Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = multi-camera DIC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2290 KB  
Article
Enhancing the Resolution Utilization for DIC Measurement of Slender Components Using Shear Imaging
by Yinhang Ma, Kangjiang Lv, Zhuoxuan Song and Dong Jiang
Sensors 2025, 25(23), 7346; https://doi.org/10.3390/s25237346 - 2 Dec 2025
Viewed by 414
Abstract
Digital image correlation (DIC) is widely used for full-field deformation measurement, yet its spatial resolution is often underutilized when measuring slender components due to their high aspect ratio. To address this limitation, a novel virtual multi-camera DIC method that integrates a conventional dual-camera [...] Read more.
Digital image correlation (DIC) is widely used for full-field deformation measurement, yet its spatial resolution is often underutilized when measuring slender components due to their high aspect ratio. To address this limitation, a novel virtual multi-camera DIC method that integrates a conventional dual-camera setup with two Michelson shear devices (MSDs) was proposed. Each MSD splits the image of the slender component along its longitudinal direction, projecting two segments side-by-side onto the same camera sensor. This configuration effectively enhances the resolution utilization of each camera, enabling high-resolution measurement of the entire slender surface without requiring additional cameras. The system is calibrated to establish extrinsic parameters between DIC subsystems, allowing stitching of 3D data from different regions. Experimental validation through translation and bending tests demonstrates that the proposed method achieves accurate full-field morphology and deformation measurements, with sub-pixel level agreement in overlapping regions. This approach offers a practical and cost-effective solution for enhancing DIC performance in constrained measurement environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

25 pages, 3453 KB  
Article
High-Frame-Rate Camera-Based Vibration Analysis for Health Monitoring of Industrial Robots Across Multiple Postures
by Tuniyazi Abudoureheman, Hayato Otsubo, Feiyue Wang, Kohei Shimasaki and Idaku Ishii
Appl. Sci. 2025, 15(23), 12771; https://doi.org/10.3390/app152312771 - 2 Dec 2025
Viewed by 361
Abstract
Accurate vibration measurement is crucial for maintaining the performance, reliability, and safety of automated manufacturing environments. Abnormal vibrations caused by faults in gears or bearings can degrade positional accuracy, reduce productivity, and, over time, significantly impair production efficiency and product quality. Such vibrations [...] Read more.
Accurate vibration measurement is crucial for maintaining the performance, reliability, and safety of automated manufacturing environments. Abnormal vibrations caused by faults in gears or bearings can degrade positional accuracy, reduce productivity, and, over time, significantly impair production efficiency and product quality. Such vibrations may also disrupt supply chains, cause financial losses, and pose safety risks to workers through collisions, falling objects, or other operational hazards. Conventional vibration measurement techniques, such as wired accelerometers and strain gauges, are typically limited to a few discrete measurement points. Achieving multi-point measurements requires numerous sensors, which increases installation complexity, wiring constraints, and setup time, making the process both time-consuming and costly. The integration of high-frame-rate (HFR) cameras with Digital Image Correlation (DIC) enables non-contact, multi-point, full-field vibration measurement of robot manipulators, effectively addressing these limitations. In this study, HFR cameras were employed to perform non-contact, full-field vibration measurements of industrial robots. The HFR camera recorded the robot’s vibrations at 1000 frames per second (fps), and the resulting video was decomposed into individual frames according to the frame rate. Each frame, with a resolution of 1920 × 1080 pixels, was divided into 128 × 128 pixel blocks with a 64-pixel stride, yielding 435 sub-images. This setup effectively simulates the operation of 435 virtual vibration sensors. By applying mask processing to these sub-images, eight key points representing critical robot components were selected for multi-point DIC displacement measurements, enabling effective assessment of vibration distribution and real-time vibration visualization across the entire manipulator. This approach allows simultaneous capture of displacements across all robot components without the need for physical sensors. The transfer function is defined in the frequency domain as the ratio between the output displacement of each robot component and the input excitation applied by the shaker mounted on the end-effector. The frequency–domain transfer functions were computed for multiple robot components, enabling accurate and full-field vibration analysis during operation. Full article
(This article belongs to the Special Issue Innovative Approaches to Non-Destructive Evaluation)
Show Figures

