A Comprehensive Review of Hybrid Renewable Microgrids: Key Design Parameters, Optimization Techniques, and the Role of Demand Response in Enhancing System Flexibility
Abstract
1. Introduction
1.1. Overview of Hybrid Renewable Microgrids
1.2. Importance of Optimizing Hybrid Systems for Cost, Emissions, and Reliability
1.3. Demand Response and Its Role in Enhancing System Flexibility
1.4. Structure of the Paper
2. Methodology
2.1. Literature Search Process
2.2. Article Selection Criteria
2.3. Data Synthesis and Categorization
2.4. Configurations and Operational Components
2.4.1. Solar Energy Systems
2.4.2. Wind Energy Systems
2.4.3. Energy Storage Systems
2.4.4. Backup Systems
2.5. Design Considerations for Hybrid Renewable Microgrids
2.5.1. Scalability and Modularity
2.5.2. Control Strategies
2.5.3. Interconnection Topologies
2.5.4. Economic Feasibility
2.6. Critical Review of Hybrid Renewable Microgrid Literature
2.7. Summary and Future Outlook of HRMGs
3. Key Design Parameters in Hybrid Microgrids
3.1. Forecasting Energy Generation and Renewable Integration
3.2. Storage Sizing and Optimization
3.3. Load Demand Forecasting
3.4. Reliability and Scalability of Hybrid Systems
3.5. Operational Constraints: Cost, Emissions, and Efficiency
3.6. Future Directions and Research Gaps for the Design and Operation of Hybrid Microgrids
- Battery technologies have reached maturity, yet researchers require further investigation to link hydrogen-based systems with second-life EV batteries [121].
- A strong data infrastructure, together with secure cybersecurity systems, must be established to implement AI and machine learning models for real-time optimization [122].
- The successful implementation requires attention to address regulatory barriers while obtaining community backing for new technologies, including nuclear-renewable hybrids [123].
- Future microgrid designs must include provisions to handle climate-induced variability, which provides for temperature extremes and natural disasters [124].
4. Optimization Techniques in Hybrid Microgrids
4.1. Multi-Objective Optimization
4.2. Stochastic Optimization
4.3. Evolutionary Algorithms
4.4. Robust Optimization Approaches
4.5. Challenges in Practical Applications
5. Demand Response Integration in Hybrid Microgrids
5.1. Demand Response Strategies
5.2. System Flexibility and Load Balancing
5.3. Cost Savings and Economic Efficiency
5.4. Challenges and Future Directions for Demand Response Strategies
5.5. Case Studies of DR Implementation in Microgrids
Practical Case Studies of HRMG Implementation
- Case Study 1: Brooklyn Microgrid, USA [171]
- Case Study 2: Obaa-Yaa Substation Microgrid, Drobo, Ghana [172]
6. Research Gaps and Future Directions
6.1. Gaps in DR Integration in Hybrid Microgrids
- Scalability and System Complexity
- Real-Time Adaptability
- Consumer Behavior and Engagement
- Data and Computational Requirements
6.2. Future Research Directions
- Stochastic Optimization Integration into Real-Time DR Systems
- AI and Machine Learning for Consumer Behavior and Real-Time Optimization
- DR Models that are Scalable for Large-Scale Microgrids
- Sustainability Assessments and Life-Cycle Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kostenko, G.; Zaporozhets, A. Enhancing of the power system resilience through the application of micro power systems (microgrid) with renewable distributed generation. Syst. Res. Energy 2023, 3, 25–38. [Google Scholar] [CrossRef]
- McCullough, M. Downtime on the Microgrid: Architecture, Electricity, and Smart City Islands; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Cohn, L. History of Microgrids in the US: From Pearl Street to Plug-and-Play; Microgrid Knowledge: Westborough, MA, USA, 2019; p. 1. [Google Scholar]
- Hatziargyriou, N.; Dimeas, A.; Vasilakis, N.; Lagos, D.; Kontou, A. The kythnos microgrid: A 20-year history. IEEE Electrif. Mag. 2020, 8, 46–54. [Google Scholar]
- Maurya, R.; Sharma, P.; Singh, A.K.; Prakash, S. Revolution Towards DC Microgrids: A History. In Operational Research for Renewable Energy and Sustainable Environments; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 225–251. [Google Scholar]
- Lasseter, R.H. Microgrids. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), New York, NY, USA, 27–31 January 2002. [Google Scholar]
- Illindala, M.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid; National Renewable Energy Lab (NREL): Golden, CO, USA, 2004.
- Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C. Microgrids. IEEE Power Energy Mag. 2007, 5, 78–94. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chopra, S.S.; Chand, A.A.; Elavarasan, R.M.; Shafiullah, G. Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7. Sustainability 2020, 12, 3944. [Google Scholar] [CrossRef]
- Uddin, M.; Mo, H.; Dong, D.; Elsawah, S.; Zhu, J.; Guerrero, J.M. Microgrids: A review, outstanding issues and future trends. Energy Strategy Rev. 2023, 49, 101127. [Google Scholar] [CrossRef]
- Khan, M.R.; Haider, Z.M.; Malik, F.H.; Almasoudi, F.M.; Alatawi, K.S.S.; Bhutta, M.S. A comprehensive review of microgrid energy management strategies considering electric vehicles, energy storage systems, and AI techniques. Processes 2024, 12, 270. [Google Scholar] [CrossRef]
- Ojo, K.E.; Saha, A.K.; Srivastava, V.M. Microgrids’ control strategies and real-time monitoring systems: A comprehensive review. Energies 2025, 18, 3576. [Google Scholar] [CrossRef]
- Dahmani, S. Energy optimization and smart grids: IoT-based smart grid solution and smart grids applications. In Harnessing High-Performance Computing and AI for Environmental Sustainability; IGI Global: Hershey, PA, USA, 2024; pp. 278–304. [Google Scholar]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Bamisile, O.; Cai, D.; Adun, H.; Dagbasi, M.; Ukwuoma, C.C.; Huang, Q.; Johnson, N. Towards renewables development: Review of optimization techniques for energy storage and hybrid renewable energy systems. Heliyon 2024, 10, e37482. [Google Scholar] [CrossRef]
