Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = multi-UAV–vehicle collaboration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4738 KiB  
Article
Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network
by Haixiang Gao
Entropy 2025, 27(8), 803; https://doi.org/10.3390/e27080803 - 28 Jul 2025
Viewed by 231
Abstract
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, [...] Read more.
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 360
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 248
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

20 pages, 741 KiB  
Article
Long-Endurance Collaborative Search and Rescue Based on Maritime Unmanned Systems and Deep-Reinforcement Learning
by Pengyan Dong, Jiahong Liu, Hang Tao, Yang Zhao, Zhijie Feng and Hanjiang Luo
Sensors 2025, 25(13), 4025; https://doi.org/10.3390/s25134025 - 27 Jun 2025
Viewed by 317
Abstract
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, [...] Read more.
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, and underwater. However, in these vision-based maritime SAR systems, collaboration between UAVs and USVs is a critical issue for successful SAR operations. To address this challenge, in this paper, we propose a long-endurance collaborative SAR scheme which exploits the complementary strengths of the maritime unmanned systems. In this scheme, a swarm of UAVs leverages a multi-agent reinforcement-learning (MARL) method and probability maps to perform cooperative first-phase search exploiting UAV’s high altitude and wide field of view of vision sensing. Then, multiple USVs conduct precise real-time second-phase operations by refining the probabilistic map. To deal with the energy constraints of UAVs and perform long-endurance collaborative SAR missions, a multi-USV charging scheduling method is proposed based on MARL to prolong the UAVs’ flight time. Through extensive simulations, the experimental results verified the effectiveness of the proposed scheme and long-endurance search capabilities. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System: 2nd Edition)
Show Figures

Figure 1

24 pages, 1151 KiB  
Article
EKNet: Graph Structure Feature Extraction and Registration for Collaborative 3D Reconstruction in Architectural Scenes
by Changyu Qian, Hanqiang Deng, Xiangrong Ni, Dong Wang, Bangqi Wei, Hao Chen and Jian Huang
Appl. Sci. 2025, 15(13), 7133; https://doi.org/10.3390/app15137133 - 25 Jun 2025
Viewed by 277
Abstract
Collaborative geometric reconstruction of building structures can significantly reduce communication consumption for data sharing, protect privacy, and provide support for large-scale robot application management. In recent years, geometric reconstruction of building structures has been partially studied, but there is a lack of alignment [...] Read more.
Collaborative geometric reconstruction of building structures can significantly reduce communication consumption for data sharing, protect privacy, and provide support for large-scale robot application management. In recent years, geometric reconstruction of building structures has been partially studied, but there is a lack of alignment fusion studies for multi-UAV (Unmanned Aerial Vehicle)-reconstructed geometric structure models. The vertices and edges of geometric structure models are sparse, and existing methods face challenges such as low feature extraction efficiency and substantial data requirements when processing sparse graph structures after geometrization. To address these challenges, this paper proposes an efficient deep graph matching registration framework that effectively integrates interpretable feature extraction with network training. Specifically, we first extract multidimensional local properties of nodes by combining geometric features with complex network features. Next, we construct a lightweight graph neural network, named EKNet, to enhance feature representation capabilities, enabling improved performance in low-overlap registration scenarios. Finally, through feature matching and discrimination modules, we effectively eliminate incorrect pairings and enhance accuracy. Experiments demonstrate that the proposed method achieves a 27.28% improvement in registration speed compared to traditional GCN (Graph Convolutional Neural Networks) and an 80.66% increase in registration accuracy over the suboptimal method. The method exhibits strong robustness in registration for scenes with high noise and low overlap rates. Additionally, we construct a standardized geometric point cloud registration dataset. Full article
Show Figures

