Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = multi-objective optimal energy management system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 11770 KB  
Article
Exploring Cost–Comfort Trade-Off in Implicit Demand Response for Fully Electric Solar-Powered Nordic Households
by Meysam Aboutalebi, Matin Bagherpour, Josef Noll and Geir Horn
Energies 2025, 18(21), 5568; https://doi.org/10.3390/en18215568 - 22 Oct 2025
Viewed by 171
Abstract
This paper proposes a household energy management system for all-electric households, focusing on the interplay between cost savings and occupant comfort through an implicit demand response programme. A sequential multi-objective optimisation model is developed based on the lexicographic approach, allowing for the effective [...] Read more.
This paper proposes a household energy management system for all-electric households, focusing on the interplay between cost savings and occupant comfort through an implicit demand response programme. A sequential multi-objective optimisation model is developed based on the lexicographic approach, allowing for the effective prioritisation of objectives. The model optimally schedules a diverse range of electricity demands using real-world data from a Norwegian pilot household to evaluate its unique flexibility potential, while remaining adaptable for other regions. This includes integrating thermal and non-thermal demands with electric mobility via vehicle-to-home enabled electric vehicle charger. This approach achieves significant cost savings on energy bills and enhances user comfort across aggregated comfort indicators. Multiple scenarios are designed to evaluate the performance of the proposed demand response under diverse pricing mechanisms. Results indicate that transitioning from variable pricing to fixed pricing can lead to lower average electricity costs and higher average user comfort. The analysis reveals that prioritising occupant comfort can substantially increase electricity demand, resulting in a nearly fourfold rise in average annual expenses, while also leading to a decrease in self-consumption and self-sufficiency. Additionally, the study illustrates how grid tariff adjustments can benefit households and support the development of local renewable energy. Full article
Show Figures

Figure 1

23 pages, 5356 KB  
Article
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
by Yi Yang, Bin Ma and Peng-Hui Li
Energies 2025, 18(21), 5559; https://doi.org/10.3390/en18215559 - 22 Oct 2025
Viewed by 206
Abstract
Enhancing ultra-capacitor (UC) utilization and mitigating battery stress are pivotal for improving the energy management efficiency and service life of hybrid energy storage systems (HESSs). Conventional energy management strategies (EMSs), however, rely on fixed parameters and therefore struggle to allocate power flexibly or [...] Read more.
Enhancing ultra-capacitor (UC) utilization and mitigating battery stress are pivotal for improving the energy management efficiency and service life of hybrid energy storage systems (HESSs). Conventional energy management strategies (EMSs), however, rely on fixed parameters and therefore struggle to allocate power flexibly or reduce battery degradation. This paper proposes a VMD-LSTM-based EMS that incorporates auto-tuning weight and constraint to address these limitations. First, a VMD-LSTM predictor was proposed to improve the velocity and road gradient prediction accuracy, thus leading an accurate power demand for EMS and enabling real-time parameter adaptation, especially in the nonlinear area. Second, the model predictive controller (MPC) was adopted to construct the EMS by solving a multi-objective problem using quadratic programming. Third, a combination of rule-based and fuzzy logic-based strategies was introduced to adjust the weights and constraints, optimizing UC utilization while alleviating the burden on batteries. Simulation results show that the proposed scheme boosts UC utilization by 10.98% and extends battery life by 19.75% compared to traditional MPC. These gains underscore the practical viability of intelligent, optimizing EMSs for HESSs. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

