High-Frame-Rate Camera-Based Vibration Analysis for Health Monitoring of Industrial Robots Across Multiple Postures
Abstract
1. Introduction
2. Related Works
2.1. Vibration Analysis with Sensors
2.2. HFR-Video-Based Vibration Monitoring Analysis
2.3. Health Diagnosis of Industrial Robots
3. Vibration Test of a Robot Manipulator with HFR-Video-Based Analysis
3.1. System Configuration
3.2. Posture Definition of a Robot Based on Joint Angles
- Posture 1: , ,The robot’s home position, with the vibration testing device aligned with the robot.
- Posture 2: , ,A waiting position used before executing the next movement.
- Posture 3: , ,The final position.
3.3. Implement Algorithm
3.3.1. Input Image
3.3.2. Root Mean Square Error for Ground-Truth Validation
3.3.3. Measurement Points on Robot Components
3.3.4. STFT-Based Frequency Response Analysis
4. Experimental Results
4.1. Ground-Truth Measurement
4.2. Real-Time Vibration Visualization
4.3. Time–Domain Analysis of Robot Vibrations
4.3.1. DIC Multi-Point Measurement
4.3.2. Time–Domain Analysis
4.4. Frequency–Domain Spectrum Analysis
4.5. Definition and Identification of Transfer Functions
4.5.1. Definition of Transfer Functions
4.5.2. Transfer Function Identification for Posture 1
4.5.3. Transfer Function Identification for Posture 2
4.5.4. Transfer Function Identification for Posture 3



4.5.5. Part-by-Part Analysis of the Transfer Function
5. Discussion and Limitations
5.1. Discussion of Results
5.2. Limitations of the Present Study
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tran, C.C.; Lin, C.Y. An Intelligent Path Planning of Welding Robot Based on Multisensor Interaction. IEEE Sens. J. 2023, 23, 8591–8604. [Google Scholar] [CrossRef]
- Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sens. 2021, 13, 1619. [Google Scholar] [CrossRef]
- Liao, Z.Y.; Wang, Q.H.; Xie, H.L.; Li, J.R.; Zhou, X.F.; Pan, T.H. Optimization of Robot Posture and Workpiece Setup in Robotic Milling with Stiffness Threshold. IEEE/ASME Trans. Mechatron. 2022, 27, 582–593. [Google Scholar] [CrossRef]
- Min, Y.; Liu, X.; Hu, G.; Jin, G.; Ma, Y.; Bian, Y.; Xie, Y.; Hu, M.; Li, D. A Research Method to Investigate the Effect of Vibration Suppression on Thin-Walled Parts of Aluminum Alloy 6061 Based on Cutting Fluid Spraying (CFS). Machines 2025, 13, 594. [Google Scholar] [CrossRef]
- Xia, B.; Wang, K.; Xu, A.; Zeng, P.; Yang, N.; Li, B. Intelligent Fault Diagnosis for Bearings of Industrial Robot Joints Under Varying Working Conditions Based on Deep Adversarial Domain Adaptation. IEEE Trans. Instrum. Meas. 2022, 71, 3508313. [Google Scholar] [CrossRef]
- Cooley, C.G.; Parker, R.G. A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research. Appl. Mech. Rev. 2014, 66, 040804. [Google Scholar] [CrossRef]
- Sahu, G.N.; Otto, A.; Ihlenfeldt, S. Improving Robotic Milling Performance through Active Damping of Low-Frequency Structural Modes. J. Manuf. Mater. Process. 2024, 8, 160. [Google Scholar] [CrossRef]
- Qin, H.; Li, Y.; Xiong, X. Workpiece Pose Optimization for Milling with Flexible-Joint Robots to Improve Quasi-Static Performance. Appl. Sci. 2019, 9, 1044. [Google Scholar] [CrossRef]
- Li, M.; Qin, J.; Wang, Z.; Liu, Q.; Shi, Y.; Wang, Y. Optimal Motion Planning Under Dynamic Risk Region for Safe Human–Robot Cooperation. IEEE/ASME Trans. Mechatron. 2024, 30, 1050–1060. [Google Scholar] [CrossRef]
- Inam, R.; Raizer, K.; Hata, A.; Souza, R.; Forsman, E.; Cao, E.; Wang, S. Risk Assessment for Human-Robot Collaboration in an automated warehouse scenario. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 743–751. [Google Scholar] [CrossRef]