Figure 1

22 pages, 20769 KB  
Article
Multi-Camera 3D Digital Image Correlation with Pointwise-Optimized Model-Based Stereo Pairing
by Wenxiang Qin, Feiyue Wang, Shaopeng Hu, Kohei Shimasaki and Idaku Ishii
Sensors 2025, 25(18), 5675; https://doi.org/10.3390/s25185675 - 11 Sep 2025
Viewed by 1342
Abstract
Dynamic deformation measurement (DDM) is critical across infrastructure and industrial applications. Among various advanced techniques, multi-camera digital image correlation (MC-DIC) stands out due to its ability to achieve wide-range, full-field, and non-contact 3D DDM by pairing camera subsystems. However, existing MC-DIC methods typically [...] Read more.
Dynamic deformation measurement (DDM) is critical across infrastructure and industrial applications. Among various advanced techniques, multi-camera digital image correlation (MC-DIC) stands out due to its ability to achieve wide-range, full-field, and non-contact 3D DDM by pairing camera subsystems. However, existing MC-DIC methods typically rely on inefficient manual pairing or a simplistic strategy that aggregates all visible cameras for measuring specific object regions, leading to camera over-grouping. These limitations often result in cumbersome system setup and ill-measured deformations. To overcome these challenges, we propose a novel MC-DIC method with pointwise-optimized model-based stereo pairing (MPMC-DIC). By automatically evaluating and selecting camera pairs based on five evaluation factors derived from 3D model and calibrated cameras, the proposed method overcomes the over-grouping problem and achieves high-precision DDM of semi-rigid objects. A Ø5 × 5 cm cylinder experiment demonstrated an accuracy of 0.03 mm for both horizontal and depth displacements in the 0.0–5.0 mm range, and validated strong robustness against cluttered backgrounds using a 2 × 4 camera array. Vibration measurement of a 9 × 15 × 16 cm PC speaker operating at 50 Hz, using eight surrounding cameras capturing 1920 × 1080 images at 400 fps, confirmed the proposed method’s capability to perform wide-range dynamic deformation analysis and its robustness against complex object geometries. Full article
Show Figures

Figure 1

21 pages, 4909 KB  
Article
Rapid 3D Camera Calibration for Large-Scale Structural Monitoring
by Fabio Bottalico, Nicholas A. Valente, Christopher Niezrecki, Kshitij Jerath, Yan Luo and Alessandro Sabato
Remote Sens. 2025, 17(15), 2720; https://doi.org/10.3390/rs17152720 - 6 Aug 2025
Cited by 1 | Viewed by 1706
Abstract
Computer vision techniques such as three-dimensional digital image correlation (3D-DIC) and three-dimensional point tracking (3D-PT) have demonstrated broad applicability for monitoring the conditions of large-scale engineering systems by reconstructing and tracking dynamic point clouds corresponding to the surface of a structure. Accurate stereophotogrammetry [...] Read more.
Computer vision techniques such as three-dimensional digital image correlation (3D-DIC) and three-dimensional point tracking (3D-PT) have demonstrated broad applicability for monitoring the conditions of large-scale engineering systems by reconstructing and tracking dynamic point clouds corresponding to the surface of a structure. Accurate stereophotogrammetry measurements require the stereo cameras to be calibrated to determine their intrinsic and extrinsic parameters by capturing multiple images of a calibration object. This image-based approach becomes cumbersome and time-consuming as the size of the tested object increases. To streamline the calibration and make it scale-insensitive, a multi-sensor system embedding inertial measurement units and a laser sensor is developed to compute the extrinsic parameters of the stereo cameras. In this research, the accuracy of the proposed sensor-based calibration method in performing stereophotogrammetry is validated experimentally and compared with traditional approaches. Tests conducted at various scales reveal that the proposed sensor-based calibration enables reconstructing both static and dynamic point clouds, measuring displacements with an accuracy higher than 95% compared to image-based traditional calibration, while being up to an order of magnitude faster and easier to deploy. The novel approach has broad applications for making static, dynamic, and deformation measurements to transform how large-scale structural health monitoring can be performed. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Third Edition))
Show Figures