- Thirugnanam, K.; Kerk, S.K.; Yuen, C.; Liu, N.; Zhang, M. Energy management for renewable microgrid in reducing diesel generators usage with multiple types of battery. IEEE Trans. Ind. Electron. 2018, 65, 6772–6786. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.S.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Ponnaganti, P.; Pillai, J.R.; Bak-Jensen, B. Opportunities and challenges of demand response in active distribution networks. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e271. [Google Scholar] [CrossRef]
- Jafarizadeh, H.; Yamini, E.; Zolfaghari, S.M.; Esmaeilion, F.; Assad, M.E.H.; Soltani, M. Navigating challenges in large-scale renewable energy storage: Barriers, solutions, and innovations. Energy Rep. 2024, 12, 2179–2192. [Google Scholar] [CrossRef]
- Eid, C.; Koliou, E.; Valles, M.; Reneses, J.; Hakvoort, R. Time-based pricing and electricity demand response: Existing barriers and next steps. Util. Policy 2016, 40, 15–25. [Google Scholar] [CrossRef]
- Avordeh, T.K.; Gyamfi, S.; Opoku, A.A. The role of demand response in residential electricity load reduction using appliance shifting techniques. Int. J. Energy Sect. Manag. 2022, 16, 605–635. [Google Scholar] [CrossRef]
- Shareef, H.; Ahmed, M.S.; Mohamed, A.; Al Hassan, E. Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. IEEE Access 2018, 6, 24498–24509. [Google Scholar] [CrossRef]
- Das, N.; Chakrabartty, J.; Dey, M.; Gupta, A.S.; Matin, M. Flexibility requirement for large-scale renewable energy integration in Indian power system: Technology, policy and modeling options. Energy Strategy Rev. 2020, 29, 100482. [Google Scholar] [CrossRef]
- Agupugo, C.P.; Kehinde, H.M.; Manuel, H.N.N. Optimization of microgrid operations using renewable energy sources. Eng. Sci. Technol. J. 2024, 5, 2379–2401. [Google Scholar] [CrossRef]
- Zaidi, S.S.; Zaidi, S.S.H.; Khan, B.M.; Moin, L. Optimal designing of grid-connected microgrid systems for residential and commercial applications in Pakistan. Heliyon 2023, 9, e17990. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Lin, X.; Okba, M.I. Hybrid renewable microgrid optimization techniques: A review. Renew. Sustain. Energy Rev. 2018, 82, 2039–2052. [Google Scholar] [CrossRef]
- Xia, Y.; Wei, W.; Yu, M.; Peng, Y.; Tang, J. Decentralized multi-time scale power control for a hybrid AC/DC microgrid with multiple subgrids. IEEE Trans. Power Electron. 2017, 33, 4061–4072. [Google Scholar] [CrossRef]
- Yan, B.; Luh, P.B.; Warner, G.; Zhang, P. Operation and design optimization of microgrids with renewables. IEEE Trans. Autom. Sci. Eng. 2017, 14, 573–585. [Google Scholar] [CrossRef]
- Fusco, G.; Russo, M. A decentralized approach for voltage control by multiple distributed energy resources. IEEE Trans. Smart Grid 2021, 12, 3115–3127. [Google Scholar] [CrossRef]
- Han, Y.; Ning, X.; Yang, P.; Xu, L. Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled DC microgrids. IEEE Access 2019, 7, 149202–149223. [Google Scholar] [CrossRef]
- Xu, S.; Xue, Y.; Chang, L. Review of power system support functions for inverter-based distributed energy resources-standards, control algorithms, and trends. IEEE Open J. Power Electron. 2021, 2, 88–105. [Google Scholar] [CrossRef]
- Zuo, K.; Wu, L. A review of decentralized and distributed control approaches for islanded microgrids: Novel designs, current trends, and emerging challenges. Electr. J. 2022, 35, 107138. [Google Scholar] [CrossRef]
- Abdelkader, S.; Amissah, J.; Kinga, S.; Mugerwa, G.; Emmanuel, E.; Mansour, D.-E.A.; Bajaj, M.; Blazek, V.; Prokop, L. Securing modern power systems: Implementing comprehensive strategies to enhance resilience and reliability against cyber-attacks. Results Eng. 2024, 23, 102647. [Google Scholar] [CrossRef]
- Vuddanti, S.; Salkuti, S.R. Review of energy management system approaches in microgrids. Energies 2021, 14, 5459. [Google Scholar] [CrossRef]
- Shaier, A.A.; Elymany, M.M.; Enany, M.A.; Elsonbaty, N.A. Multi-objective optimization and algorithmic evaluation for EMS in a HRES integrating PV, wind, and backup storage. Sci. Rep. 2025, 15, 1147. [Google Scholar] [CrossRef]
- Medina, C.; Ana, C.R.M.; González, G. Transmission grids to foster high penetration of large-scale variable renewable energy sources–A review of challenges, problems, and solutions. Int. J. Renew. Energy Res. 2022, 12, 146–169. [Google Scholar]
- Tank, I.; Mali, S. Renewable based DC microgrid with energy management system. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kozhikode, India, 19–21 February 2015. [Google Scholar]
- Shuai, Z.; Hu, Y.; Peng, Y.; Tu, C.; Shen, Z.J. Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory. IEEE Trans. Ind. Electron. 2017, 64, 7467–7477. [Google Scholar] [CrossRef]
- Araujo, L.S.; Callegari, J.M.S.; Cardoso Filho, B.J.; Brandao, D.I. Heterogeneous microgrids: Centralized control strategy with distributed grid-forming converters. Int. J. Electr. Power Energy Syst. 2024, 158, 109950. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, C.; Yao, W.; Liang, N.; Xia, P.; Cao, P.; Dong, Y.; Zhang, Y.-a.; Liu, Z.; Li, D. Impacts of stochastic forecast errors of renewable energy generation and load demands on microgrid operation. Renew. Energy 2019, 133, 442–461. [Google Scholar] [CrossRef]
- Ahmed, S.D.; Al-Ismail, F.S.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M. Grid integration challenges of wind energy: A review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Puchalapalli, S.; Singh, B.; Das, S. Synchronizing control of wind turbine driven doubly fed induction generator system with DG in remote area involving solar PV-battery energy storage. IEEE Trans. Ind. Appl. 2023, 59, 5774–5783. [Google Scholar] [CrossRef]
- Zhang, Y.; Shotorbani, A.M.; Wang, L.; Li, W. A combined hierarchical and autonomous DC grid control for proportional power sharing with minimized voltage variation and transmission loss. IEEE Trans. Power Deliv. 2021, 37, 3213–3224. [Google Scholar] [CrossRef]
- Berrueta, A.; San Martín, I.; Sanchis, P.; Ursúa, A. Lithium-ion batteries as distributed energy storage systems for microgrids. In Distributed Energy Resources in Microgrids; Elsevier: Amsterdam, The Netherlands, 2019; pp. 143–183. [Google Scholar]