- Franklin, C.S.; Dominguez, E.G.; Fryman, J.D.; Lewandowski, M.L. Collaborative robotics: New era of human-robot cooperation in the workplace. J. Saf. Res. 2020, 74, 153–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Gao, B.; Xia, L.; Lu, C.; Wang, H.; Cao, G. Fault Types and Diagnostic Methods of Manipulator Robots: A Review. Sensors 2025, 25, 1716. [Google Scholar] [CrossRef]
- Ahmad, R.; Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012, 63, 135–149. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, T.H.; Do, D.T.B.; Pham, T.H.; Liang, J.W.; Nguyen, P.D. Efficient and Explainable Bearing Condition Monitoring with Decision Tree-Based Feature Learning. Machines 2025, 13, 467. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Frank Chen, F.; Shahin, M.; Bouzary, H. A predictive maintenance approach in manufacturing systems via AI-based early failure detection. Manuf. Lett. 2023, 35, 1179–1186. [Google Scholar] [CrossRef]
- Raviola, A.; De Martin, A.; Guida, R.; Jacazio, G.; Mauro, S.; Sorli, M. Harmonic Drive Gear Failures in Industrial Robots Applications: An Overview. PHM Soc. Eur. Conf. 2021, 6, 11. [Google Scholar] [CrossRef]
- Vallachira, S.; Orkisz, M.; Norrlöf, M.; Butail, S. Data-Driven Gearbox Failure Detection in Industrial Robots. IEEE Trans. Ind. Inform. 2020, 16, 193–201. [Google Scholar] [CrossRef]
- Mohammed, A.; Ghaithan, A.; Al-Saleh, M.; Al-Ofi, K. Reliability-Based Preventive Maintenance Strategy of Truck Unloading Systems. Appl. Sci. 2020, 10, 6957. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Cheng, M. Fault Detection of Servo Motor Bearing Based on Speed Signal Under Variable-Speed Conditions. IEEE Trans. Instrum. Meas. 2024, 73, 3517012. [Google Scholar] [CrossRef]
- Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Ricatto, R. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control. Sensors 2016, 16, 1577. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Liu, F.; Xu, D.; Gu, Q.; Ishii, I. A Hardware-Oriented Algorithm for Ultra-High-Speed Object Detection. IEEE Sens. J. 2019, 19, 3818–3831. [Google Scholar] [CrossRef]
- Sharma, A.; Shimasaki, K.; Gu, Q.; Chen, J.; Aoyama, T.; Takaki, T.; Ishii, I.; Tamura, K.; Tajima, K. Super high-speed vision platform for processing 1024 × 1024 images in real time at 12500 fps. In Proceedings of the 2016 IEEE/SICE International Symposium on System Integration (SII), Sapporo, Japan, 13–15 December 2016; pp. 544–549. [Google Scholar] [CrossRef]
- Li, J.; Shimasaki, K.; Tuniyazi, A.; Ishii, I.; Ogihara, M.; Yoshiyama, M. HFR Video-Based Hornet Detection Approach Using Wing-Beat Frequency Analysis. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, F.; Hu, S.; Shimasaki, K.; Ishii, I. Real-Time Vibration Visualization Using GPU-Based High-Speed Vision. J. Robot. Mechatron. 2022, 34, 1011–1023. [Google Scholar] [CrossRef]
- Macedo, L.; Louzada, P.; Gustavo Villani, L.; Frizera, A.; Marques, C.; Leal-Junior, A. Machinery Fault Diagnosis in Electric Motors Through Mechanical Vibration Monitoring Using Fiber Bragg Grating-Based Accelerometers. IEEE Sens. J. 2024, 24, 20655–20662. [Google Scholar] [CrossRef]
- Wang, T.; Han, Q.; Chu, F.; Feng, Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mech. Syst. Signal Process. 2019, 126, 662–685. [Google Scholar] [CrossRef]
- Wang, H.; Xie, J. Fault Diagnosis of Rolling Bearings Based on Acoustic Signals in Strong Noise Environments. Appl. Sci. 2025, 15, 1389. [Google Scholar] [CrossRef]