Figure 1

15 pages, 3321 KB  
Article
Stereo Camera Setup for 360° Digital Image Correlation to Reveal Smart Structures of Hakea Fruits
by Matthias Fischer, Max D. Mylo, Leon S. Lorenz, Lars Böckenholt and Heike Beismann
Biomimetics 2024, 9(3), 191; https://doi.org/10.3390/biomimetics9030191 - 21 Mar 2024
Cited by 7 | Viewed by 5858
Abstract
About forty years after its first application, digital image correlation (DIC) has become an established method for measuring surface displacements and deformations of objects under stress. To date, DIC has been used in a variety of in vitro and in vivo studies to [...] Read more.
About forty years after its first application, digital image correlation (DIC) has become an established method for measuring surface displacements and deformations of objects under stress. To date, DIC has been used in a variety of in vitro and in vivo studies to biomechanically characterise biological samples in order to reveal biomimetic principles. However, when surfaces of samples strongly deform or twist, they cannot be thoroughly traced. To overcome this challenge, different DIC setups have been developed to provide additional sensor perspectives and, thus, capture larger parts of an object’s surface. Herein, we discuss current solutions for this multi-perspective DIC, and we present our own approach to a 360° DIC system based on a single stereo-camera setup. Using this setup, we are able to characterise the desiccation-driven opening mechanism of two woody Hakea fruits over their entire surfaces. Both the breaking mechanism and the actuation of the two valves in predominantly dead plant material are models for smart materials. Based on these results, an evaluation of the setup for 360° DIC regarding its use in deducing biomimetic principles is given. Furthermore, we propose a way to improve and apply the method for future measurements. Full article
(This article belongs to the Special Issue Biological and Bioinspired Smart Adaptive Structures)
Show Figures

Figure 1

42 pages, 9147 KB  
Article
A Stable, Efficient, and High-Precision Non-Coplanar Calibration Method: Applied for Multi-Camera-Based Stereo Vision Measurements
by Hao Zheng, Fajie Duan, Tianyu Li, Jiaxin Li, Guangyue Niu, Zhonghai Cheng and Xin Li
Sensors 2023, 23(20), 8466; https://doi.org/10.3390/s23208466 - 14 Oct 2023
Cited by 5 | Viewed by 3589
Abstract
Traditional non-coplanar calibration methods, represented by Tsai’s method, are difficult to apply in multi-camera-based stereo vision measurements because of insufficient calibration accuracy, inconvenient operation, etc. Based on projective theory and matrix transformation theory, a novel mathematical model is established to characterize the transformation [...] Read more.
Traditional non-coplanar calibration methods, represented by Tsai’s method, are difficult to apply in multi-camera-based stereo vision measurements because of insufficient calibration accuracy, inconvenient operation, etc. Based on projective theory and matrix transformation theory, a novel mathematical model is established to characterize the transformation from targets’ 3D affine coordinates to cameras’ image coordinates. Then, novel non-coplanar calibration methods for both monocular and binocular camera systems are proposed in this paper. To further improve the stability and accuracy of calibration methods, a novel circular feature points extraction method based on region Otsu algorithm and radial section scanning method is proposed to precisely extract the circular feature points. Experiments verify that our novel calibration methods are easy to operate, and have better accuracy than several classical methods, including Tsai’s and Zhang’s methods. Intrinsic and extrinsic parameters of multi-camera-systems can be calibrated simultaneously by our methods. Our novel circular feature points extraction algorithm is stable, and with high precision can effectively improve calibration accuracy for coplanar and non-coplanar methods. Real stereo measurement experiments demonstrate that the proposed calibration method and feature extraction method have high accuracy and stability, and can further serve for complicated shape and deformation measurements, for instance, stereo-DIC measurements, etc. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 11533 KB  
Article
A Strain-Gauge-Based Method for the Compensation of Out-of-Plane Motions in 2D Digital Image Correlation
by Carl-Hein Visser, Gerhard Venter and Melody Neaves
Math. Comput. Appl. 2023, 28(2), 40; https://doi.org/10.3390/mca28020040 - 10 Mar 2023
Cited by 3 | Viewed by 2890
Abstract
When performing a digital image correlation (DIC) measurement, multi-camera stereo-DIC is generally preferred over single-camera 2D-DIC. Unlike 2D-DIC, stereo-DIC is able to minimise the in-plane strain error that results from out-of-plane motion. This makes 2D-DIC a less viable alternative for strain measurements than [...] Read more.
When performing a digital image correlation (DIC) measurement, multi-camera stereo-DIC is generally preferred over single-camera 2D-DIC. Unlike 2D-DIC, stereo-DIC is able to minimise the in-plane strain error that results from out-of-plane motion. This makes 2D-DIC a less viable alternative for strain measurements than stereo-DIC, despite being less financially and computationally expensive. This work, therefore, proposes a strain-gauge-based method for the compensation of errors from out-of-plane motion in 2D-DIC strain measurements on planar specimens. The method was first developed using equations for the theoretical strain error from out-of-plane motions in 2D-DIC and was then applied experimentally in tensile tests to two different dog-bone specimen geometries. The compensation method resulted in a clear reduction in the strain error in 2D-DIC. The strain-gauge-based method thus improves the accuracy of a 2D-DIC measurement, making it a more viable option for performing full-field strain measurements and providing a possible alternative in cases where stereo-DIC is not practical or is unavailable. Full article
(This article belongs to the Special Issue Current Problems and Advances in Computational and Applied Mechanics)
Show Figures