26 pages, 14839 KB  
Article
Fin-Embedded PCM Tubes in BTMS: Heat Transfer Augmentation and Mass Minimization via Multi-Objective Surrogate Optimization
by Bo Zhu, Yi Zhang and Zhengfeng Yan
Batteries 2025, 11(10), 387; https://doi.org/10.3390/batteries11100387 - 21 Oct 2025
Viewed by 130
Abstract
The rapid proliferation of electric vehicles (EVs) demands lightweight yet efficient battery thermal management systems (BTMS). The fin-embedded phase-change material energy storage tube (PCM-EST) offers significant potential due to its high thermal energy density and passive operation, but conventional designs face a critical [...] Read more.
The rapid proliferation of electric vehicles (EVs) demands lightweight yet efficient battery thermal management systems (BTMS). The fin-embedded phase-change material energy storage tube (PCM-EST) offers significant potential due to its high thermal energy density and passive operation, but conventional designs face a critical trade-off: enhancing heat transfer typically increases mass, conflicting with EV lightweight requirements. To resolve this conflict, this study proposes a multi-objective surrogate optimization framework integrating computational fluid dynamics (CFD) and Kriging modeling. Fin geometric parameters—number, height, and tube length—were rigorously analyzed via ANSYS (2020 R1) Fluent simulations to quantify their coupled effects on PCM melting/solidification dynamics and structural mass. The results reveal that fin configurations dominate both thermal behavior and weight. An enhanced multi-objective particle swarm optimization (MOPSO) algorithm was then deployed to simultaneously maximize heat transfer and minimize mass, generating a Pareto-optimal solution. The optimized design achieves 8.7% enhancement in heat exchange capability and 0.732 kg mass reduction—outperforming conventional single-parameter designs by 37% in weight savings. This work establishes a systematic methodology for synergistic thermal-structural optimization, advancing high-performance BTMS for sustainable EVs. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Figure 1

18 pages, 749 KB  
Article
Performance-Based Maintenance and Operation of Multi-Campus Critical Infrastructure Facilities Using Supply Chain Multi-Choice Goal Programming
by Igal M. Shohet, Shlomi Levi, Reem Zeibak-Shini and Fadi Shahin
Appl. Sci. 2025, 15(20), 11161; https://doi.org/10.3390/app152011161 - 17 Oct 2025
Viewed by 176
Abstract
Building maintenance is a critical component of ensuring long-term performance, safety, and cost-efficiency in both conventional and critical infrastructures. While traditional contracting approaches have often led to inefficiencies and rigid procurement systems, recent developments in performance-based maintenance, digital technologies, and multi-objective optimization provide [...] Read more.
Building maintenance is a critical component of ensuring long-term performance, safety, and cost-efficiency in both conventional and critical infrastructures. While traditional contracting approaches have often led to inefficiencies and rigid procurement systems, recent developments in performance-based maintenance, digital technologies, and multi-objective optimization provide opportunities to enhance both operational reliability and energy performance. From a resilience perspective, the ability to sustain functionality, adapt maintenance intensity, and recover performance under resource or operational stress is essential for ensuring infrastructure continuity and resilience. This study develops and validates an optimization model for the operation and maintenance of large campus infrastructures, addressing the persistent imbalance between over-maintenance, where costs exceed optimal levels by up to 300%, and under-maintenance, which compromises performance continuity and weakens resilience over time. The model integrates maintenance efficiency indicators, building performance indices, and energy-efficiency retrofits, particularly LED-based lighting upgrades, within a multi-choice goal programming framework. Using datasets from 15 campuses comprising over 2000 buildings, the model was tested through case studies, sensitivity analyses, and simulations under varying facility life cycle expectancies. The facilities were analyzed for alternative life cycles of 25, 50, 75, and 90 years, and the design life cycle was set for 50 years. The results show that the optimized approach can reduce maintenance costs by an average of 34%, with savings ranging from 1% to 55% across campuses. Additionally, energy retrofit strategies such as LED replacement yielded significant economic and environmental benefits, with payback periods of approximately 2–2.5 years. The findings demonstrate that integrated maintenance and energy-efficiency planning can simultaneously enhance building performance, reduce costs, and support sustainability objectives, offering a practical decision-support tool for managing large-scale campus infrastructures. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

