoration efforts have led to the recovery of their coverage areas. This study analyzed the spatial distribution, canopy height, and aboveground carbon storage variations in Hainan mangrove forests. Deep-learning and multiple machine-learning algorithms were used to integrate multitemporal Sentinel-2 remote sensing imagery from 2019 to 2023 with unmanned aerial vehicle observations and field survey data. Multi-rule image fusion and deep-learning techniques effectively enhanced mangrove identification accuracy. The mangrove classification achieved an overall accuracy exceeding 90%. The mangrove area in Hainan increased from 3948.83 ha in 2019 to 4304.29 ha in 2023. Gradient-boosted decision tree (GBDT) models estimated average canopy height with a high coefficient of determination (R2 = 0.89), and Random Forest (RF) models yielded the best estimations of total above-ground carbon stock with strong agreement to field observations. Integrating multisource remote sensing data with artificial intelligence algorithms enabled high-precision dynamic monitoring of mangrove distribution, structure, and carbon storage to provide scientific support for the assessment, management, and carbon sink accounting of Hainan mangrove ecosystems. Full article
Show Figures

Figure 1

20 pages, 5180 KB  
Article
Multi-Source Data Fusion and Heuristic-Optimized Machine Learning for Large-Scale River Water Quality Parameters Monitoring
by Kehang Fang, Feng Wu, Xing Gao and Zhihui Li
Remote Sens. 2026, 18(2), 320; https://doi.org/10.3390/rs18020320 - 18 Jan 2026
Viewed by 151
Abstract
Accurate and efficient surface water quality monitoring is essential for ecological protection and sustainable development. However, conventional monitoring methods, such as fixed-site observations, often suffer from spatial limitations and overlook crucial auxiliary variables. This study proposes an innovative modeling framework for large-scale river [...] Read more.
Accurate and efficient surface water quality monitoring is essential for ecological protection and sustainable development. However, conventional monitoring methods, such as fixed-site observations, often suffer from spatial limitations and overlook crucial auxiliary variables. This study proposes an innovative modeling framework for large-scale river water quality inversion that integrates multi-source data—including Sentinel-2 imagery, meteorological conditions, land use classification, and landscape pattern indices. To improve predictive accuracy, three tree-based machine learning models (Random Forest, XGBoost, and LightGBM) were constructed and further optimized using the Whale Optimization Algorithm (WOA), a nature-inspired metaheuristic technique. Additionally, model interpretability was enhanced using SHAP (Shapley Additive Explanations), enabling a transparent understanding of each variable’s contribution. The framework was applied to the Red River Basin (RRB) to predict six key water quality parameters: dissolved oxygen (DO), ammonia nitrogen (NH3-N), total phosphorus (TP), total nitrogen (TN), pH, and permanganate index (CODMn). Results demonstrate that integrating landscape and meteorological variables significantly improves model performance compared to remote sensing alone. The best-performing models achieved R2 values exceeding 0.45 for all parameters (DO: 0.70, NH3-N: 0.46, TP: 0.59, TN: 0.71, pH: 0.83, CODMn: 0.57). Among them, WOA-optimized LightGBM consistently delivered superior performance. The study also confirms the feasibility of applying the models across the entire basin, offering a transferable and interpretable approach to spatiotemporal water quality prediction in other large-scale or data-scarce regions. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