Figure 1

28 pages, 40968 KiB  
Article
Collaborative Search Algorithm for Multi-UAVs Under Interference Conditions: A Multi-Agent Deep Reinforcement Learning Approach
by Wei Wang, Yong Chen, Yu Zhang, Yong Chen and Yihang Du
Drones 2025, 9(6), 445; https://doi.org/10.3390/drones9060445 - 18 Jun 2025
Viewed by 408
Abstract
Unmanned aerial vehicles (UAVs) have emerged as a promising solution for collaborative search missions in complex environments. However, in the presence of interference, communication disruptions between UAVs and ground control stations can severely degrade coordination efficiency, leading to prolonged search times and reduced [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as a promising solution for collaborative search missions in complex environments. However, in the presence of interference, communication disruptions between UAVs and ground control stations can severely degrade coordination efficiency, leading to prolonged search times and reduced mission success rates. To address these challenges, this paper proposes a novel multi-agent deep reinforcement learning (MADRL) framework for joint spectrum and search collaboration in multi-UAV systems. The core problem is formulated as a combinatorial optimization task that simultaneously optimizes channel selection and heading angles to minimize the total search time under dynamic interference conditions. Due to the NP-hard nature of this problem, we decompose it into two interconnected Markov decision processes (MDPs): a spectrum collaboration subproblem solved using a received signal strength indicator (RSSI)-aware multi-agent proximal policy optimization (MAPPO) algorithm and a search collaboration subproblem addressed through a target probability map (TPM)-guided MAPPO approach with an innovative action-masking mechanism. Extensive simulations demonstrate superior performance compared to baseline methods (IPPO, QMIX, and IQL). Extensive experimental results demonstrate significant performance advantages, including 68.7% and 146.2% higher throughput compared to QMIX and IQL, respectively, along with 16.7–48.3% reduction in search completion steps versus baseline methods, while maintaining robust operations under dynamic interference conditions. The framework exhibits strong resilience to communication disruptions while maintaining stable search performance, validating its practical applicability in real-world interference scenarios. Full article
Show Figures

Figure 1

19 pages, 4044 KiB  
Article
A Deep Reinforcement Learning-Driven Seagull Optimization Algorithm for Solving Multi-UAV Task Allocation Problem in Plateau Ecological Restoration
by Lijing Qin, Zhao Zhou, Huan Liu, Zhengang Yan and Yongqiang Dai
Drones 2025, 9(6), 436; https://doi.org/10.3390/drones9060436 - 14 Jun 2025
Viewed by 431
Abstract
The rapid advancement of unmanned aerial vehicle (UAV) technology has enabled the coordinated operation of multi-UAV systems, offering significant applications in agriculture, logistics, environmental monitoring, and disaster relief. In agriculture, UAVs are widely utilized for tasks such as ecological restoration, crop monitoring, and [...] Read more.
The rapid advancement of unmanned aerial vehicle (UAV) technology has enabled the coordinated operation of multi-UAV systems, offering significant applications in agriculture, logistics, environmental monitoring, and disaster relief. In agriculture, UAVs are widely utilized for tasks such as ecological restoration, crop monitoring, and fertilization, providing efficient and cost-effective solutions for improved productivity and sustainability. This study addresses the collaborative task allocation problem for multi-UAV systems, using ecological grassland restoration as a case study. A multi-objective, multi-constraint collaborative task allocation problem (MOMCCTAP) model was developed, incorporating constraints such as UAV collaboration, task completion priorities, and maximum range restrictions. The optimization objectives include minimizing the maximum task completion time for any UAV and minimizing the total time for all UAVs. To solve this model, a deep reinforcement learning-based seagull optimization algorithm (DRL-SOA) is proposed, which integrates deep reinforcement learning with the seagull optimization algorithm (SOA) for adaptive optimization. The algorithm improves both global and local search capabilities by optimizing key phases of seagull migration, attack, and post-attack refinement. Evaluation against five advanced swarm intelligence algorithms demonstrates that the DRL-SOA outperforms the alternatives in convergence speed and solution diversity, validating its efficacy for solving the MOMCCTAP. Full article
Show Figures