Figure 1

17 pages, 2928 KB  
Article
Panoramic Digital Image Correlation for 360-Deg Full-Field Displacement Measurement
by Yiran Li, Dong Zhao, Xueyi Ma, Jianzhong Zhang and Jian Zhao
Appl. Sci. 2023, 13(3), 2019; https://doi.org/10.3390/app13032019 - 3 Feb 2023
Cited by 4 | Viewed by 3030
Abstract
In full-field 3D displacement measurement, stereo digital image correlation (Stereo-DIC) has strong capabilities. However, as a result of difficulties with stereo camera calibration and surface merging, 360-deg panoramic displacement measurements remain a challenge. This paper proposes a panoramic displacement field measurement method in [...] Read more.
In full-field 3D displacement measurement, stereo digital image correlation (Stereo-DIC) has strong capabilities. However, as a result of difficulties with stereo camera calibration and surface merging, 360-deg panoramic displacement measurements remain a challenge. This paper proposes a panoramic displacement field measurement method in order to accurately measure the shape and panoramic displacement field of complex shaped objects with natural textures. The proposed method is based on the robust subset-based DIC algorithm and the well-known Zhang’s calibration method to reconstruct the 3D shape and estimate the full-field displacements of a complex surface from multi-view stereo camera pairs. The method is used in the determination of the scale factor of the 3D reconstructed surface and the stitching of multiple 3D reconstructed surfaces with the aid of the laser point cloud data of the object under test. Based on a discussion of the challenges faced by panoramic DIC, this paper details the proposed solution and describes the specific algorithms implemented. The paper tests the performance of the proposed method using an experimental system with a 360-deg six camera setup. The system was evaluated by measuring the rigid body motion of a cylindrical log sample with known 3D point cloud data. The results confirm that the proposed method is able to accurately measure the panoramic shape and full-field displacement of objects with complex morphologies. Full article
Show Figures