- Sato, R.; Ito, Y.; Mizuura, S.; Shirase, K. Vibration Mode and Motion Trajectory Simulations of an Articulated Robot by a Dynamic Model Considering Joint Bearing Stiffness. Int. J. Autom. Technol. 2021, 15, 631–640. [Google Scholar] [CrossRef]
- DiGiampaolo, E.; DiCarlofelice, A.; Gregori, A. An RFID-Enabled Wireless Strain Gauge Sensor for Static and Dynamic Structural Monitoring. IEEE Sens. J. 2017, 17, 286–294. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, D.; Huang, Z.; Xie, L.; Zhang, D.; Fei, Q. Full-field modal identification using reliability-guided frequency-domain-based digital image correlation method based on multi-camera system. Measurement 2023, 211, 112567. [Google Scholar] [CrossRef]
- Elvira-Ortiz, D.A.; Romero-Troncoso, R.d.J.; Jaen-Cuellar, A.Y.; Morales-Velazquez, L.; Osornio-Rios, R.A. Vibration Suppression for Improving the Estimation of Kinematic Parameters on Industrial Robots. Shock Vib. 2016, 2016, 6954012. [Google Scholar] [CrossRef]
- Sun, X.; Jia, X. A Fault Diagnosis Method of Industrial Robot Rolling Bearing Based on Data Driven and Random Intuitive Fuzzy Decision. IEEE Access 2019, 7, 148764–148770. [Google Scholar] [CrossRef]
- Huang, X.; Huang, H.; Wu, Z. Development of a Variable-Frequency Hammering Method Using Acoustic Features for Damage-Type Identification. Appl. Sci. 2023, 13, 1329. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, B.; Huang, Y.; Deng, L. Edge Collaborative Compressed Sensing in Wireless Sensor Networks for Mechanical Vibration Monitoring. IEEE Trans. Ind. Inform. 2023, 19, 8852–8864. [Google Scholar] [CrossRef]
- Rothberg, S.; Allen, M.; Castellini, P.; Di Maio, D.; Dirckx, J.; Ewins, D.; Halkon, B.; Muyshondt, P.; Paone, N.; Ryan, T.; et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2017, 99, 11–22. [Google Scholar] [CrossRef]
- Li, Y.; Dieussaert, E.; Baets, R. Miniaturization of Laser Doppler Vibrometers—A Review. Sensors 2022, 22, 4735. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Q.; Wei, G.; Long, X. A Highly Accurate Calibration Method for Terrestrial Laser Doppler Velocimeter. IEEE Trans. Instrum. Meas. 2017, 66, 1994–2003. [Google Scholar] [CrossRef]
- Dao, F.; Zeng, Y.; Zou, Y.; Li, X.; Qian, J. Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review. Energies 2021, 14, 7840. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Cheng, S.; Wang, X.; Wu, S.; Liu, X. MEMS Acoustic Sensors: Charting the Path from Research to Real-World Applications. Micromachines 2025, 16, 43. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Okamoto, Y.; Takeshita, T.; Takei, Y.; Okada, H.; Nguyen, K.; Phan, H.P.; Ichiki, M. Highly Sensitive Low-Frequency Acoustic Sensor Using Piezoresistive Cantilever. In Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 841–844. [Google Scholar] [CrossRef]
- Yeo, W.; Matsumoto, M. Fault Diagnosis Systems for Robots: Acoustic Sensing-Based Identification of Detached Components for Fault Localization. Appl. Sci. 2025, 15, 6564. [Google Scholar] [CrossRef]
- Tanuska, P.; Spendla, L.; Kebisek, M.; Duris, R.; Stremy, M. Smart Anomaly Detection and Prediction for Assembly Process Maintenance in Compliance with Industry 4.0. Sensors 2021, 21, 2376. [Google Scholar] [CrossRef] [PubMed]
- Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review. IEEE Sens. J. 2016, 17, 226–235. [Google Scholar] [CrossRef]
- Koene, I.; Klar, V.; Viitala, R. IoT connected device for vibration analysis and measurement. HardwareX 2020, 7, e00109. [Google Scholar] [CrossRef] [PubMed]
- Hasani, H.; Freddi, F.; Piazza, R.; Ceruffi, F. A Wireless Data Acquisition System Based on MEMS Accelerometers for Operational Modal Analysis of Bridges. Sensors 2024, 24, 2121. [Google Scholar] [CrossRef]