- Santos-Pereira, K.; Pereira, J.D.; Veras, L.S.; Cosme, D.L.; Oliveira, D.Q.; Saavedra, O.R. The requirements and constraints of storage technology in isolated microgrids: A comparative analysis of lithium-ion vs. lead-acid batteries. Energy Syst. 2021, 16, 967–990. [Google Scholar] [CrossRef]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Reliability evaluation of PV systems with integrated battery energy storage systems: DC-coupled and AC-coupled configurations. Electronics 2019, 8, 1059. [Google Scholar] [CrossRef]
- Espina, E.; Llanos, J.; Burgos-Mellado, C.; Cardenas-Dobson, R.; Martinez-Gomez, M.; Saez, D. Distributed control strategies for microgrids: An overview. IEEE Access 2020, 8, 193412–193448. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, Z.; Li, Z.; Li, X.; Qin, J.; Liang, C.; Han, M.; Yin, Y.; Bai, J.; Wang, C. A survey of battery–supercapacitor hybrid energy storage systems: Concept, topology, control and application. Symmetry 2022, 14, 1085. [Google Scholar] [CrossRef]
- Aryani, D.R.; Song, H. Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode. Energies 2016, 9, 469. [Google Scholar] [CrossRef]
- Shen, F.; Wu, Q.; Xue, Y. Review of service restoration for distribution networks. J. Mod. Power Syst. Clean Energy 2019, 8, 1–14. [Google Scholar] [CrossRef]
- Boaro, M.; Fuselli, D.; Angelis, F.D.; Liu, D.; Wei, Q.; Piazza, F. Adaptive dynamic programming algorithm for renewable energy scheduling and battery management. Cogn. Comput. 2013, 5, 264–277. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Mehrjerdi, H. Multi-stage proactive scheduling of strategic DISCOs in mutual interaction with cloud energy storage and deferrable loads. IEEE Trans. Sustain. Energy 2023, 14, 1411–1424. [Google Scholar] [CrossRef]
- Arslan, M.; Yılmaz, C. Design and optimization of multigeneration biogas power plant using waste heat recovery System: A case study with Energy, Exergy, and thermoeconomic approach of Power, cooling and heating. Fuel 2022, 324, 124779. [Google Scholar] [CrossRef]
- Thang, T.; Ahmed, A.; Kim, C.-i.; Park, J.-H. Flexible system architecture of stand-alone PV power generation with energy storage device. IEEE Trans. Energy Convers. 2015, 30, 1386–1396. [Google Scholar] [CrossRef]
- Faria, J.; Pombo, J.; Mariano, S.; Calado, M. Plug-and-Play Framework for Assessment of Renewable Energy Community Strategies. IEEE Access 2025, 13, 29811–29829. [Google Scholar] [CrossRef]
- Widergren, S.; Melton, R.; Khandekar, A.; Nordman, B.; Knight, M. The plug-and-play electricity era: Interoperability to integrate anything, anywhere, anytime. IEEE Power Energy Mag. 2019, 17, 47–58. [Google Scholar] [CrossRef]
- Ghorbanian, M.; Dolatabadi, S.H.; Masjedi, M.; Siano, P. Communication in smart grids: A comprehensive review on the existing and future communication and information infrastructures. IEEE Syst. J. 2019, 13, 4001–4014. [Google Scholar] [CrossRef]
- Mohanty, A.; Ramasamy, A.; Verayiah, R.; Bastia, S.; Dash, S.S.; Cuce, E.; Khan, T.Y.; Soudagar, M.E.M. Power system resilience and strategies for a sustainable infrastructure: A review. Alex. Eng. J. 2024, 105, 261–279. [Google Scholar] [CrossRef]
- Khayat, Y.; Shafiee, Q.; Heydari, R.; Naderi, M.; Dragičević, T.; Simpson-Porco, J.W.; Dörfler, F.; Fathi, M.; Blaabjerg, F.; Guerrero, J.M. On the secondary control architectures of AC microgrids: An overview. IEEE Trans. Power Electron. 2019, 35, 6482–6500. [Google Scholar] [CrossRef]
- Nawaz, F.; Pashajavid, E.; Fan, Y.; Batool, M. A comprehensive review of the state-of-the-art of secondary control strategies for microgrids. IEEE Access 2023, 11, 102444–102459. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Liu, D.; Deng, F.; Chen, Z. Enhanced hierarchical control framework of microgrids with efficiency improvement and thermal management. IEEE Trans. Energy Convers. 2020, 36, 11–22. [Google Scholar] [CrossRef]
- Yin, Y.; Du, D.; Fei, M.; Rakić, A. Overview of hierarchical control of AC and DC microgrid. In Proceedings of the 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), Shanghai, China, 12–14 December 2021. [Google Scholar]
- Baharizadeh, M.; Golsorkhi, M.S.; Savaghebi, M. Secondary control with reduced communication requirements for accurate reactive power sharing in AC microgrids. IET Smart Grid 2023, 6, 638–652. [Google Scholar] [CrossRef]
- Shen, X.; Tan, D.; Shuai, Z.; Luo, A. Control Techniques for Bidirectional Interlinking Converters in Hybrid Microgrids: Leveraging the advantages of both ac and dc. IEEE Power Electron. Mag. 2019, 6, 39–47. [Google Scholar] [CrossRef]
- Chang, K.; Deb, S.; Ganguly, A.; Yu, X.; Sah, S.P.; Pande, P.P.; Belzer, B.; Heo, D. Performance evaluation and design trade-offs for wireless network-on-chip architectures. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2012, 8, 1–25. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Biglarahmadi, M.; Ketabi, A.; Baghaee, H.R.; Guerrero, J.M. Integrated nonlinear hierarchical control and management of hybrid AC/DC microgrids. IEEE Syst. J. 2021, 16, 902–913. [Google Scholar] [CrossRef]
- Aunemo, H. Implementing Off-Grid Solar Solutions in Southeast Asia—A CSR-based Approach to Rural Development. Master’s Thesis, NTNU, Trondheim, Norway, 2015. [Google Scholar]
- Heynen, A.P.; Lant, P.A.; Sridharan, S.; Smart, S.; Greig, C. The role of private sector off-grid actors in addressing India’s energy poverty: An analysis of selected exemplar firms delivering household energy. Energy Build. 2019, 191, 95–103. [Google Scholar] [CrossRef]
- Callegari, J.M.; Araujo, L.S.; Brandão, D.A.d.L.; Cardoso Filho, B.J.; Brandão, D.I. Integrating Multiple Control Actions in Advanced Microgrids: An Analogy to Well-Established Inverter Control. Eletrônica Potência 2025, 30, e202516. [Google Scholar] [CrossRef]
- Callegari, J.M.S.; Chaves, L.S.; Araujo, L.S.; Cardoso Filho, B.J.; Brandao, D.I. Centralized strategies for grid-connected microgrids integrating multi-control actions to enhance dynamic response. IEEE Open J. Ind. Electron. Soc. 2025, 6, 331–344. [Google Scholar] [CrossRef]
- Qin, J.; Li, X.; Dong, Z.; Zhang, Z.; Li, Z.; Liu, Y. Distributed Cooperative Control for DC Microgrid Clusters Interconnected by Multi-port Converter. In Proceedings of the International Symposium on New Energy and Electrical Technology (ISNEET 2022), Anyang, China, 25 August 2022; Springer: Singapore, 2023. [Google Scholar]