21 pages, 2277 KB  
Article
Computation Offloading and Resource Allocation Strategy Considering User Mobility in Multi-UAV Assisted Semantic Communication Networks
by Wenxi Han, Yu Du, Yijun Guo, Jianjun Hao and Xiaoshijie Zhang
Electronics 2025, 14(20), 4067; https://doi.org/10.3390/electronics14204067 - 16 Oct 2025
Viewed by 284
Abstract
Multi-unmanned aerial vehicle (UAV)-assisted communication is a critical technology for the low-altitude economy, supporting applications from logistics to emergency response. Semantic communication effectively enhances transmission efficiency and improves the communication performance of multi-UAV-assisted systems. Existing research on multi-UAV semantic communication networks predominantly assumes [...] Read more.
Multi-unmanned aerial vehicle (UAV)-assisted communication is a critical technology for the low-altitude economy, supporting applications from logistics to emergency response. Semantic communication effectively enhances transmission efficiency and improves the communication performance of multi-UAV-assisted systems. Existing research on multi-UAV semantic communication networks predominantly assumes static ground devices, overlooking computation offloading and resource allocation challenges when ground devices are mobile. This overlooks the critical challenge of dynamically managing computation offloading and resources for mobile users, whose varying channel conditions and semantic compression needs directly impact system performance. To address this gap, this paper proposes a multi-UAV-assisted semantic communication model that novelly integrates user mobility with adaptive semantic compression, formulating a joint optimization problem for computation offloading and resource allocation. The objective is to minimize the maximum task processing latency through the joint optimization of UAV–device association, UAV trajectories, transmission power, task offloading ratios, and semantic compression depth. To solve this problem, we design a MAPPO-APSO algorithm integrating alternating iteration, multi-agent proximal policy optimization (MAPPO), and adaptive particle swarm optimization (APSO). Simulation results demonstrate that the proposed algorithm reduces the maximum task latency and system energy consumption by up to 20.7% and 16.1%, respectively, while maintaining transmission performance and outperforming benchmark approaches. Full article
(This article belongs to the Special Issue Recent Advances in Semantic Communications and Networks)
Show Figures

Figure 1

48 pages, 5345 KB  
Systematic Review
Optimizing Energy Consumption in Electric Vehicles: A Systematic and Bibliometric Review of Recent Advances
by Hind Tarout, Hanane Zaki, Amine Chahbouni, Elmehdi Ennajih and El Mustapha Louragli
World Electr. Veh. J. 2025, 16(10), 577; https://doi.org/10.3390/wevj16100577 - 13 Oct 2025
Viewed by 523
Abstract
Electric vehicles are key to sustainable mobility, but their limited range remains a major obstacle to widespread adoption. Extending driving distance requires optimizing energy use across subsystems. This study combines bibliometric mapping (2017–2024, Scopus) with a focused qualitative review to structure recent research. [...] Read more.
Electric vehicles are key to sustainable mobility, but their limited range remains a major obstacle to widespread adoption. Extending driving distance requires optimizing energy use across subsystems. This study combines bibliometric mapping (2017–2024, Scopus) with a focused qualitative review to structure recent research. Results highlight a strong emphasis on energy efficiency, with China leading due to its market size, industrial base, and supportive policies. Major research directions tied to range extension include energy storage, motion control, thermal regulation, cooperative driving, and grid interaction. Among these, hybrid energy storage systems and motor control stand out for their measurable impact and industrial relevance, while thermal management, regenerative braking, and systemic approaches (V2V and V2G) remain underexplored. Beyond mapping contributions, the study identifies ongoing gaps and calls for integrated strategies that combine electrical, thermal, and mechanical aspects. As EV adoption accelerates and battery demand increases, the findings emphasize the need for battery-aware, multi-objective energy management strategies. This synthesis provides a vital framework to guide future research and support the development of robust, integrated, and industry-ready solutions for optimizing EV energy use and extending driving range. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