- Albarbar, A.; Mekid, S.; Starr, A.; Pietruszkiewicz, R. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study. Sensors 2008, 8, 784. [Google Scholar] [CrossRef]
- Ozevin, D. MEMS Acoustic Emission Sensors. Appl. Sci. 2020, 10, 8966. [Google Scholar] [CrossRef]
- Ali, W.R.; Prasad, M. Piezoelectric MEMS based acoustic sensors: A review. Sens. Actuators A Phys. 2020, 301, 111756. [Google Scholar] [CrossRef]
- Gemelli, A.; Tambussi, M.; Fusetto, S.; Aprile, A.; Moisello, E.; Bonizzoni, E.; Malcovati, P. Recent Trends in Structures and Interfaces of MEMS Transducers for Audio Applications: A Review. Micromachines 2023, 14, 847. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A. Simple in-system control of microphone sensitivities in an array. J. Sens. Sens. Syst. 2024, 13, 81–88. [Google Scholar] [CrossRef]
- Wilmott, D.; Alves, F.; Karunasiri, G. Bio-Inspired Miniature Direction Finding Acoustic Sensor. Sci. Rep. 2016, 6, 29957. [Google Scholar] [CrossRef]
- Ivancic, J.; Alves, F. Directional Multi-Resonant Micro-Electromechanical System Acoustic Sensor for Low Frequency Detection. Sensors 2024, 24, 2908. [Google Scholar] [CrossRef]
- Frankovský, P.; Delyová, I.; Sivák, P.; Bocko, J.; Živčák, J.; Kicko, M. Modal Analysis Using Digital Image Correlation Technique. Materials 2022, 15, 5658. [Google Scholar] [CrossRef]
- Shimasaki, K.; Aliansyah, Z.; Senoo, T.; Ishii, I.; Ito, T. Wide-area Operation Monitoring of Conveyors Using a Panoramic Vibration Camera. ISIJ Int. 2021, 61, 2587–2596. [Google Scholar] [CrossRef]
- Jiang, M.; Gu, Q.; Aoyama, T.; Takaki, T.; Ishii, I. Real-Time Vibration Source Tracking Using High-Speed Vision. IEEE Sens. J. 2017, 17, 1513–1527. [Google Scholar] [CrossRef]
- Kalach, F.E.; Farahani, M.; Wuest, T.; Harik, R. Real-time defect detection and classification in robotic assembly lines: A machine learning framework. Robot. Comput.-Integr. Manuf. 2025, 95, 103011. [Google Scholar] [CrossRef]
- O’Donoughue, P.; Gautier, F.; Meteyer, E.; Durand-Texte, T.; Secail-Geraud, M.; Foucart, F.; Robin, O.; Berry, A.; Melon, M.; Pezerat, C.; et al. Comparison of three full-field optical measurement techniques applied to vibration analysis. Sci. Rep. 2023, 13, 3261. [Google Scholar] [CrossRef]
- Arebi, L.; Gu, F.; Ball, A. A comparative study of misalignment detection using a novel Wireless Sensor with conventional Wired Sensors. J. Phys. Conf. Ser. 2012, 364, 012049. [Google Scholar] [CrossRef]
- Zhong, J.; Zhong, S.; Zhang, Q.; Liu, S.; Peng, Z.; Maia, N. Real-time three-dimensional vibration monitoring of rotating shafts using constant-density sinusoidal fringe pattern as tri-axial sensor. Mech. Syst. Signal Process. 2019, 115, 132–146. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Y.; Wu, H.; Wang, P.; Chen, B.; Gao, Z.; Fu, Y. Vibration monitoring of rotating shafts using DIC and compressed sensing. Opt. Laser Technol. 2025, 182, 112189. [Google Scholar] [CrossRef]
- Beberniss, T.; Ehrhardt, D. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations. Mech. Syst. Signal Process. 2016, 86, 35–48. [Google Scholar] [CrossRef]
- Zettel, S.; Norambuena, M.; Dewald, R.; Böswald, M. Comparison of laser doppler vibrometry and digital image correlation measurement techniques for applications in vibroacoustics. In Proceedings of the International Congress on Sound and Vibration (ICSV), Prague, Czech Republic, 9–13 July 2023. [Google Scholar]