- Micallef, A.; Guerrero, J.M.; Vasquez, J.C. New horizons for microgrids: From rural electrification to space applications. Energies 2023, 16, 1966. [Google Scholar] [CrossRef]
- Yuan, M.; Fu, Y.; Mi, Y.; Li, Z.; Wang, C. Hierarchical control of DC microgrid with dynamical load power sharing. Appl. Energy 2019, 239, 1–11. [Google Scholar] [CrossRef]
- Cagnano, A.; De Tuglie, E.; Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Appl. Energy 2020, 258, 114039. [Google Scholar] [CrossRef]
- Moheb, A.M.; El-Hay, E.A.; El-Fergany, A.A. Comprehensive review on fault ride-through requirements of renewable hybrid microgrids. Energies 2022, 15, 6785. [Google Scholar] [CrossRef]
- Azeem, O.; Ali, M.; Abbas, G.; Uzair, M.; Qahmash, A.; Algarni, A.; Hussain, M.R. A comprehensive review on integration challenges, optimization techniques and control strategies of hybrid AC/DC Microgrid. Appl. Sci. 2021, 11, 6242. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Liu, H.; Zhang, Y.; Wang, J. Hybrid AC/DC microgrid: Systematic evaluation of interlinking converters, control strategies, and protection schemes: A review. IEEE Access 2024, 12, 160097–160132. [Google Scholar] [CrossRef]
- Sarwar, S.; Kirli, D.; Merlin, M.M.; Kiprakis, A.E. Major challenges towards energy management and power sharing in a hybrid AC/DC microgrid: A review. Energies 2022, 15, 8851. [Google Scholar] [CrossRef]
- Muralidhar, K.; Rajasekar, N. A new design and feasible architecture of DC microgrid for rural electrification. Int. Trans. Electr. Energy Syst. 2021, 31, e12973. [Google Scholar] [CrossRef]
- dos Santos Neto, P.J.; Barros, T.A.; Silveira, J.P.; Ruppert Filho, E.; Vasquez, J.C.; Guerrero, J.M. Power management techniques for grid-connected DC microgrids: A comparative evaluation. Appl. Energy 2020, 269, 115057. [Google Scholar] [CrossRef]
- Kim, J.-S.; So, S.M.; Kim, J.-T.; Cho, J.-W.; Park, H.-J.; Jufri, F.H.; Jung, J. Microgrids platform: A design and implementation of common platform for seamless microgrids operation. Electr. Power Syst. Res. 2019, 167, 21–38. [Google Scholar] [CrossRef]
- Shaban, M.; Mosa, M.A.; Ali, A.; Abdel-Latif, K. Effect of power sharing control techniques of hybrid energy storage system during fault conditions in DC microgrid. J. Energy Storage 2023, 72, 108249. [Google Scholar] [CrossRef]
- Meng, L.; Shafiee, Q.; Trecate, G.F.; Karimi, H.; Fulwani, D.; Lu, X.; Guerrero, J.M. Review on control of DC microgrids and multiple microgrid clusters. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 928–948. [Google Scholar]
- Smith, E.J. Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2023. [Google Scholar]
- Mohammadi, J.; Ajaei, F.B. Improved mode-adaptive droop control strategy for the DC microgrid. IEEE Access 2019, 7, 86421–86435. [Google Scholar] [CrossRef]
- Kumar, M. BIC based on Modified Droop Control of Hybrid AC/DC Microgrid with PV/Wind/ESS under Variable Generation and Load Conditions. Iran. J. Electr. Electron. Eng. 2022, 18, 1. [Google Scholar]
- Richard, L.; Boudinet, C.; Ranaivoson, S.A.; Rabarivao, J.O.; Befeno, A.E.; Frey, D.; Alvarez-Hérault, M.-C.; Raison, B.; Saincy, N. Development of a DC microgrid with decentralized production and storage: From the lab to field deployment in rural Africa. Energies 2022, 15, 6727. [Google Scholar] [CrossRef]
- Modu, B.; Abdullah, M.P.; Sanusi, M.A.; Hamza, M.F. DC-based microgrid: Topologies, control schemes, and implementations. Alex. Eng. J. 2023, 70, 61–92. [Google Scholar] [CrossRef]
- Ahmad, G.; Hassan, A.; Islam, A.; Shafiullah, M.; Abido, M.A.; Al-Dhaifallah, M. Distributed Control Strategies for Microgrids: A Critical Review of Technologies and Challenges. IEEE Access 2025, 13, 60702–60719. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Alhasnawi, A.N.; Hussaind, F.F.K.; Homod, R.Z.; Hasan, H.A.; Khalaf, O.I.; Abbassi, R.; Bazooyar, B.; Zanker, M. A novel efficient energy optimization in smart urban buildings based on optimal demand side management. Energy Strategy Rev. 2024, 54, 101461. [Google Scholar] [CrossRef]
- Shaukat, N.; Islam, M.R.; Rahman, M.M.; Khan, B.; Ullah, B.; Ali, S.M.; Fekih, A. Decentralized, democratized, and decarbonized future electric power distribution grids: A survey on the paradigm shift from the conventional power system to micro grid structures. IEEE Access 2023, 11, 60957–60987. [Google Scholar] [CrossRef]
- Yuan, C.; Gou, J.; You, J.; Li, B.; Du, X.; Fu, Y.; Zhang, W.; Wang, X.; Shi, P. Modular Multilevel Converter-Based Hybrid Energy Storage System Integrating Supercapacitors and Batteries with Hybrid Synchronous Control Strategy. Processes 2025, 13, 1580. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Q.; Liu, L.; Zhang, L.; Wang, P.; Zhang, H. Proportional Current Sharing Based on Periodic Dynamic Event-driven $ H_ {\infty} $ Consensus in DC Microgrids with Power Coupling. CSEE J. Power Energy Syst. 2022, 8, 1558–1568. [Google Scholar]
- Karami, P.; Baharizadeh, M.; Golsorkhi, M.S.; Ershadi, M.H. A coordinated control of hybrid AC/DC microgrids based on master–slave method. Electr. Eng. 2022, 104, 3619–3629. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Sun, Q.; Guerrero, J.M.; Ma, D. Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control. IEEE Trans. Smart Grid 2015, 8, 557–571. [Google Scholar] [CrossRef]
- Baharizadeh, M.; Karshenas, H.R. A decentralized control for accurate power sharing and precise voltage regulation in hybrid single-phase ac/dc microgrids. IEEE Trans. Smart Grid 2023, 15, 2493–2506. [Google Scholar] [CrossRef]
- Xu, Q.; Xiao, J.; Wang, P.; Wen, C. A decentralized control strategy for economic operation of autonomous AC, DC, and hybrid AC/DC microgrids. IEEE Trans. Energy Convers. 2017, 32, 1345–1355. [Google Scholar] [CrossRef]
- Cárdenas, P.A.; Martínez, M.; Molina, M.G.; Mercado, P.E. Development of control techniques for ac microgrids: A critical assessment. Sustainability 2023, 15, 15195. [Google Scholar] [CrossRef]
- Tang, H.; Wang, S. A model-based predictive dispatch strategy for unlocking and optimizing the building energy flexibilities of multiple resources in electricity markets of multiple services. Appl. Energy 2022, 305, 117889. [Google Scholar] [CrossRef]