27 pages, 5970 KB  
Article
SIGMaL: An Integrated Framework for Water Quality Monitoring in a Coastal Shallow Lake
by Anja Batina, Ante Šiljeg, Andrija Krtalić and Ljiljana Šerić
Remote Sens. 2026, 18(2), 312; https://doi.org/10.3390/rs18020312 - 16 Jan 2026
Viewed by 82
Abstract
Coastal lakes require monitoring approaches that capture spatial and temporal variability beyond the limits of conventional in situ measurements. In this study, a SIGMaL framework (Satellite–In situ–GIS-multicriteria decision analysis (MCDA)–Machine Learning (ML)) was developed, a unified methodology that integrates in situ monitoring, GIS [...] Read more.
Coastal lakes require monitoring approaches that capture spatial and temporal variability beyond the limits of conventional in situ measurements. In this study, a SIGMaL framework (Satellite–In situ–GIS-multicriteria decision analysis (MCDA)–Machine Learning (ML)) was developed, a unified methodology that integrates in situ monitoring, GIS MCDA-derived water quality index (WQI), satellite imagery, and ML models for comprehensive coastal lake water quality assessment. A WQI, derived from a 12-month series of in situ measurements and environmental parameters, was used alongside four physicochemical parameters measured by a multiparameter probe. First, satellite reflectance from each sensor was used to train a set of nine regression models for modelling electrical conductivity (EC), turbidity, water temperature (WT), and dissolved oxygen (DO). Second, convolutional neural networks (CNNs) with spectral and temporal inputs were trained to classify WQI classes, enabling a cross-sensor evaluation of their suitability for lake water quality monitoring. Third, the trained CNNs were applied to generate WQI maps for a subsequent 12-month period without in situ data. Across all analyses, WQI-based models provided more stable and accurate models than those trained on raw parameters. Sentinel-2 achieved the most consistent WQI performance (AUC ≈ 1.00, R2 ≈ 0.84), PlanetScope captured fine-scale spatial detail (R2 ≈ 0.77), while Landsat 8–9 was most effective for WT but less reliable for multi-class WQI discrimination. Sentinel-2 is recommended as the primary satellite sensor for WQI mapping within the SIGMaL framework. These findings demonstrate the advantages of WQI-based modelling and highlight the potential of ML–remote sensing integration to support coastal lake water quality monitoring. Full article
(This article belongs to the Special Issue Remote Sensing in Water Quality Monitoring)
Show Figures

Figure 1

30 pages, 11402 KB  
Article
Striping Noise Reduction: A Detector-Selection Approach in Multi-Column Scanning Radiometers
by Xiaowei Jia, Xiuju Li, Tao Wen and Changpei Han
Remote Sens. 2026, 18(2), 233; https://doi.org/10.3390/rs18020233 - 11 Jan 2026
Viewed by 290
Abstract
Striping noise is a common problem in multi-detector scanning radiometers on remote sensing satellites, typically caused by response inconsistency among detector elements. For payloads with a multi-column redundant architecture, this paper proposes a detector-selection framework that jointly considers sensitivity and uniformity from the [...] Read more.
Striping noise is a common problem in multi-detector scanning radiometers on remote sensing satellites, typically caused by response inconsistency among detector elements. For payloads with a multi-column redundant architecture, this paper proposes a detector-selection framework that jointly considers sensitivity and uniformity from the perspective of detector-element selection to mitigate striping noise. First, the degree of detector consistency is quantified using the Inter-Row Brightness Temperature Difference (IRBTD). Then, a dynamic programming approach based on the Viterbi algorithm is employed to select detector elements row by row with linear time complexity, optimizing the process through a weighted cost function that integrates sensitivity and consistency. Experiments on raw data from the FY-4B Geostationary High-speed Imager (GHI) show that the method reduces inconsistency by 10–40% while increasing the noise-equivalent temperature difference (NEdT) by only 1–4% (≤4 mK). The average IRBTD decreases by approximately 20–100 mK, and high-frequency striping energy is significantly suppressed (reduction of 50–90%). The algorithm exhibits linear time complexity and low computational overhead, making it suitable for real-time on-board processing. Its weighting parameter enables flexible trade-offs between sensitivity and uniformity. By suppressing striping noise directly during the detector-selection stage without introducing data distortion or requiring calibration adjustments, the proposed method can be widely applied to scanning radiometers that employ multi-column long-linear-arrays. Full article
(This article belongs to the Special Issue Remote Sensing Data Preprocessing and Calibration)
Show Figures