- Qin, W.; Wang, F.; Hu, S.; Shimasaki, K.; Ishii, I. Model-Based 3-D Vibration Measurement Using Stereo High-Frame-Rate Images. IEEE Trans. Instrum. Meas. 2025, 74, 5040812. [Google Scholar] [CrossRef]
- Zhi-gang, C.; Wen-jie, L.; Xing-yu, C.; Xin-zheng, L. A vibration recognition method based on deep learning and signal processing. Eng. Mech. 2021, 38, 230–246. [Google Scholar] [CrossRef]
- Shimasaki, K.; Jiang, M.; Takaki, T.; Ishii, I. Real-time Multicopter Detection Using Pixel-level Digital Filters for Frame-Interpolated High-frame-rate Images. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 304–309. [Google Scholar] [CrossRef]
- Jiang, M.; Aoyama, T.; Takaki, T.; Ishii, I. Vibration source localization for motion-blurred high-frame-rate videos. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 774–779. [Google Scholar] [CrossRef]
- Abudoureheman, T.; Wang, F.; Shimasaki, K.; Ishii, I. HFR-Video-Based Vibration Analysis of a Multi-Jointed Robot Manipulator. J. Robot. Mechatron. 2025, 37, 1205–1218. [Google Scholar] [CrossRef]
- Fedorova, D.; Tlach, V.; Kuric, I.; Dodok, T.; Zajačko, I.; Tucki, K. Technical Diagnostics of Industrial Robots Using Vibration Signals: Case Study on Detecting Base Unfastening. Appl. Sci. 2025, 15, 270. [Google Scholar] [CrossRef]
- Chen, C.; Peng, F.; Yan, R.; Li, Y.; Wei, D.; Fan, Z.; Tang, X.; Zhu, Z. Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robot. Comput.-Integr. Manuf. 2019, 55, 29–40. [Google Scholar] [CrossRef]
- Thomsen, D.K.; Søe-Knudsen, R.; Balling, O.; Zhang, X. Vibration control of industrial robot arms by multi-mode time-varying input shaping. Mech. Mach. Theory 2021, 155, 104072. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Liu, J.; Han, X. A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots. IEEE Trans. Reliab. 2020, 69, 699–714. [Google Scholar] [CrossRef]
- Tajima, S.; Iwamoto, S.; Yoshioka, H. Posture Optimization in Robot Machining with Kinematic Redundancy for High-Precision Positioning. Int. J. Autom. Technol. 2023, 17, 494–503. [Google Scholar] [CrossRef]
- Jiao, J.; Tian, W.; Zhang, L.; Li, B.; Hu, J.; Li, Y.; Li, D.; Zhang, J. Variable stiffness identification and configuration optimization of industrial robots for machining tasks. Chin. J. Mech. Eng. 2022, 35, 115. [Google Scholar] [CrossRef]
- D’Antona, A.; Farsoni, S.; Rizzi, J.; Bonfè, M. A Variable Stiffness System for Impact Analysis in Collaborative Robotics Applications with FPGA-Based Force and Pressure Data Acquisition. Sensors 2025, 25, 3913. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Dong, H.; Ke, Y. Stiffness-oriented posture optimization in robotic machining applications. Robot. Comput.-Integr. Manuf. 2015, 35, 69–76. [Google Scholar] [CrossRef]
- Badkoobehhezaveh, H.; Fotouhi, R.; Zhang, Q.; Bitner, D. Vibration Analysis of a 5-DOF Long-Reach Robotic Arm. Vibration 2022, 5, 585–602. [Google Scholar] [CrossRef]
- Bisu, C.; Cherif, M.; Gerard, A.; K’nevez, J.Y. Dynamic Behavior Analysis for a Six Axis Industrial Machining Robot. Adv. Mater. Res. 2011, 423, 65–76. [Google Scholar] [CrossRef]
- Birk, C.; Kipfmüller, M.; Kotschenreuther, J. Dynamic Modeling and Analysis of Industrial Robots for Enhanced Manufacturing Precision. Actuators 2025, 14, 311. [Google Scholar] [CrossRef]
- Bickel, V.T.; Manconi, A.; Amann, F. Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities. Remote Sens. 2018, 10, 865. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, S.; Lee, Y.J.; Sim, S.H. Stress Estimation Using Digital Image Correlation with Compensation of Camera Motion-Induced Error. Sensors 2019, 19, 5503. [Google Scholar] [CrossRef]