- Sarangi, S.; Sahu, B.K.; Rout, P.K. Distributed generation hybrid AC/DC microgrid protection: A critical review on issues, strategies, and future directions. Int. J. Energy Res. 2020, 44, 3347–3364. [Google Scholar] [CrossRef]
- Kazemi, M.; Zareipour, H. Long-term scheduling of battery storage systems in energy and regulation markets considering battery’s lifespan. IEEE Trans. Smart Grid 2017, 9, 6840–6849. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M. Uptake and accumulation of nano/microplastics in plants: A critical review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Almutairi, K.; Hosseini Dehshiri, S.S.; Hosseini Dehshiri, S.J.; Mostafaeipour, A.; Issakhov, A.; Techato, K. Use of a hybrid wind–solar–diesel–battery energy system to power buildings in remote areas: A case study. Sustainability 2021, 13, 8764. [Google Scholar] [CrossRef]
- Mazur, Ł.; Cieślik, S.; Czapp, S. Trends in locally balanced energy systems without the use of fossil fuels: A review. Energies 2023, 16, 4551. [Google Scholar] [CrossRef]
- Mquqwana, M.A.; Krishnamurthy, S. Particle swarm optimization for an optimal hybrid renewable energy microgrid system under uncertainty. Energies 2024, 17, 422. [Google Scholar] [CrossRef]
- Anvari-Moghaddam, A.; Rahimi-Kian, A.; Mirian, M.S.; Guerrero, J.M. A multi-agent based energy management solution for integrated buildings and microgrid system. Appl. Energy 2017, 203, 41–56. [Google Scholar] [CrossRef]
- Huang, P.; Kidanemariam, A.; Bjornsson, L.-H. Transforming electric vehicles into mobile power sources: Technical performance evaluation of the electric vehicle based virtual electricity network (EVEN) solution for improving the power supply resilience. Sustain. Cities Soc. 2025, 128, 106477. [Google Scholar] [CrossRef]
- Cabrane, Z.; Kim, J.; Yoo, K.; Ouassaid, M. HESS-based photovoltaic/batteries/supercapacitors: Energy management strategy and DC bus voltage stabilization. Sol. Energy 2021, 216, 551–563. [Google Scholar] [CrossRef]
- Shyni, R.; Kowsalya, M. HESS-based microgrid control techniques empowered by artificial intelligence: A systematic review of grid-connected and standalone systems. J. Energy Storage 2024, 84, 111012. [Google Scholar]
- Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Role of optimization techniques in microgrid energy management systems—A review. Energy Strategy Rev. 2022, 43, 100899. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A survey on microgrid energy management considering flexible energy sources. Energies 2019, 12, 2156. [Google Scholar] [CrossRef]
- Kenneth, I.I.; Peter, E.O.; Onyinyechukwu, C.; Aniekan, A.U.; Bright, N.; Valentine, I.I.; Adetomilola, V.F. Microgrid systems in US energy infrastructure: A comprehensive review: Exploring decentralized energy solutions, their benefits, and challenges in regional implementation. World J. Adv. Res. Rev. 2024, 21, 973–987. [Google Scholar] [CrossRef]
- Bakar, N.N.A.; Guerrero, J.M.; Vasquez, J.C.; Bazmohammadi, N.; Othman, M.; Rasmussen, B.D.; Al-Turki, Y.A. Optimal configuration and sizing of seaport microgrids including renewable energy and cold ironing—The Port of Aalborg case study. Energies 2022, 15, 431. [Google Scholar] [CrossRef]
- Amupolo, A.; Nambundunga, S.; Chowdhury, D.S.; Grün, G. Techno-economic feasibility of off-grid renewable energy electrification schemes: A case study of an informal settlement in Namibia. Energies 2022, 15, 4235. [Google Scholar] [CrossRef]
- Kharrich, M.; Mohammed, O.H.; Alshammari, N.; Akherraz, M. Multi-objective optimization and the effect of the economic factors on the design of the microgrid hybrid system. Sustain. Cities Soc. 2021, 65, 102646. [Google Scholar] [CrossRef]
- Nayak, C.; Pattanaik, B.P.; Panda, J.K. Trade-off study on economy and environmental aspects of a dual-fuel diesel engine using diesel additive and producer gas. J. Energy Resour. Technol. 2022, 144, 032306. [Google Scholar] [CrossRef]
- Yakubu, S.; Tedla, T.S.; Gawusu, S.; Wetajega, S.D.; Josue, M.M.; Workneh, G.A. Hybrid Energy System as Driver of Sustainable Rural Development: An Optimization and Impact Analysis of Tulefa Energy Village, Ethiopia. Energy Nexus 2025, 18, 100434. [Google Scholar] [CrossRef]
- Pesantes, L.A.; Hidalgo-León, R.; Rengifo, J.; Torres, M.; Aragundi, J.; Cordova-Garcia, J.; Ugarte, L.F. Optimal design of hybrid microgrid in isolated communities of ecuador. J. Mod. Power Syst. Clean Energy 2024, 12, 488–499. [Google Scholar] [CrossRef]
- Núñez-Rodríguez, R.A.; Unsihuay-Vila, C.; Posada, J.; Pinzón-Ardila, O.; Aoki, A.R.; Bueno-Otto, R. Real-Time Testing Optimal Power Flow in Smart-Transformer-Based Meshed Hybrid Microgrids: Design and Validation. Energies 2024, 17, 1950. [Google Scholar] [CrossRef]
- Runefors, M. Perceived Research Needs for Battery and Hydrogen Safety: A Nordic Perspective; Report No. 7057; Lund University: Lund, Sweden, 2024. [Google Scholar]
- Balasubramanian, A.; Gurushankar, N. Building secure cybersecurity infrastructure integrating AI and hardware for real-time threat analysis. Int. J. Core Eng. Manag. 2020, 6, 263–270. [Google Scholar]
- El-Emam, R.S.; Constantin, A.; Bhattacharyya, R.; Ishaq, H.; Ricotti, M.E. Nuclear and renewables in multipurpose integrated energy systems: A critical review. Renew. Sustain. Energy Rev. 2024, 192, 114157. [Google Scholar] [CrossRef]
- Lyster, R.; Farber, D.A.; Verchick, R.R. Climate-induced disasters and electricity infrastructure. In Research Handbook on Climate Change Adaptation Law; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 358–391. [Google Scholar]
- Ievgen, M.; Olexandr, K.; Kateryna, U.; Sergey, C.; Sergiy, Y.; Mykhaylo, U. Mathematical models and methods of effective estimation in multi-objective optimization problems under uncertainties. In Proceedings of the World Congress of Structural and Multidisciplinary Optimisation (WCSMO 2017), Braunschweig, Germany, 5–9 June 2017; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef]
- Hemeida, M.G.; Hemeida, A.M.; Senjyu, T.; Osheba, D. Renewable energy resources technologies and life cycle assessment. Energies 2022, 15, 9417. [Google Scholar] [CrossRef]