Figure 1

20 pages, 2661 KiB  
Article
Cooperative Jamming for RIS-Assisted UAV-WSN Against Aerial Malicious Eavesdropping
by Juan Li, Gang Wang, Weijia Wu, Jing Zhou, Yingkun Liu, Yangqin Wei and Wei Li
Drones 2025, 9(6), 431; https://doi.org/10.3390/drones9060431 - 13 Jun 2025
Viewed by 419
Abstract
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, [...] Read more.
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, particularly when legitimate UAVs (UAV-L) receive confidential information from ground sensor nodes (SNs), which is vulnerable to interception by eavesdropping UAVs (UAV-E). In response to this challenge, this study presents a cooperative jamming (CJ) scheme for Reconfigurable Intelligent Surfaces (RIS)-assisted UAV-WSN to combat aerial malicious eavesdropping. The multi-dimensional optimization problem (MDOP) of system security under quality of service (QoS) constraints is addressed by collaboratively optimizing the transmit power (TP) of SNs, the flight trajectories (FT) of the UAV-L, the frame length (FL) of time slots, and the phase shift matrix (PSM) of the RIS. To address the challenge, we put forward a Cooperative Jamming Joint Optimization Algorithm (CJJOA) scheme. Specifically, we first apply the block coordinate descent (BCD) to decompose the original MDOP into several subproblems. Then, each subproblem is convexified by successive convex approximation (SCA). The numerical results demonstrate that the designed algorithm demonstrates extremely strong stability and reliability during the convergence process. At the same time, it shows remarkable advantages compared with traditional benchmark testing methods, effectively and practically enhancing security. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Energy-Efficient Multi-Agent Deep Reinforcement Learning Task Offloading and Resource Allocation for UAV Edge Computing
by Shu Xu, Qingjie Liu, Chengye Gong and Xupeng Wen
Sensors 2025, 25(11), 3403; https://doi.org/10.3390/s25113403 - 28 May 2025
Viewed by 1078
Abstract
The integration of Unmanned Aerial Vehicles (UAVs) into Mobile Edge Computing (MEC) systems has emerged as a transformative solution for latency-sensitive applications, leveraging UAVs’ unique advantages in mobility, flexible deployment, and on-demand service provisioning. This paper proposes a novel multi-agent reinforcement learning framework, [...] Read more.
The integration of Unmanned Aerial Vehicles (UAVs) into Mobile Edge Computing (MEC) systems has emerged as a transformative solution for latency-sensitive applications, leveraging UAVs’ unique advantages in mobility, flexible deployment, and on-demand service provisioning. This paper proposes a novel multi-agent reinforcement learning framework, termed Multi-Agent Twin Delayed Deep Deterministic Policy Gradient for Task Offloading and Resource Allocation (MATD3-TORA), to optimize task offloading and resource allocation in UAV-assisted MEC networks. The framework enables collaborative decision making among multiple UAVs to efficiently serve sparsely distributed ground mobile devices (MDs) and establish an integrated mobility, communication, and computational offloading model, which formulates a joint optimization problem aimed at minimizing the weighted sum of task processing latency and UAV energy consumption. Extensive experiments demonstrate that the algorithm achieves improvements in system latency and energy efficiency compared to conventional approaches. The results highlight MATD3-TORA’s effectiveness in addressing UAV-MEC challenges, including mobility–energy tradeoffs, distributed decision making, and real-time resource allocation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 14203 KiB  
Article
Low-Profile Omnidirectional and Wide-Angle Beam Scanning Antenna Array Based on Epsilon-Near-Zero and Fabry–Perot Co-Resonance
by Jiaxin Li, Lin Zhao, Dan Long and Hui Xie
Electronics 2025, 14(10), 2012; https://doi.org/10.3390/electronics14102012 - 15 May 2025
Viewed by 783
Abstract
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic [...] Read more.
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic analysis of ENZ media’s quasi-static field distribution, we innovatively integrated it with Fabry–Perot (F–P) resonance, achieving unprecedented dual-band omnidirectional radiation at 5.18 GHz and 5.72 GHz within a single ENZ antenna configuration for the first time. The directivity of both frequencies reached 12.0 dBi, with a remarkably low profile of only 0.018λ. We then extended this design to an ENZ-FP dual-mode beam-scanning array. By incorporating phase control technology, we achieved wide-angle scanning despite low-profile constraints. The measured 3 dB beam coverage angles at the dual frequencies were ±63° and ±65°, respectively. Moreover, by loading the impedance matching network, the −10 dB impedance bandwidth of the antenna array was further extended to 2.4% and 2.7%, respectively, thus overcoming the narrowband limitations of the ENZ antenna and enhancing practical applicability. The antennas were manufactured using PCB (Printed Circuit Board) technology, offering high integration and cost efficiency. This provides a new paradigm for UAV (Unmanned Aerial Vehicle) communication and radar detection systems featuring multi-band operation, a low-profile design, and flexible beam control capabilities. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 812 KiB  
Review
Review of Tethered Unmanned Aerial Vehicles: Building Versatile and Robust Tethered Multirotor UAV System
by Dario Handrick, Mattie Eckenrode and Junsoo Lee
Dynamics 2025, 5(2), 17; https://doi.org/10.3390/dynamics5020017 - 7 May 2025
Viewed by 1677
Abstract
This paper presents a comprehensive review of tethered unmanned aerial vehicles (UAVs), focusing on their challenges and potential applications across various domains. We analyze the dynamic characteristics of tethered UAV systems and address the unique challenges they present, including complex tether dynamics, impulsive [...] Read more.
This paper presents a comprehensive review of tethered unmanned aerial vehicles (UAVs), focusing on their challenges and potential applications across various domains. We analyze the dynamic characteristics of tethered UAV systems and address the unique challenges they present, including complex tether dynamics, impulsive forces, and entanglement risks. Additionally, we explore application-specific challenges in areas such as payload transportation and ground-connected systems. The review also examines existing tethered UAV testbed designs, highlighting their strengths and limitations in both simulation and experimental settings. We discuss advancements in multi-UAV cooperation, ground–air collaboration through tethers, and the integration of retractable tether systems. Moreover, we identify critical future challenges in developing tethered UAV systems, emphasizing the need for robust control strategies and innovative solutions for dynamic and cluttered environments. Finally, the paper provides insights into the future potential of variable-length tethered UAV systems, exploring how these systems can enhance versatility, improve operational safety, and expand the range of feasible applications in industries such as logistics, emergency response, and environmental monitoring. Full article
Show Figures