20 pages, 4956 KB  
Article
Minimum Hydrogen Consumption Energy Management for Hybrid Fuel Cell Ships Using Improved Weighted Antlion Optimization
by Peng Zhou, Wenfei Ning, Peiwu Ming, Zhaoting Liu, Xi Wang, Zhengwei Zhao, Zhaoying Yan, Wenjiao Yang, Baozhu Jia and Yuanyuan Xu
J. Mar. Sci. Eng. 2025, 13(10), 1929; https://doi.org/10.3390/jmse13101929 - 9 Oct 2025
Viewed by 282
Abstract
Energy management in hybrid fuel cell ship systems faces the dual challenges of optimizing hydrogen consumption and ensuring power quality. This study proposes an Improved Weighted Antlion Optimization (IW-ALO) algorithm for multi-objective problems. The method incorporates a dynamic weight adjustment mechanism and an [...] Read more.
Energy management in hybrid fuel cell ship systems faces the dual challenges of optimizing hydrogen consumption and ensuring power quality. This study proposes an Improved Weighted Antlion Optimization (IW-ALO) algorithm for multi-objective problems. The method incorporates a dynamic weight adjustment mechanism and an elite-guided strategy, which significantly enhance global search capability and convergence performance. By integrating IW-ALO with the Equivalent Consumption Minimization Strategy (ECMS), an improved weighted ECMS (IW-ECMS) is developed, enabling real-time optimization of the equivalence factor and ensuring efficient energy sharing between the fuel cell and the lithium-ion battery. To validate the proposed strategy, a system simulation model is established in Matlab/Simulink 2017b. Compared with the rule-based state machine control and optimization-based ECMS methods over a representative 300 s ferry operating cycle, the IW-ECMS achieves a hydrogen consumption reduction of 43.4% and 42.6%, respectively, corresponding to a minimum total usage of 166.6 g under the specified load profile, while maintaining real-time system responsiveness. These reductions reflect the scenario tested, characterized by frequent load variations. Nonetheless, the results highlight the potential of IW-ECMS to enhance the economic performance of ship power systems and offer a novel approach for multi-objective cooperative optimization in complex energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 5727 KB  
Article
Multi-Objective Energy Management System in Smart Homes with Inverter-Based Air Conditioner Considering Costs, Peak-Average Ratio, and Battery Discharging Cycles of ESS and EV
by Moslem Dehghani, Seyyed Mohammad Bornapour, Felipe Ruiz and Jose Rodriguez
Energies 2025, 18(19), 5298; https://doi.org/10.3390/en18195298 - 7 Oct 2025
Viewed by 389
Abstract
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables [...] Read more.
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables smart homes to monitor, store, and manage energy efficiently. SHEMS relies heavily on energy storage systems (ESSs) and electric vehicles (EVs), which enable smart homes to be more flexible and enhance the reliability and efficiency of renewable energy sources. It is vital to study the optimal operation of batteries in SHEMS; hence, a multi-objective optimization approach for SHEMS and demand response programs is proposed to simultaneously reduce the daily bills, the peak-to-average ratio, and the number of battery discharging cycles of ESSs and EVs. An inverter-based air conditioner, photovoltaic system, ESS, and EV, shiftable and non-shiftable equipment are considered in the suggested smart home. In addition, the amount of energy purchased and sold throughout the day is taken into account in the suggested mathematical formulation based on the real-time market pricing. The suggested multi-objective problem is solved by an improved gray wolf optimizer, and various weather conditions, including rainy, sunny, and cloudy days, are also analyzed. Additionally, simulations indicate that the proposed method achieves optimal results, with three objectives shown on the Pareto front of the optimal solutions. Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 1302 KB  
Article
Multi-Objective Collaborative Optimization of Distribution Networks with Energy Storage and Electric Vehicles Using an Improved NSGA-II Algorithm
by Runquan He, Jiayin Hao, Heng Zhou and Fei Chen
Energies 2025, 18(19), 5232; https://doi.org/10.3390/en18195232 - 2 Oct 2025
Viewed by 331
Abstract
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable [...] Read more.
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable and non-dispatchable electric vehicles. A three-dimensional objective system is constructed, incorporating investment cost, reliability metrics, and network loss indicators, forming a comprehensive multi-objective optimization model. To solve this complex planning problem, an improved version of the NSGA-II is employed, integrating hybrid encoding, feasibility constraints, and fuzzy decision-making for enhanced solution quality. The proposed method is applied to the IEEE 33-bus distribution system to validate its practicality. Simulation results demonstrate that the framework effectively addresses key challenges in modern distribution networks, including renewable intermittency, dynamic load variation, resource coordination, and computational tractability. It significantly enhances system operational efficiency and electric vehicles charging flexibility under varying conditions. In the IEEE 33-bus test, the coordinated optimization (Scheme 4) reduced the expected load loss from 100 × 10−4 yuan to 51 × 10−4 yuan. Network losses also dropped from 2.7 × 10−4 yuan to 2.5 × 10−4 yuan. The findings highlight the model’s capability to balance economic investment and reliability, offering a robust solution for future intelligent distribution network planning and integrated energy resource management. Full article
Show Figures