Graphical abstract

16 pages, 4859 KB  
Article
Three-Parameter Agile Anti-Interference Waveform Design and Corresponding MUSIC-Based Signal Processing Algorithm
by Chen Miao, Zhenpeng Sun, Yue Ma and Wen Wu
Electronics 2026, 15(2), 303; https://doi.org/10.3390/electronics15020303 - 9 Jan 2026
Viewed by 194
Abstract
Radar systems with exceptional anti-jamming performance are critical to meeting the high-performance requirements of future intelligent sensing systems. To address the deception jamming challenges encountered by intelligent sensing systems environments, a multi-parameter agile waveform is designed. The proposed waveform exhibits high flexibility across [...] Read more.
Radar systems with exceptional anti-jamming performance are critical to meeting the high-performance requirements of future intelligent sensing systems. To address the deception jamming challenges encountered by intelligent sensing systems environments, a multi-parameter agile waveform is designed. The proposed waveform exhibits high flexibility across three dimensions—pulse width, pulse repetition interval, and carrier frequency. Compared to traditional single-parameter or two-parameter agile waveforms, which vary only one or two parameters, this multi-parameter approach significantly enhances anti-jamming performance by disrupting periodicity and providing higher flexibility in dynamic interference environments. To address the complex signal characteristics induced by multi-parameter agility, we further develop a low-complexity signal processing method based on a segmented multiple signal classification (MUSIC) algorithm, which accurately extracts Doppler information from pulse-compressed slow-time data to achieve high-precision velocity estimation. Both theoretical derivations and simulation results demonstrate that, compared with the conventional compressed sensing orthogonal matching pursuit method and the conventional MUSIC method that operate on the entire signal, our segmented approach divides the signal into smaller segments, reducing computational complexity and improving velocity estimation accuracy. Notably, even in high-intensity, densely jammed environments, the system reliably extracts target information. Full article
Show Figures

Figure 1

19 pages, 2336 KB  
Article
A Lightweight Upsampling and Cross-Modal Feature Fusion-Based Algorithm for Small-Object Detection in UAV Imagery
by Jianglei Gong, Zhe Yuan, Wenxing Li, Weiwei Li, Yanjie Guo and Baolong Guo
Electronics 2026, 15(2), 298; https://doi.org/10.3390/electronics15020298 - 9 Jan 2026
Viewed by 176
Abstract
Small-object detection in UAV remote sensing faces common challenges such as tiny target size, blurred features, and severe background interference. Furthermore, single imaging modalities exhibit limited representation capability in complex environments. To address these issues, this paper proposes CTU-YOLO, a UAV-based small-object detection [...] Read more.
Small-object detection in UAV remote sensing faces common challenges such as tiny target size, blurred features, and severe background interference. Furthermore, single imaging modalities exhibit limited representation capability in complex environments. To address these issues, this paper proposes CTU-YOLO, a UAV-based small-object detection algorithm built upon cross-modal feature fusion and lightweight upsampling. The algorithm incorporates a dynamic and adaptive cross-modal feature fusion (DCFF) module, which achieves efficient feature alignment and fusion by combining frequency-domain analysis with convolutional operations. Additionally, a lightweight upsampling module (LUS) is introduced, integrating dynamic sampling and depthwise separable convolution to enhance the recovery of fine details for small objects. Experiments on the DroneVehicle and LLVIP datasets demonstrate that CTU-YOLO achieves 73.9% mAP on DroneVehicle and 96.9% AP on LLVIP, outperforming existing mainstream methods. Meanwhile, the model possesses only 4.2 MB parameters and 13.8 GFLOPs computational cost, with inference speeds reaching 129.9 FPS on DroneVehicle and 135.1 FPS on LLVIP. This exhibits an excellent lightweight design and real-time performance while maintaining high accuracy. Ablation studies confirm that both the DCFF and LUS modules contribute significantly to performance gains. Visualization analysis further indicates that the proposed method can accurately preserve the structure of small objects even under nighttime, low-light, and multi-scale background conditions, demonstrating strong robustness. Full article
(This article belongs to the Special Issue AI-Driven Image Processing: Theory, Methods, and Applications)
Show Figures