- Shezan, S.A.; Ishraque, M.F.; Shafiullah, G.; Kamwa, I.; Paul, L.C.; Muyeen, S.; Nss, R.; Saleheen, M.Z.; Kumar, P.P. Optimization and control of solar-wind islanded hybrid microgrid by using heuristic and deterministic optimization algorithms and fuzzy logic controller. Energy Rep. 2023, 10, 3272–3288. [Google Scholar] [CrossRef]
- Kumar, K.P.; Saravanan, B. Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids–A review. Renew. Sustain. Energy Rev. 2017, 71, 348–358. [Google Scholar] [CrossRef]
- Bertsimas, D.; Brown, D.B.; Caramanis, C. Theory and applications of robust optimization. SIAM Rev. 2011, 53, 464–501. [Google Scholar] [CrossRef]
- Nammouchi, A.; Aupke, P.; D’andreagiovanni, F.; Ghazzai, H.; Theocharis, A.; Kassler, A. Robust opportunistic optimal energy management of a mixed microgrid under asymmetrical uncertainties. Sustain. Energy Grids Netw. 2023, 36, 101184. [Google Scholar] [CrossRef]
- Vidan, M.; D’Andreagiovanni, F.; Pandžić, H. Individual thermal generator and battery storage bidding strategies based on robust optimization. IEEE Access 2021, 9, 66829–66838. [Google Scholar] [CrossRef]
- Firouzmakan, P.; Hooshmand, R.-A.; Bornapour, M.; Khodabakhshian, A. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renew. Sustain. Energy Rev. 2019, 108, 355–368. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Carli, R.; Dotoli, M. Robust optimal energy management of a residential microgrid under uncertainties on demand and renewable power generation. IEEE Trans. Autom. Sci. Eng. 2020, 18, 618–637. [Google Scholar] [CrossRef]
- Budiman, F.N.; Ramli, M.A.; Milyani, A.H.; Bouchekara, H.R.; Rawa, M.; Muktiadji, R.F.; Seedahmed, M.M. Stochastic optimization for the scheduling of a grid-connected microgrid with a hybrid energy storage system considering multiple uncertainties. Energy Rep. 2022, 8, 7444–7456. [Google Scholar] [CrossRef]
- da Fonseca Santos, S. Planning of Power Distribution Systems with High Penetration of Renewable Energy Sources Using Stochastic Optimization. Ph.D. Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2017. [Google Scholar]
- Ding, T.; Yang, Q.; Yang, Y.; Li, C.; Bie, Z.; Blaabjerg, F. A data-driven stochastic reactive power optimization considering uncertainties in active distribution networks and decomposition method. IEEE Trans. Smart Grid 2017, 9, 4994–5004. [Google Scholar] [CrossRef]
- Riaz, M.; Ahmad, S.; Hussain, I.; Naeem, M.; Mihet-Popa, L. Probabilistic optimization techniques in smart power system. Energies 2022, 15, 825. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Bordons, C.; Tobajas, J.; Real-Calvo, R.; Santiago, I.; Grieu, S. Stochastic optimization of microgrids with hybrid energy storage systems for grid flexibility services considering energy forecast uncertainties. IEEE Trans. Power Syst. 2021, 36, 5537–5547. [Google Scholar] [CrossRef]
- Jayachandran, M.; Ravi, G. Design and optimization of hybrid micro-grid system. Energy Procedia 2017, 117, 95–103. [Google Scholar] [CrossRef]
- Ma, X.; Mu, Y.; Zhang, Y.; Zang, C.; Li, S.; Jiang, X.; Cui, M. Multi-objective microgrid optimal dispatching based on improved bird swarm algorithm. Glob. Energy Interconnect. 2022, 5, 154–167. [Google Scholar] [CrossRef]
- Pecenak, Z.K.; Stadler, M.; Mathiesen, P.; Fahy, K.; Kleissl, J. Robust design of microgrids using a hybrid minimum investment optimization. Appl. Energy 2020, 276, 115400. [Google Scholar] [CrossRef]
- Sharifnia, S.M.E. Robust Optimization Approach for Systems Under Uncertainty via Hybrid Metamodeling. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2024. [Google Scholar]
- Ahmed, M.; Mirsaeidi, S.; Koondhar, M.A.; Karami, N.; Tag-Eldin, E.M.; Ghamry, N.A.; El-Sehiemy, R.A.; Alaas, Z.M.; Mahariq, I.; Sharaf, A. Mitigating uncertainty problems of renewable energy resources through efficient integration of hybrid solar PV/wind systems into power networks. IEEE Access 2024, 12, 30311–30328. [Google Scholar] [CrossRef]
- Yang, J.; Su, C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy 2021, 223, 120043. [Google Scholar] [CrossRef]
- Tran, V.T.; Muttaqi, K.M.; Sutanto, D. A robust power management strategy with multi-mode control features for an integrated PV and energy storage system to take the advantage of ToU electricity pricing. IEEE Trans. Ind. Appl. 2018, 55, 2110–2120. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Z.; Lee, W.-J. The impact of time-of-use (TOU) rate structure on consumption patterns of the residential customers. IEEE Trans. Ind. Appl. 2017, 53, 5130–5138. [Google Scholar] [CrossRef]
- Nwulu, N.I.; Xia, X. Optimal dispatch for a microgrid incorporating renewables and demand response. Renew. Energy 2017, 101, 16–28. [Google Scholar] [CrossRef]
- Chatuanramtharnghaka, B.; Deb, S.; Singh, K.R.; Ustun, T.S.; Kalam, A. Reviewing demand response for energy management with consideration of renewable energy sources and electric vehicles. World Electr. Veh. J. 2024, 15, 412. [Google Scholar] [CrossRef]
- Ahmed, F. Demand Side Management Using DLC in Smart Grid. Ph.D. Thesis, COMSATS University Islamabad, Islamabad, Pakistan, 2017. [Google Scholar]
- Mock, D.; Bush, J.; Arbogast, S.V. DERs Role in a More Reliable, Sustainable, and Resilient Power System; UNC Energy Center, Kenan-Flagler Business School: Chapel Hill, NC, USA, 2024. [Google Scholar]
- Wang, X.; Palazoglu, A.; El-Farra, N.H. Operational optimization and demand response of hybrid renewable energy systems. Appl. Energy 2015, 143, 324–335. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Li, F.; Wang, Y.; Zhang, Y. Energy management of smart micro-grid with response loads and distributed generation considering demand response. J. Clean. Prod. 2018, 197, 1069–1083. [Google Scholar] [CrossRef]
- Boateng, N.S.; Liscio, M.C.; Sospiro, P.; Talluri, G. Economic Cost–Benefit Analysis on Smart Grid Implementation in China. Sustainability 2025, 17, 2946. [Google Scholar] [CrossRef]
- Nguyen, A.-D.; Bui, V.-H.; Hussain, A.; Nguyen, D.-H.; Kim, H.-M. Impact of demand response programs on optimal operation of multi-microgrid system. Energies 2018, 11, 1452. [Google Scholar] [CrossRef]
- Robert, F.C.; Sisodia, G.S.; Gopalan, S. A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids. Sustain. Cities Soc. 2018, 40, 735–745. [Google Scholar] [CrossRef]