Figure 1

19 pages, 10546 KB  
Article
Experimental Study on the Influence of Delay Time on Rock Fragmentation in Bench Blasting
by Hong-Liang Tang, Xin Liu, Jun Yang and Qi Yu
Appl. Sci. 2023, 13(1), 85; https://doi.org/10.3390/app13010085 - 21 Dec 2022
Cited by 11 | Viewed by 4108
Abstract
Delay time is an important factor in the quality of bench blasting. The development and application of electronic detonators make it possible to control the timing of detonation by a highly precise delay time. It is an easily achievable way to seek a [...] Read more.
Delay time is an important factor in the quality of bench blasting. The development and application of electronic detonators make it possible to control the timing of detonation by a highly precise delay time. It is an easily achievable way to seek a better blast fragmentation by controlling the delay time. In order to investigate the influence of delay time on rock fragmentation, eight experiments on bench blasting models with double holes were carried out. The average weight of 4.59 g of pentaerythritol tetranitrate (PETN) was charged into each blast hole with a diameter of 10 mm. Delay times between the double holes were set as: 13.69, 27.36, 54.72, 60, 90, 120, 180, and 339.6 µs. During blast loading, the breakage processes of specimens were captured in detail by high-speed cameras. Full-field strains on the bench slope were analyzed by the three-dimensional digital image correlation (3D-DIC) technique. After each experiment, the coarse fragments were backfilled into the post-blast specimen to observe and record the bench slope’s final breakage pattern. The experimental results showed that the fragmentation of the bench slope transformed from horizontal crack dominance to vertical crack dominance as the delay time increased. In addition, post-blast fragments were collected and sieved, including fine materials. In the premise of approximate excavation, the optimum delay time was 180 µs. Compared to short delay times such as 27.36 µs, x50 was improved by approximately 25% at the delay time of 180 µs. The results showed a significant difference and great improvement in fragmentation when the delay times were in the time range of no-shock-wave interaction compared to interactions. When determining the optimum delay time in multi-hole blasting, except for the stress wave interaction, factors such as crack propagation should also be considered. The results of experiments could contribute to references for relevant research. Full article
Show Figures

Figure 1

18 pages, 8242 KB  
Article
Multi-Camera Digital Image Correlation in Deformation Measurement of Civil Components with Large Slenderness Ratio and Large Curvature
by Yuntong Dai and Hongmin Li
Materials 2022, 15(18), 6281; https://doi.org/10.3390/ma15186281 - 9 Sep 2022
Cited by 14 | Viewed by 3887
Abstract
To address the limitations of conventional stereo-digital image correlation (DIC) on measuring complex objects, a continuous-view multi-camera DIC (MC-DIC) system and its two forms of camera arrangement are introduced. Multiple cameras with certain overlapping field of view are calibrated simultaneously to form an [...] Read more.
To address the limitations of conventional stereo-digital image correlation (DIC) on measuring complex objects, a continuous-view multi-camera DIC (MC-DIC) system and its two forms of camera arrangement are introduced. Multiple cameras with certain overlapping field of view are calibrated simultaneously to form an overall system for measuring the continuous full-surface deformation. The bending experiment of coral aggregate concrete beam and the axial compression experiment of timber column are conducted to verify the capability of continuous-view MC-DIC in deformation measurement of civil components with large slenderness ratio and large curvature, respectively. The obtained deformation data maintain good consistency with the displacement transducer and strain gauge. Results indicate that the continuous-view MC-DIC is a reliable 3D full-field measurement approach in civil measurements. Full article
Show Figures