Figure 1

27 pages, 1190 KiB  
Article
Efficient Multi-Target Localization Using Dynamic UAV Clusters
by Wei Gong, Shuhan Lou, Liyuan Deng, Peng Yi and Yiguang Hong
Sensors 2025, 25(9), 2857; https://doi.org/10.3390/s25092857 - 30 Apr 2025
Cited by 1 | Viewed by 463
Abstract
This paper proposes a dynamic unmanned aerial vehicle (UAV) clustering model for multi-target localization in complex 3D environments, where mobility-aware cluster formation is integrated to enhance collaborative localization accuracy. We derive the Cramér–Rao lower bound (CRLB) for localization performance analysis under measurement and [...] Read more.
This paper proposes a dynamic unmanned aerial vehicle (UAV) clustering model for multi-target localization in complex 3D environments, where mobility-aware cluster formation is integrated to enhance collaborative localization accuracy. We derive the Cramér–Rao lower bound (CRLB) for localization performance analysis under measurement and motion-induced uncertainties. To solve the NP-hard clustering problem, we develop the MDQPSO-ASA algorithm, which combines multi-swarm discrete quantum-inspired particle swarm optimization with adaptive simulated annealing, incorporating a repair mechanism to satisfy spatial and cardinality constraints. Simulation results demonstrate the algorithm’s superiority in localization accuracy, computational efficiency, and adaptability to varying UAV/target scales compared to baseline methods. The developed algorithm provides an effective solution for resource-constrained collaborative localization tasks in practical scenarios. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

31 pages, 2276 KiB  
Article
Dynamic UAV Inspection Boosted by Vehicle Collaboration Under Harsh Conditions in the IoT Realm
by Dai Hou, Zhiheng Yao, Bo Jin, Xingwei Cai, Huan Xu, Jiaxiang Xu and Tianping Deng
Appl. Sci. 2025, 15(9), 4671; https://doi.org/10.3390/app15094671 - 23 Apr 2025
Viewed by 441
Abstract
With the widespread adoption of the Internet of Things (IoT), UAV–vehicle collaborative inspection systems are crucial for large-scale, IoT-enabled monitoring. Empowered by the IoT, these systems optimize resource allocation and boost the efficiency of IoT-based applications. Nevertheless, variable vehicle and UAV speeds due [...] Read more.
With the widespread adoption of the Internet of Things (IoT), UAV–vehicle collaborative inspection systems are crucial for large-scale, IoT-enabled monitoring. Empowered by the IoT, these systems optimize resource allocation and boost the efficiency of IoT-based applications. Nevertheless, variable vehicle and UAV speeds due to wind and precipitation complicate path planning and task scheduling in the IoT-integrated setup. To solve this, this study offers an adaptive solution for dynamic, complex-weather scenarios within the IoT framework. A dynamic task-processing model was developed first, using real-time IoT sensor data for better decisions. Then, the KGTSA optimization algorithm was designed. It combines K-means clustering, HGA, and TS, considering UAV and vehicle speed variations in complex weather and making full use of IoT-device data. K-means generates an initial solution, HGA refines it, and TS fine-tunes UAV routes and task assignments. The simulation results show that KGTSA significantly cuts data collection time while maintaining flexibility. It efficiently manages speed and path uncertainties in complex weather, optimizing task efficiency without weather forecasts. Compared to traditional algorithms, KGTSA shortens data collection time and adapts better to dynamic IoT environments for real-world efficiency. Full article
(This article belongs to the Special Issue IoT and Edge Computing for Smart Infrastructure and Cybersecurity)
Show Figures