Figure 1

28 pages, 4337 KB  
Article
Lavender as a Catalyst for Rural Development: Identifying Commercially Suitable Cultivation Sites Through Multi-Criteria Decision Analysis
by Serdar Selim, Mesut Çoşlu, Rifat Olgun, Nihat Karakuş, Emine Kahraman, Namık Kemal Sönmez and Ceren Selim
Land 2026, 15(1), 130; https://doi.org/10.3390/land15010130 - 9 Jan 2026
Viewed by 261
Abstract
Lavender is a perennial Mediterranean plant that has been cultivated throughout history for medicinal, aromatic, and cosmetic purposes. Due to its high economic and commercial value, it has become an important agricultural product worldwide. The low production cost, adaptability to environmental conditions, and [...] Read more.
Lavender is a perennial Mediterranean plant that has been cultivated throughout history for medicinal, aromatic, and cosmetic purposes. Due to its high economic and commercial value, it has become an important agricultural product worldwide. The low production cost, adaptability to environmental conditions, and demand for its versatile use in the global market make it a significant potential source of income for developing Mediterranean countries. This study aims to identify commercially suitable cultivation sites for Lavandula angustifolia Mill. using remote sensing (RS) and geographic information systems (GIS) technologies to support rural development. Within this scope, suitable cultivation habitat parameters for the species in open fields and natural conditions were determined; these parameters were weighted according to their importance using multi-criteria decision analysis (MCDA), and thematic maps were created for each parameter. The created maps were combined using weighted overlay analysis, and a final map was generated according to the suitability class. The results indicate that within the study area, 75,679.45 ha is mostly suitable, 388,832.71 ha is moderately suitable, 24,068.43 ha is marginally suitable, and 229,327.20 ha is not suitable. As a result, it has been observed that Lavandula angustifolia Mill., which is currently cultivated on approximately 4045 ha of land and contributes 429 tons of product to the regional economy, covers only a relatively small portion of the suitable cultivation sites identified in the study and is not utilized to its full potential. It is understood that the expansion of lavender cultivation in determined suitable sites has significant potential to substantially develop the region and its rural population in terms of both yield and production volume, and to involve women and youth entrepreneurs in agricultural employment. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

17 pages, 4910 KB  
Article
Linking Sidescan Sonar Backscatter Intensity to Seafloor Sediment Grain Size Fractions: Insight from Dongluo Island
by Songyang Ma, Bin Li, Peng Wan, Chengfu Wei, Zhijian Chen, Ruikeng Li, Zhenqiang Zhao, Chi Chen, Jiangping Yang, Jun Tu and Mingming Wen
J. Mar. Sci. Eng. 2026, 14(2), 125; https://doi.org/10.3390/jmse14020125 - 7 Jan 2026
Viewed by 148
Abstract
Accurate characterization of seafloor sediment properties is critical for marine engineering design, resource assessment, and environmental management. Sidescan sonar offers efficient wide-area mapping capabilities, yet establishing robust quantitative relationships between acoustic backscatter intensity and sediment texture remains challenging, particularly in heterogeneous coastal environments. [...] Read more.
Accurate characterization of seafloor sediment properties is critical for marine engineering design, resource assessment, and environmental management. Sidescan sonar offers efficient wide-area mapping capabilities, yet establishing robust quantitative relationships between acoustic backscatter intensity and sediment texture remains challenging, particularly in heterogeneous coastal environments. This study investigates the correlation between sidescan sonar backscatter intensity and sediment grain size parameters in waters southwest of Hainan Island, China. High-resolution acoustic data (450 kHz) were acquired alongside surface sediment samples from 18 stations spanning diverse sediment types. Backscatter intensity, represented by grayscale values, was systematically compared with grain size distributions and individual size fractions. Results reveal that mean grain size shows no meaningful correlation with backscatter intensity; however, fine sand fraction content (0.075–0.25 mm) exhibits a strong negative linear relationship (R2 = 0.87 under optimal conditions). Distribution-level analysis demonstrates that backscatter variability mirrors sediment textural complexity, with coarse sediments producing broad, elevated intensity distributions and fine sediments yielding narrow, suppressed distributions. Inter-survey variability highlights the sensitivity of absolute intensity values to environmental conditions during acquisition. Spatial distribution analysis reveals that sediment grain size follows a systematic NE-SW gradient controlled by hydrodynamic energy, with notable local anomalies controlled by reef structures (producing coarse bioclastic sediment) and topographic sheltering (maintaining fine-grained deposits in shallow areas). These findings provide a quantitative basis for fraction-specific acoustic classification approaches while emphasizing the importance of multi-scale analysis incorporating both regional hydrodynamic trends and local morphological controls. The established relationship between fine sand abundance and acoustic response enables semi-quantitative sediment prediction from remotely sensed data, supporting improved seafloor mapping protocols for offshore infrastructure siting, aggregate resource evaluation, and coastal zone management in morphologically complex environments. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

19 pages, 2628 KB  
Article
DOA Estimation Based on Circular-Attention Residual Network
by Min Zhang, Hong Jiang, Jia Li and Jianglong Qu
Appl. Sci. 2026, 16(2), 627; https://doi.org/10.3390/app16020627 - 7 Jan 2026
Viewed by 196
Abstract
Direction of arrival (DOA) estimation is a fundamental problem in array signal processing, with extensive applications in radar, communications, sonar, and other fields. Traditional DOA estimation methods, such as MUSIC and ESPRIT, rely on eigenvalue decomposition or spectral peak search, which suffer from [...] Read more.
Direction of arrival (DOA) estimation is a fundamental problem in array signal processing, with extensive applications in radar, communications, sonar, and other fields. Traditional DOA estimation methods, such as MUSIC and ESPRIT, rely on eigenvalue decomposition or spectral peak search, which suffer from high computational complexity and performance degradation under conditions of low signal-to-noise ratio (SNR), coherent signals, and array imperfections. Cylindrical arrays offer unique advantages for omnidirectional sensing due to their circular structure and three-dimensional coverage capability; however, their nonlinear array manifold increases the difficulty of estimation. This paper proposes a circular-attention residual network (CA-ResNet) for DOA estimation using uniform cylindrical arrays. The proposed approach achieves high accuracy and robust angle estimation through phase difference feature extraction, a multi-scale residual network, an attention mechanism, and a joint output module. Simulation results demonstrate that the proposed CA-ResNet method delivers superior performance under challenging scenarios, including low SNR (−10 dB), a small number of snapshots (L = 5), and multiple sources (1 to 4 signal sources). The corresponding root mean square errors (RMSE) are 0.21°, 0.45°, and below 1.5°, respectively, significantly outperforming traditional methods like MUSIC and ESPRIT, as well as existing deep learning models (e.g., ResNet, CNN, MLP). Furthermore, the algorithm exhibits low computational complexity and a small parameter size, highlighting its strong potential for practical engineering applications and robustness. Full article
Show Figures

Figure 1

24 pages, 3590 KB  
Article
Rotation-Sensitive Feature Enhancement Network for Oriented Object Detection in Remote Sensing Images
by Jiaxin Xu, Hua Huo, Shilu Kang, Aokun Mei and Chen Zhang
Sensors 2026, 26(2), 381; https://doi.org/10.3390/s26020381 - 7 Jan 2026
Viewed by 164
Abstract
Oriented object detection in remote sensing images remains a challenging task due to arbitrary target rotations, extreme scale variations, and complex backgrounds. However, current rotated detectors still face several limitations: insufficient orientation-sensitive feature representation, feature misalignment for rotated proposals, and unstable optimization of [...] Read more.
Oriented object detection in remote sensing images remains a challenging task due to arbitrary target rotations, extreme scale variations, and complex backgrounds. However, current rotated detectors still face several limitations: insufficient orientation-sensitive feature representation, feature misalignment for rotated proposals, and unstable optimization of rotation parameters. To address these issues, this paper proposes an enhanced Rotation-Sensitive Feature Pyramid Network (RSFPN) framework. Building upon the effective Oriented R-CNN paradigm, we introduce three novel core components: (1) a Dynamic Adaptive Feature Pyramid Network (DAFPN) that enables bidirectional multi-scale feature fusion through semantic-guided upsampling and structure-enhanced downsampling paths; (2) an Angle-Aware Collaborative Attention (AACA) module that incorporates orientation priors to guide feature refinement; (3) a Geometrically Consistent Multi-Task Loss (GC-MTL) that unifies the regression of rotation parameters with periodic smoothing and adaptive weight mechanisms. Comprehensive experiments on the DOTA-v1.0 and HRSC2016 benchmarks show that our RSFPN achieves superior performance. It attains a state-of-the-art mAP of 77.42% on DOTA-v1.0 and 91.85% on HRSC2016, while maintaining efficient inference at 14.5 FPS, demonstrating a favorable accuracy-efficiency trade-off. Visual analysis confirms that our method produces concentrated, rotation-aware feature responses and effectively suppresses background interference. The proposed approach provides a robust solution for detecting multi-oriented objects in high-resolution remote sensing imagery, with significant practical value for urban planning, environmental monitoring, and security applications. Full article
Show Figures

Figure 1

Back to TopTop