Graphical abstract

24 pages, 17923 KB  
Article
Mechanical Characteristics Evaluation of a Single Ply and Multi-Ply Carbon Fiber-Reinforced Plastic Subjected to Tensile and Bending Loads
by Anton Hadăr, Florin Baciu, Andrei-Daniel Voicu, Daniel Vlăsceanu, Daniela-Ioana Tudose and Cătălin Adetu
Polymers 2022, 14(15), 3213; https://doi.org/10.3390/polym14153213 - 7 Aug 2022
Cited by 19 | Viewed by 4509
Abstract
Carbon fiber-reinforced composites represent a broadly utilized class of materials in aeronautical applications, due to their high-performance capability. The studied CFRP is manufactured from a 3K carbon biaxial fabric 0°/90° with high tensile resistance, reinforced with high-performance thermoset molding epoxy vinyl ester resin. [...] Read more.
Carbon fiber-reinforced composites represent a broadly utilized class of materials in aeronautical applications, due to their high-performance capability. The studied CFRP is manufactured from a 3K carbon biaxial fabric 0°/90° with high tensile resistance, reinforced with high-performance thermoset molding epoxy vinyl ester resin. The macroscale experimental characterization has constituted the subject of various studies, with the scope of assessing overall structural performance. This study, on the other hand, aims at evaluating the mesoscopic mechanical behavior of a single-ply CFRP, by utilizing tensile test specimens with an average experimental study area of only 3 cm2. The single-ply tensile testing was accomplished using a small scale custom-made uniaxial testing device, powered by a stepper motor, with measurements recorded by two 5-megapixel cameras of the DIC Q400 system, mounted on a Leica M125 digital stereo microscope. The single-ply testing results illustrated the orthotropic nature of the CFRP and turned out to be in close correlation with the multi-ply CFRP tensile and bending tests, resulting in a comprehensive material characterization. The results obtained for the multi-ply tensile and flexural characteristics are adequate in terms of CFRP expectations, having a satisfactory precision. The results have been evaluated using a broad experimental approach, consisting of the Dantec Q400 standard digital image correlation system, facilitating the determination of Poisson’s ratio, correlated with the measurements obtained from the INSTRON 8801 servo hydraulic testing system’s load cell, for a segment of the tensile and flexural characteristics determination. Finite element analyses were realized to reproduce the tensile and flexural test conditions, based on the experimentally determined stress–strain evolution of the material. The FEA results match very well with the experimental results, and thus will constitute the basis for further FEA analyses of aeronautic structures. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Design, Preparation and Applications)
Show Figures

Figure 1

18 pages, 3909 KB  
Article
A Novel Central Camera Calibration Method Recording Point-to-Point Distortion for Vision-Based Human Activity Recognition
by Ziyi Jin, Zhixue Li, Tianyuan Gan, Zuoming Fu, Chongan Zhang, Zhongyu He, Hong Zhang, Peng Wang, Jiquan Liu and Xuesong Ye
Sensors 2022, 22(9), 3524; https://doi.org/10.3390/s22093524 - 5 May 2022
Cited by 13 | Viewed by 3626
Abstract
The camera is the main sensor of vison-based human activity recognition, and its high-precision calibration of distortion is an important prerequisite of the task. Current studies have shown that multi-parameter model methods achieve higher accuracy than traditional methods in the process of camera [...] Read more.
The camera is the main sensor of vison-based human activity recognition, and its high-precision calibration of distortion is an important prerequisite of the task. Current studies have shown that multi-parameter model methods achieve higher accuracy than traditional methods in the process of camera calibration. However, these methods need hundreds or even thousands of images to optimize the camera model, which limits their practical use. Here, we propose a novel point-to-point camera distortion calibration method that requires only dozens of images to get a dense distortion rectification map. We have designed an objective function based on deformation between the original images and the projection of reference images, which can eliminate the effect of distortion when optimizing camera parameters. Dense features between the original images and the projection of the reference images are calculated by digital image correlation (DIC). Experiments indicate that our method obtains a comparable result with the multi-parameter model method using a large number of pictures, and contributes a 28.5% improvement to the reprojection error over the polynomial distortion model. Full article
(This article belongs to the Special Issue Sensors for Human Activity Recognition)
Show Figures