Figure 1

24 pages, 4182 KiB  
Article
Design of Swarm Intelligence Control Based on Double-Layer Deep Reinforcement Learning
by Xiangpei Yan, Guorui Yu, Guoke Huang, Ruchuan Zhou and Liu Hao
Appl. Sci. 2025, 15(8), 4337; https://doi.org/10.3390/app15084337 - 14 Apr 2025
Viewed by 736
Abstract
Traditional methods have limitations regarding efficient collaboration and dynamic response in complex dynamic environments. Although existing swarm intelligence control methods possess certain adaptive optimization capabilities, they still face challenges in individual and global collaborative optimization and adaptability. To address this challenge, a swarm [...] Read more.
Traditional methods have limitations regarding efficient collaboration and dynamic response in complex dynamic environments. Although existing swarm intelligence control methods possess certain adaptive optimization capabilities, they still face challenges in individual and global collaborative optimization and adaptability. To address this challenge, a swarm intelligence control design method based on double-layer deep reinforcement learning (D-DRL) is proposed. This method uses a double architecture where the inner layer is responsible for dynamic decision-making and behavior optimization, and the outer layer manages resource allocation and strategy optimization. The dynamic interaction between the inner and outer layers, coupled with multi-level collaborative optimization, enhances the system’s adaptability and operating performance. The results of the unmanned aerial vehicle (UAV) swarm case study show that our method achieves effective convergence and outperforms existing swarm intelligence control approaches. Specifically, it simultaneously optimizes energy efficiency and task completion amount with a superior performance. This improvement significantly enhances the comprehensive task effectiveness of the swarm. Full article
Show Figures

Figure 1

27 pages, 31775 KiB  
Article
FPGA-Based Particle Swarm Collaborative Target Localization Algorithm for UAV Swarms
by Chuanhao Zhang, Changsheng Li, Zhipeng Chen, Haojie Li and Hang Yu
Sensors 2025, 25(8), 2462; https://doi.org/10.3390/s25082462 - 14 Apr 2025
Viewed by 482
Abstract
To achieve precise collaborative localization of multiple unmanned aerial vehicles (UAVs) in hardware environments, this paper presents an field-programmable gate array-based particle swarm optimization (PSO) algorithm aimed at enhancing the localization efficiency of multiple nodes targeting a specific object. By leveraging the unique [...] Read more.
To achieve precise collaborative localization of multiple unmanned aerial vehicles (UAVs) in hardware environments, this paper presents an field-programmable gate array-based particle swarm optimization (PSO) algorithm aimed at enhancing the localization efficiency of multiple nodes targeting a specific object. By leveraging the unique computational capabilities of FPGA, the proposed algorithm integrates optimization strategies, including particle mutation, variable crossover probabilities, and adjustable weights. These strategies collectively enhance the performance of the PSO algorithm in localization tasks. Comparative simulations conducted across a range of operational scenarios demonstrate that the algorithm not only ensures high localization accuracy but also delivers excellent real-time performance and rapid convergence. To further validate the algorithm’s practical applicability, a four-node collaborative localization platform was developed, and experiments were carried out. The results confirmed the feasibility of multi-node collaborative localization, underscoring the advantages of the proposed algorithm, such as high accuracy, fast convergence, and robust stability. Full article
Show Figures

Figure 1

Back to TopTop