- Cavus, M. Advancing Power Systems with Renewable Energy and Intelligent Technologies: A Comprehensive Review on Grid Transformation and Integration. Electronics 2025, 14, 1159. [Google Scholar] [CrossRef]
- Almihat, M.G.M.; Munda, J.L. Review on recent control system strategies in Microgrid. Edelweiss Appl. Sci. Technol. 2024, 8, 5089–5111. [Google Scholar] [CrossRef]
- Mohamed, S.; Shaaban, M.F.; Ismail, M.; Serpedin, E.; Qaraqe, K.A. An efficient planning algorithm for hybrid remote microgrids. IEEE Trans. Sustain. Energy 2018, 10, 257–267. [Google Scholar] [CrossRef]
- Ali, M.S.; Sharma, A.; Joy, T.A.; Halim, M.A. A Comprehensive Review of Integrated Energy Management for Future Smart Energy System. Control Syst. Optim. Lett. 2024, 2, 43–51. [Google Scholar] [CrossRef]
- Ozkop, E. A Survey on Direct Load Control Technologies in the Smart Grid. IEEE Access 2024, 12, 4997–5053. [Google Scholar] [CrossRef]
- Alirezaei, R.; Dashti, R.; Mirhosseini, M. Analysis of Energy Supply Scenarios Using Grid-Connected Hybrid Systems: Investigating Time-of-Use Demand Response Strategy for Improving Operational Performance. Energy 2025, 318, 134596. [Google Scholar] [CrossRef]
- Mina-Casaran, J.D.; Echeverry, D.F.; Lozano, C.A. Demand response integration in microgrid planning as a strategy for energy transition in power systems. IET Renew. Power Gener. 2021, 15, 889–902. [Google Scholar] [CrossRef]
- Dey, B.; Misra, S.; Marquez, F.P.G. Microgrid system energy management with demand response program for clean and economical operation. Appl. Energy 2023, 334, 120717. [Google Scholar] [CrossRef]
- Zunnurain, I.; Maruf, M.N.I.; Rahman, M.M.; Shafiullah, G. Implementation of advanced demand side management for microgrid incorporating demand response and home energy management system. Infrastructures 2018, 3, 50. [Google Scholar] [CrossRef]
- Vanthournout, K.; Dupont, B.; Foubert, W.; Stuckens, C.; Claessens, S. An automated residential demand response pilot experiment, based on day-ahead dynamic pricing. Appl. Energy 2015, 155, 195–203. [Google Scholar] [CrossRef]
- Nunna, H.K.; Doolla, S. Multiagent-based distributed-energy-resource management for intelligent microgrids. IEEE Trans. Ind. Electron. 2012, 60, 1678–1687. [Google Scholar] [CrossRef]
- Nunna, H.K.; Doolla, S. Energy management in microgrids using demand response and distributed storage—A multiagent approach. IEEE Trans. Power Deliv. 2013, 28, 939–947. [Google Scholar] [CrossRef]
- Herath, P.U.; Fusco, V.; Caceres, M.N.; Venayagamoorthy, G.K.; Squartini, S.; Piazza, F.; Corchado, J.M. Computational intelligence-based demand response management in a microgrid. IEEE Trans. Ind. Appl. 2018, 55, 732–740. [Google Scholar] [CrossRef]
- Al-Kharsan, I.H.; Zahid, A.Z.G.; Marhoon, A.F.; Mahmood, J.R. Demand response programs in smart grids–survey. Int. J. Eng. Technol. 2018, 7, 5090–5099. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Kyeremeh, F.; Acheampong, D.; Fang, Z.; Liu, F.; Peprah, F. Towards Sustainable Electricity for All: Techno-Economic Analysis of Conventional Low-Voltage-to-Microgrid Conversion. Sustainability 2025, 17, 5178. [Google Scholar] [CrossRef]
- Anand, H.; Ramasubbu, R. A real time pricing strategy for remote micro-grid with economic emission dispatch and stochastic renewable energy sources. Renew. Energy 2018, 127, 779–789. [Google Scholar] [CrossRef]
- Xiong, J.; Ye, Y.; Wang, Q.; Dong, X.; Lu, T.; Ma, D. A comprehensive review on distributed energy cooperative control and optimization method for energy interconnection system. Electr. Power Syst. Res. 2024, 237, 111007. [Google Scholar] [CrossRef]
- Skoczkowski, T.; Bielecki, S.; Wołowicz, M.; Sobczak, L.; Węglarz, A.; Gilewski, P. Participation in demand side response. Are individual energy users interested in this? Renew. Energy 2024, 232, 121104. [Google Scholar] [CrossRef]
- Alvina, P.; Bai, X.; Chang, Y.; Liang, D.; Lee, K. Smart community based solution for energy management: An experimental setup for encouraging residential and commercial consumers participation in demand response program. Energy Procedia 2017, 143, 635–640. [Google Scholar] [CrossRef]
- Mohanty, S.; Panda, S.; Parida, S.M.; Rout, P.K.; Sahu, B.K.; Bajaj, M.; Zawbaa, H.M.; Kumar, N.M.; Kamel, S. Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Rep. 2022, 8, 12466–12490. [Google Scholar] [CrossRef]
- Ali, A.N.F.; Sulaima, M.F.; Razak, I.A.W.A.; Kadir, A.F.A.; Mokhlis, H. Artificial intelligence application in demand response: Advantages, issues, status, and challenges. IEEE Access 2023, 11, 16907–16922. [Google Scholar] [CrossRef]
- Talaat, M.; Elkholy, M.; Alblawi, A.; Said, T. Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artif. Intell. Rev. 2023, 56, 10557–10611. [Google Scholar] [CrossRef]
- Cioara, T.; Antal, M.; Antal, C.D.; Anghel, I.; Bertoncini, M.; Arnone, D.; Lazzaro, M.; Mammina, M.; Velivassaki, T.-H.; Voulkidis, A. Data centers optimized integration with multi-energy grids: Test cases and results in operational environment. Sustainability 2020, 12, 9893. [Google Scholar] [CrossRef]
- Jiménez-Vargas, I.; Rey, J.M.; Osma-Pinto, G. Sizing of hybrid microgrids considering life cycle assessment. Renew. Energy 2023, 202, 554–565. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Pamucar, D.; Goswami, S.S. A review of multi-criteria decision-making (MCDM) applications to solve energy management problems from 2010-2025: Current state and future research. Spectr. Decis. Mak. Appl. 2025, 2, 219–241. [Google Scholar] [CrossRef]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P.A. Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Inform. 2025, 8, 62. [Google Scholar] [CrossRef]
Author(s) | Year | Method/Focus | Main Findings | Limitations |
---|---|---|---|---|
Alirezaei, Dashti [162] | 2025 | TOU pricing + Energy Storage Systems (ESS) | Reduced energy costs; demonstrated DR’s role in optimizing small-scale HRMGs. | Scalability issues arise in larger systems, as price signals are less effective in complex markets. |
[163] | 2021 | DR in remote/off-grid systems | Enhanced flexibility and reduced environmental impact. | High investment in communication infra; consumer participation barriers in low-resource areas. |