Figure 1

19 pages, 9041 KB  
Article
Vibration Analyses of a Gantry Structure by Mobile Phone Digital Image Correlation and Interferometric Radar
by Francesco Mugnai, Antonio Cosentino, Paolo Mazzanti and Grazia Tucci
Geomatics 2022, 2(1), 17-35; https://doi.org/10.3390/geomatics2010002 - 27 Dec 2021
Cited by 3 | Viewed by 4166
Abstract
The study presents results from applying the Real Aperture Radar interferometry technique and Digital Image Correlation through a mobile phone camera to identify static and dynamic deformations of a gantry during surveying operations on the Michelangelo’s David at the Galleria dell’Accademia di Firenze [...] Read more.
The study presents results from applying the Real Aperture Radar interferometry technique and Digital Image Correlation through a mobile phone camera to identify static and dynamic deformations of a gantry during surveying operations on the Michelangelo’s David at the Galleria dell’Accademia di Firenze Museum in Florence. The statue has considerable size and reaches an elevation of more than seven meters on its pedestal. An ad-hoc gantry was designed and deployed, given the cramped operating area around the statue. The scanner had a stability control system that forbid surveying in instrument movements. However, considering the unicity of the survey and its rare occurrence, the previous survey had been carried out in the year 2000; verifying stability and recording deformations is a crucial task, and necessary for validation. As the gantry does not have an on-board stability sensor, and considering the hi-survey accuracy requested, a redundant, contactless, remote monitoring system of the gantry and the statue stability was chosen to guarantee the maximum freedom of movement around the David to avoid any interference during scanning operations. Thanks to the TInRAR technique, the gantry and the statue were monitored with an accuracy of 0.01 mm. At the same time, a Digital Image Correlation analysis was performed on the gantry, which can be considered a Multi-Degree-Of-Freedom (MDOF) system, to accurately calculate the vibration frequency and amplitude. A comparison between TInRAR and DIC results reported substantial accordance in detecting gantry’s oscillating frequencies; a predominant oscillation frequency of 1.33 Hz was identified on the gantry structure by TinSAR and DIC analysis. Full article
Show Figures

Figure 1

16 pages, 6190 KB  
Article
A New and Direct R-Value Measurement Method of Sheet Metal Based on Multi-Camera DIC System
by Siyuan Fang, Xiaowan Zheng, Gang Zheng, Boyang Zhang, Bicheng Guo and Lianxiang Yang
Metals 2021, 11(9), 1401; https://doi.org/10.3390/met11091401 - 4 Sep 2021
Cited by 16 | Viewed by 3338
Abstract
More and more attention has been given in the field of mechanical engineering to a material’s R-value, a parameter that characterizes the ability of sheet metal to resist thickness strain. Conventional methods used to determine R-value are based on experiments and an assumption [...] Read more.
More and more attention has been given in the field of mechanical engineering to a material’s R-value, a parameter that characterizes the ability of sheet metal to resist thickness strain. Conventional methods used to determine R-value are based on experiments and an assumption of constant volume. Because the thickness strain cannot be directly measured, the R-value is currently determined using experimentally measured strains in the width, and loading directions in combination with the constant volume assumption, to determine the thickness strain indirectly. This paper provides an alternative method for determining the R-value without any assumptions. This method is based on the use of a multi-camera DIC system to measure strains in three directions simultaneously. Two sets of stereo-vision DIC measurement systems, each comprised of two GigE cameras, are placed on the front and back sides of the sample. Use of the double-sided calibration strategy unifies the world coordinate system of the front and back DIC measurement systems to one coordinate system, allowing for the measurement of thickness strain and direct calculation of R-value. The Random Sample Consensus (RANSAC) algorithm is used to eliminate noise in the thickness strain data, resulting in a more accurate R-value measurement. Full article
(This article belongs to the Special Issue Tube and Sheet Metal Forming Processes and Applications)
Show Figures

Figure 1

21 pages, 5699 KB  
Article
Sensor Integrated Load-Bearing Structures: Measuring Axis Extension with DIC-Based Transducers
by Nassr Al-Baradoni and Peter Groche
Sensors 2021, 21(12), 4104; https://doi.org/10.3390/s21124104 - 15 Jun 2021
Cited by 10 | Viewed by 4295
Abstract
In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of [...] Read more.
In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of 3D displacements, occurring due to structure deformation under load in a single image. The displacement of defined features in size and position can be accurately analyzed and determined through digital image correlation (DIC). Validation on a prototype shows good accuracy of the measurement and a unique identification of all in- and out-of-plane displacement components under multiaxial load. Measurements show a maximum deviation related to the maximum measured values between 2.5% and 4.8% for uniaxial loads (Fx, Fy,Fz,Mz) and between 2.5% and 10.43% for combined bending, torsion and axial load. In the course of the investigations, the measurement inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well as to eccentric load. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

Back to TopTop