Figure 1

44 pages, 9238 KB  
Article
SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
by Lihong Cao and Qi Wei
Biomimetics 2025, 10(10), 664; https://doi.org/10.3390/biomimetics10100664 - 1 Oct 2025
Viewed by 373
Abstract
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with [...] Read more.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. Full article
Show Figures

Figure 1

34 pages, 4877 KB  
Article
Climate-Adaptive Residential Demand Response Integration with Power Quality-Aware Distributed Generation Systems: A Comprehensive Multi-Objective Optimization Framework for Smart Home Energy Management
by Mahmoud Kiasari and Hamed Aly
Electronics 2025, 14(19), 3846; https://doi.org/10.3390/electronics14193846 - 28 Sep 2025
Viewed by 206
Abstract
Climate change is transforming energy use at the residential level by increasing temperature fluctuations and sustaining extreme weather events. This study proposes a climate-reactive, multi-objective approach to integrate the demand response (DR) with distributed generation (DG) and power quality improvement under a multi-objective [...] Read more.
Climate change is transforming energy use at the residential level by increasing temperature fluctuations and sustaining extreme weather events. This study proposes a climate-reactive, multi-objective approach to integrate the demand response (DR) with distributed generation (DG) and power quality improvement under a multi-objective framework of an integrated climate-adaptive approach to residential energy management. A cognitive neural network combination model with bidirectional long short-term memory networks (bidirectional) and a self-attention mechanism was used to successfully predict temperature-sensitive loads. The hybrid deep learning solution, which applies convolutional and bidirectional long short-term memory (LSTM) networks with attention, predicted the temperature-dependent load profiles optimized with an enhanced modified grey wolf optimizer (MGWO). The results of the experimental studies indicated significant gains in performance: in energy expenditure, the studies reduced it by 32.7%; in peak demand, they were able to reduce it by 45.2%; and in self-generated renewable energy, the results were 28.9% higher. The solution reliability rate provided by the MGWO was 94.5%, and it converged more quickly, thus providing better diversity in the Pareto-optimal frontier than that of traditional metaheuristic algorithms. Sensitivity tests with climate conditions of +2 °C and +4 °C showed strategy changes as high as 18.3%, thus establishing the flexibility of the system. Empirical evidence indicates that the energy and peak demand are to be cut, renewable integration is enhanced, and performance is strong in fluctuating climate conditions, highlighting the adaptability of the system to future resilient smart homes. Full article
(This article belongs to the Special Issue Energy Technologies in Electronics and Electrical Engineering)
Show Figures