Dey, Misra [164] | 2023 | Energy management with DR + TOU | Reduced operational costs through TOU-based DR integration. | Effectiveness is limited in volatile pricing environments. |
Zunnurain, Maruf [165] | 2018 | DSM + HEMS framework | Reduced daily energy costs (≈3%); effective load shifting in residential systems. | Limited scalability; not optimized for multi-source large-scale HRMGs. |
Vanthournout, Dupont [166] | 2015 | Automated DR + real-time pricing | Lowered operational costs; improved reliability via automated response. | Customization is required across diverse customer groups. |
Nunna and Doolla [167] | 2012 | Multi-agent DR coordination in interconnected MGs | Improved efficiency and reduced peak demand. | Scalability issues in larger interconnected systems. |
Nunna and Doolla [168] | 2013 | Agent-based DR with incentives | Reduced operational costs and improved stability with incentive mechanisms. | Challenges in handling complex systems with dynamic pricing. |
Herath, Fusco [169] | 2018 | Computational intelligence (PSO, AIS) | Optimized load scheduling, reduced costs, maintained customer comfort. | Did not model consumer behavior patterns in detail. |
Nwulu and Xia [148] | 2017 | Optimal dispatch with DR + RES integration | DR reduces peak demand; improved renewable utilization; cost reduction. | Performance under fluctuating real-time RES availability not fully evaluated. |
Robert, Sisodia [156] | 2018 | DR + storage integration | Stabilized renewables through DR + storage; improved reliability. | Oversimplified storage models; weak representation of consumer participation. |
Nguyen, Bui [155] | 2018 | RTP + Emergency DR in multi-microgrid systems | Reduced operational costs; enhanced trading efficiency in interconnected MGs. | Did not examine DR performance under real-time variability of renewables. |
Al-Kharsan, Zahid [170] | 2018 | Incentive design for Emergency DR programs (EDRP) | Well-designed incentives increased participation, reduced costs, improved reliability. |
Research Gap | Description | Example Studies | Proposed Future Research Directions |
---|---|---|---|
Scalability of DR Models | Current DR strategies are effective in small systems but face challenges in larger, more complex HRMGs. | Huang, Kidanemariam [108,163] | Develop scalable DR models that handle multiple energy sources and complex load profiles in large HRMGs. |
Real-Time Adaptability | DR models lack real-time adaptability to handle fluctuations in renewable generation and demand. | Nwulu and Xia [148,156] | Explore real-time DR models that dynamically adjust based on renewable generation and market price fluctuations |
Consumer Behavior and Engagement | DR effectiveness is hampered by inconsistent consumer participation and varying demand behaviors. | Alvina, Bai [176] Mohanty, Panda [177] | Integrate behavioral economics to better predict and motivate consumer participation in DR programs. |
Data and Computational Demands | Optimization techniques require substantial computational power, limiting real-time applicability in large systems. | Nwulu and Xia [148,156] | Develop efficient optimization algorithms that can process large amounts of data in real-time with minimal computational resources. |
Integration of Stochastic Optimization | Stochastic models for managing uncertainties are not well integrated with DR systems for real-time operation. | Firouzmakan, Hooshmand [133] | Integrate stochastic optimization models with real-time DR systems for more accurate predictions and adjustments. |
Large-Scale System Implementation | Current models have not been fully validated in large, interconnected microgrid systems | Nwulu and Xia [148,156] | Focus on large-scale, real-world applications to validate optimization models in diverse and complex systems. |
Lack of Life-Cycle Sustainability Assessments | Environmental impacts and long-term costs of HRMGs are often overlooked in optimization models | [26], Amupolo, Nambundunga [115] | Integrate life-cycle assessments (LCA) in optimization models to evaluate environmental and economic sustainability. |
Advanced Optimization for Hybrid Architectures | Optimization strategies for hybrid AC/DC microgrids are still in their early stages, especially when multiple energy sources are involved. | [64], Azeem, Ali [77] | Develop advanced optimization algorithms that address the complexities of hybrid AC/DC microgrid architectures. |
Real-Time Consumer Demand Forecasting | Inaccurate or delayed demand forecasts undermine DR and grid stability. | Ahmad, Hassan [90,112] | Enhance forecasting models to account for real-time changes in consumer behavior and renewable energy generation. |
Coordination Among Distributed Microgrids | Coordination of multiple distributed microgrids in a larger network remains an unsolved challenge. | [148], Cioara, Antal [180] | Explore decentralized and multi-agent systems for better coordination among distributed microgrids and improved overall system reliability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dosa, A.; Olanrewaju, O.A.; Mora-Camino, F. A Comprehensive Review of Hybrid Renewable Microgrids: Key Design Parameters, Optimization Techniques, and the Role of Demand Response in Enhancing System Flexibility. Energies 2025, 18, 5154. https://doi.org/10.3390/en18195154
Dosa A, Olanrewaju OA, Mora-Camino F. A Comprehensive Review of Hybrid Renewable Microgrids: Key Design Parameters, Optimization Techniques, and the Role of Demand Response in Enhancing System Flexibility. Energies. 2025; 18(19):5154. https://doi.org/10.3390/en18195154
Chicago/Turabian StyleDosa, Adebayo, Oludolapo Akanni Olanrewaju, and Felix Mora-Camino. 2025. "A Comprehensive Review of Hybrid Renewable Microgrids: Key Design Parameters, Optimization Techniques, and the Role of Demand Response in Enhancing System Flexibility" Energies 18, no. 19: 5154. https://doi.org/10.3390/en18195154
APA StyleDosa, A., Olanrewaju, O. A., & Mora-Camino, F. (2025). A Comprehensive Review of Hybrid Renewable Microgrids: Key Design Parameters, Optimization Techniques, and the Role of Demand Response in Enhancing System Flexibility. Energies, 18(19), 5154. https://doi.org/10.3390/en18195154