- Siebert, T.; Wood, R.; Splitthof, K. High Speed Image Correlation for Vibration Analysis. J. Phys. Conf. Ser. 2009, 181, 012064. [Google Scholar] [CrossRef]
- Neri, P. Augmented-Resolution Digital image correlation algorithm for vibration measurements. Measurement 2024, 231, 114565. [Google Scholar] [CrossRef]
- Shahbaznia, M.; Raissi Dehkordi, M.; Mirzaee, A. An Improved Time-Domain Damage Detection Method for Railway Bridges Subjected to Unknown Moving Loads. Period. Polytech. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Zhou, K.; Tang, J. A wavelet neural network informed by time-domain signal preprocessing for bearing remaining useful life prediction. Appl. Math. Model. 2023, 122, 220–241. [Google Scholar] [CrossRef]
- Bian, L.; Gebraeel, N.; Kharoufeh, J.P. Degradation modeling for real-time estimation of residual lifetimes in dynamic environments. IIE Trans. 2015, 47, 471–486. [Google Scholar] [CrossRef]
- Wehrle, E.; Gufler, V.; Vidoni, R. Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis. Machines 2020, 8, 11. [Google Scholar] [CrossRef]
- Kot, T.; Bobovský, Z.; Vysocký, A.; Krys, V.; Šafařík, J.; Ružarovský, R. Method for Robot Manipulator Joint Wear Reduction by Finding the Optimal Robot Placement in a Robotic Cell. Appl. Sci. 2021, 11, 5398. [Google Scholar] [CrossRef]
- Laine, S.; Haikonen, S.; Tiainen, T.; Viitala, R. Rotor resonance avoidance by continuous adjustment of support stiffness. Int. J. Mech. Sci. 2024, 270, 109092. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, W.; Dong, X. Natural Frequency Prediction Method for 6R Machining Industrial Robot. Appl. Sci. 2020, 10, 8138. [Google Scholar] [CrossRef]
- Xiu, C.; Weng, Y.; Shi, W. Vision and Vibration Data Fusion-Based Structural Dynamic Displacement Measurement with Test Validation. Sensors 2023, 23, 4547. [Google Scholar] [CrossRef] [PubMed]











| Item | MEMS Accelerometer | LDVs | MEMS Acoustic | DIC |
|---|---|---|---|---|
| Quantity | Acceleration | Velocity | Sound pressure | Full-field |
| Contact | Contact(need attachment) | Non-contact | Non-contact | Non-contact |
| Installation | Medium/Complex | Simple | Simple | Simple |
| Range | Single-point/Multi-point | Single-point | Single-point | Full-field |
| Accuracy | High | High | High | High |
| Speed | Fast | Slow | Fast | Fast |
| Visualization | Limited | Real-time | Real-time | Real-time |
| Limitations | Mass-loading, wiring | Sensitive | Battery | Large data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abudoureheman, T.; Otsubo, H.; Wang, F.; Shimasaki, K.; Ishii, I. High-Frame-Rate Camera-Based Vibration Analysis for Health Monitoring of Industrial Robots Across Multiple Postures. Appl. Sci. 2025, 15, 12771. https://doi.org/10.3390/app152312771
Abudoureheman T, Otsubo H, Wang F, Shimasaki K, Ishii I. High-Frame-Rate Camera-Based Vibration Analysis for Health Monitoring of Industrial Robots Across Multiple Postures. Applied Sciences. 2025; 15(23):12771. https://doi.org/10.3390/app152312771
Chicago/Turabian StyleAbudoureheman, Tuniyazi, Hayato Otsubo, Feiyue Wang, Kohei Shimasaki, and Idaku Ishii. 2025. "High-Frame-Rate Camera-Based Vibration Analysis for Health Monitoring of Industrial Robots Across Multiple Postures" Applied Sciences 15, no. 23: 12771. https://doi.org/10.3390/app152312771
APA StyleAbudoureheman, T., Otsubo, H., Wang, F., Shimasaki, K., & Ishii, I. (2025). High-Frame-Rate Camera-Based Vibration Analysis for Health Monitoring of Industrial Robots Across Multiple Postures. Applied Sciences, 15(23), 12771. https://doi.org/10.3390/app152312771