Figure 1

40 pages, 2004 KB  
Review
A Comprehensive Review of Hybrid Renewable Microgrids: Key Design Parameters, Optimization Techniques, and the Role of Demand Response in Enhancing System Flexibility
by Adebayo Dosa, Oludolapo Akanni Olanrewaju and Felix Mora-Camino
Energies 2025, 18(19), 5154; https://doi.org/10.3390/en18195154 - 28 Sep 2025
Viewed by 886
Abstract
The paper investigates the design and operation of microgrid arrangements, with a focus on renewable power systems, system architectures, and storage solutions. The research evaluates stochastic and multi-objective optimization methods to show how demand response systems improve operational flexibility. The study evaluates 183 [...] Read more.
The paper investigates the design and operation of microgrid arrangements, with a focus on renewable power systems, system architectures, and storage solutions. The research evaluates stochastic and multi-objective optimization methods to show how demand response systems improve operational flexibility. The study evaluates 183 journal articles to select those that address microgrid design in conjunction with optimization models and demand response approaches. The articles are classified into three essential categories, which include microgrid design optimization methods and demand response integration. The review establishes that microgrid performance depends on three fundamental design parameters, which include energy generation systems, storage capabilities, and load demand control mechanisms. The review demonstrates that advanced optimization approaches, such as stochastic and multi-objective optimization methods, offer effective solutions for managing renewable energy variability. The paper demonstrates that demand response strategies are crucial for reducing costs and enhancing system flexibility. However, current published research falls short of establishing an integrated system that combines real-time demand response with stochastic optimization. This integration, while not yet fully realized, is suggested as a critical advancement for ensuring both system performance optimization and long-term sustainability. Therefore, this paper calls for further research to develop resilient hybrid renewable microgrids that integrate flexibility with sustainability through advanced optimization models and demand response strategies. Full article
(This article belongs to the Special Issue Advanced Grid Integration with Power Electronics: 2nd Edition)
Show Figures

Figure 1

20 pages, 4285 KB  
Article
Multi-Stage Stochastic MILP Framework for Renewable Microgrid Dispatch Under High Renewable Penetration: Optimizing Variability and Uncertainty Management
by Olubayo Babatunde, Kunle Fasesin, Adebayo Dosa, Desmond Ighravwe, John Ogbemhe and Oludolapo Olanrewaju
Appl. Sci. 2025, 15(19), 10303; https://doi.org/10.3390/app151910303 - 23 Sep 2025
Viewed by 414
Abstract
The research develops a multi-stage stochastic Mixed-Integer Linear Programming (MILP) model for managing dispatch schedules in microgrids with significant renewable energy integration. The primary objective is to optimize the integration of renewable energy sources with energy storage systems and grid power, concurrently aiming [...] Read more.
The research develops a multi-stage stochastic Mixed-Integer Linear Programming (MILP) model for managing dispatch schedules in microgrids with significant renewable energy integration. The primary objective is to optimize the integration of renewable energy sources with energy storage systems and grid power, concurrently aiming to reduce operational costs and address uncertainties associated with renewable energy resources. The model effectively captures the variability inherent in renewable sources through the use of scenarios and implements a multi-stage MILP formulation that incorporates storage and load constraints. The methodology employs stochastic optimization techniques to regulate fluctuations in renewable generation by analyzing diverse energy availability scenarios. The optimization process is designed to minimize grid power consumption while maximizing the utilization of renewable energy via storage and load constraints that guarantee a balanced energy supply. The model achieves optimal operational costs by producing results that amount to 46,600 USD while successfully controlling renewable energy variability. The research demonstrates two main achievements by integrating high renewable penetration levels and providing valuable insights into how energy storage systems and grid independence lower costs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

55 pages, 29751 KB  
Article
Multi-Objective Combinatorial Optimization for Dynamic Inspection Scheduling and Skill-Based Team Formation in Distributed Solar Energy Infrastructure
by Mazin Alahmadi
Systems 2025, 13(9), 822; https://doi.org/10.3390/systems13090822 - 19 Sep 2025
Viewed by 662
Abstract
Maintaining operational efficiency in distributed solar energy systems requires intelligent coordination of inspection tasks and workforce resources to handle diverse fault conditions. This study presents a bi-level multi-objective optimization framework that addresses two tightly coupled problems: dynamic job scheduling and skill-based team formation. [...] Read more.
Maintaining operational efficiency in distributed solar energy systems requires intelligent coordination of inspection tasks and workforce resources to handle diverse fault conditions. This study presents a bi-level multi-objective optimization framework that addresses two tightly coupled problems: dynamic job scheduling and skill-based team formation. The job scheduling component assigns geographically dispersed inspection tasks to mobile teams while minimizing multiple conflicting objectives, including travel distance, tardiness, and workload imbalance. Concurrently, the team formation component ensures that each team satisfies fault-specific skill requirements by optimizing team cohesion and compactness. To solve the bi-objective team formation problem, we propose HMOO-AOS, a hybrid algorithm integrating six metaheuristic operators under an NSGA-II framework with an Upper Confidence Bound-based Adaptive Operator Selection. Experiments on datasets of up to seven instances demonstrate statistically significant improvements (p<0.05) in solution quality, skill coverage, and computational efficiency compared to NSGA-II, NSGA-III, and MOEA/D variants, with computational complexity OG·N·(M+logN) (time complexity), O(N·L) (space complexity). A cloud-integrated system architecture is also proposed to contextualize the framework within real-world solar inspection operations, supporting real-time data integration, dynamic rescheduling, and mobile workforce coordination. These contributions provide scalable, practical tools for solar operators, maintenance planners, and energy system managers, establishing a robust and adaptive approach to intelligent inspection planning in renewable energy operations. Full article
(This article belongs to the Special Issue Advances in Operations and Production Management Systems)
Show Figures

Figure 1

27 pages, 6764 KB  
Article
Multi-Objective Optimization of Energy Storage Configuration and Dispatch in Diesel-Electric Propulsion Ships
by Fupeng Sun, Yanlin Liu, Huibing Gan, Shaokang Zang and Zhibo Lei
J. Mar. Sci. Eng. 2025, 13(9), 1808; https://doi.org/10.3390/jmse13091808 - 18 Sep 2025
Viewed by 530
Abstract
This study investigates the configuration of an energy storage system (ESS) and the optimization of energy management strategies for diesel-electric hybrid ships, with the goal of enhancing fuel economy and reducing emissions. An integrated mathematical model of the diesel generator set and the [...] Read more.
This study investigates the configuration of an energy storage system (ESS) and the optimization of energy management strategies for diesel-electric hybrid ships, with the goal of enhancing fuel economy and reducing emissions. An integrated mathematical model of the diesel generator set and the battery-based ESS is established. A rule-based energy management strategy (EMS) is proposed, in which the ship operating conditions are classified into berthing, maneuvering, and cruising modes. This classification enables coordinated power allocation between the diesel generator set and the ESS, while ensuring that the diesel engine operates within its high-efficiency region. The optimization framework considers the number of battery modules in series and the upper and lower bounds of the state of charge (SOC) as design variables. The dual objectives are set as lifecycle cost (LCC) and greenhouse gas (GHG) emissions, optimized using the Multi-Objective Coati Optimization Algorithm (MOCOA). The algorithm achieves a balance between global exploration and local exploitation. Numerical simulations indicate that, under the LCC-optimal solution, fuel consumption and GHG emissions are reduced by 16.12% and 13.18%, respectively, while under the GHG-minimization solution, reductions of 37.84% in fuel consumption and 35.02% in emissions are achieved. Compared with conventional algorithms, including Multi-Objective Particle Swarm Optimization (MOPSO), Non-dominated Sorting Dung Beetle Optimizer (NSDBO), and Multi-Objective Sparrow Search Algorithm (MOSSA), MOCOA exhibits superior convergence and solution diversity. The findings provide valuable engineering insights into the optimal configuration of ESS and EMS for hybrid ships, thereby contributing to the advancement of green shipping. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop