Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = movable plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5288 KiB  
Article
A Mesoscale Particle Method for Simulation of Boundary Slip Phenomena in Fluid Systems
by Alexander E. Filippov, Mikhail Popov and Valentin L. Popov
Computation 2025, 13(7), 155; https://doi.org/10.3390/computation13070155 - 1 Jul 2025
Viewed by 280
Abstract
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including [...] Read more.
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including phase changes, plastic deformation and flow, interface phenomena, turbulence, etc. The physical system under study comprised two atomically flat surfaces composed of particles of different sizes and separated by a model fluid formed by moving particles with repulsing cores of different sizes and long-range attraction. The resulting simulation method was tested under a variety of particle densities and conditions. It was shown that the particles can enter different (solid, liquid, and gaseous) states, depending on the effective temperature (kinetic energy caused by surface motion and random noise generated by spatially distributed Langevin sources). The local order parameter and formation of solid domains was studied for systems with varying density. Heating of the region close to one of the plates could change the density of the liquid in its proximity and resulted in chaotization (turbulence); it also dramatically changed the system configuration, the direction of the average flow, and reduced the effective friction force. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

38 pages, 3461 KiB  
Article
A Parallel Plate Variable Capacitor-Based Wind Pressure Sensor: Closed-Form Solution and Numerical Design and Calibration
by Xiao-Ting He, Jun-Song Ran, Jing-Miao Yin, Jun-Yi Sun and Ying Guo
Sensors 2025, 25(12), 3760; https://doi.org/10.3390/s25123760 - 16 Jun 2025
Viewed by 336
Abstract
In this paper, a parallel plate variable capacitor-based wind pressure sensor is proposed, which uses a wind-driven peripherally fixed circular membrane as its pressure-sensitive element and a spring-reset parallel plate variable capacitor as its sensing element. The circular membrane is first driven by [...] Read more.
In this paper, a parallel plate variable capacitor-based wind pressure sensor is proposed, which uses a wind-driven peripherally fixed circular membrane as its pressure-sensitive element and a spring-reset parallel plate variable capacitor as its sensing element. The circular membrane is first driven by the wind, and then it pushes the spring-reset movable electrode plate of the parallel plate variable capacitor to move, resulting in a change in the capacitance of the capacitor. The wind pressure, i.e., the direct action force per unit area exerted by the wind on the circular membrane, is thus detected by measuring the capacitance change of the capacitor. The elastic contact problem between the circular membrane and the spring-reset movable electrode plate is analytically solved, and its closed-form solution is presented, where the usually adopted small rotation angle assumption of the membrane is given up. The analytical relationship between the input pressure and output capacitance of the capacitive wind pressure sensor proposed here is derived. The validity of the closed-form solution is proved, and how to use the closed-form solution and input/output analytical relationship for the numerical design and calibration of the capacitive wind pressure sensor proposed here is illustrated. Finally, the qualitative and quantitative effects of changing design parameters on the capacitance–pressure analytical relationship of the wind pressure measurement system are investigated comprehensively. Full article
Show Figures

Figure 1

19 pages, 3072 KiB  
Article
Ground Clearance Effects on the Aerodynamic Loading of Tilted Flat Plates in Tandem
by Dimitrios Mathioulakis, Nikolaos Vasilikos, Panagiotis Kapiris and Christina Georgantopoulou
Fluids 2025, 10(6), 155; https://doi.org/10.3390/fluids10060155 - 12 Jun 2025
Viewed by 429
Abstract
The aerodynamic loading of four as well as of six tilted flat plates-panels arranged in tandem and in close proximity to the ground is examined through force and pressure measurements. In the four-plate set up, conducted in an open-circuit wind tunnel, a movable [...] Read more.
The aerodynamic loading of four as well as of six tilted flat plates-panels arranged in tandem and in close proximity to the ground is examined through force and pressure measurements. In the four-plate set up, conducted in an open-circuit wind tunnel, a movable floor is used to vary the ground clearance, and a one-component force balance is employed to measure the drag coefficient Cd of each plate for tilt angles 10° to 90° and for two head-on wind directions, 0° and 180°. An increase in the ground clearance from 20% to 60% of the plates’ chord length, results in a Cd increase of over 40% in the downstream plates, and up to 20% in the leading one. For tilt angles below 40°, the drag on the first plate is up to 25% higher under the 180° wind direction compared to the opposite direction. Pressure distributions are also presented on a series of six much larger plates, examined in a closed-circuit wind tunnel at tilt angles ±30°. While the windward surfaces exhibit relatively uniform pressure distributions, regions of low pressure develop on their suction side, near the plates’ tips leading edge, tending to become uniform streamwise. Full article
Show Figures

Figure 1

19 pages, 6051 KiB  
Article
Effect of Deformable Gurney Flaps on the Output Power of Flapping Turbine
by Chebana Abdelbasset, Ghelani Laala, Mohamed Taher Bouzaher, Charaf Eddine Bensaci, Alaeddine Zereg, Nadhir Lebaal and Mounir Aksas
Fluids 2025, 10(4), 104; https://doi.org/10.3390/fluids10040104 - 19 Apr 2025
Viewed by 352
Abstract
The Gurney flap (GF) is a simple flat plate frequently mounted at the airfoil rear. Several investigations have been devoted to studying the effect of a rigid or even movable GF on the aerodynamic behavior of several devices such as flapping airfoils and [...] Read more.
The Gurney flap (GF) is a simple flat plate frequently mounted at the airfoil rear. Several investigations have been devoted to studying the effect of a rigid or even movable GF on the aerodynamic behavior of several devices such as flapping airfoils and vertical or horizontal axis turbines. The present paper proposes a new concept of a deformable Gurney flap (DGF) to improve the output power of a flapping airfoil in vertical mode. The advantage of this model is the full control of the effect on the GF during the flapping movement. The DGF is expandable and contractible which allows for monitoring and adjusting the pressure distribution at the appropriate time and position. By using a 2D transient simulation with a specific dynamic mesh design, an extended numerical analysis has been provided. It was found that this model is able to increase the output power by 19.5%. Furthermore, the concept of the DGF is applied on flapping turbines in hybrid modes such as swing arm mode and D-shaped mode. These modes are investigated to clarify the studied model’s advantage and to demonstrate the possibility of applying this strategy to control the different flapping movements. Full article
Show Figures

Figure 1

41 pages, 5611 KiB  
Article
An Annular Conductive Membrane-Based Hollow Capacitive Wind Pressure Sensor: Analytical Solution and Numerical Design and Calibration
by Jun-Yi Sun, Zhi-Qiang Yan, He-Hao Feng and Xiao-Ting He
Materials 2025, 18(5), 965; https://doi.org/10.3390/ma18050965 - 21 Feb 2025
Cited by 1 | Viewed by 382
Abstract
A novel hollow capacitive wind pressure sensor is for the first time proposed. The sensing element of the proposed sensor uses a non-parallel plate variable capacitor, whose movable electrode plate uses a transversely uniformly loaded annular conductive membrane with a fixed outer edge [...] Read more.
A novel hollow capacitive wind pressure sensor is for the first time proposed. The sensing element of the proposed sensor uses a non-parallel plate variable capacitor, whose movable electrode plate uses a transversely uniformly loaded annular conductive membrane with a fixed outer edge and a rigid inner edge (acting as the wind pressure sensitive element of the sensor). Due to the unique hollow configuration of the proposed sensor, it can be used alone to detect the pressure exerted by fast-moving air in the atmosphere or by fast-moving air or gas, etc., in pipes, but it also can be used in pairs to measure the flow rate of fast-moving air or gas, etc., in pipes. The analytical solution of the large deflection elastic behavior of the transversely uniformly loaded annular conductive membrane is derived by using a new set of membrane governing equations. The effectiveness of the new analytical solution is analyzed. The new membrane governing equations are compared with the previous ones to show the differences between them. The superiority of the new analytical solution over the existing ones is analyzed. An example is given to demonstrate the numerical design and calibration of the proposed sensor and the effect of changing design parameters on the important capacitance–pressure (Cq) analytical relationship of the proposed sensor is investigated comprehensively. Finally, an experimental verification of the analytical solution derived is carried out. Full article
(This article belongs to the Special Issue Materials and Machine Learning-Related Challenges for Sensors)
Show Figures

Figure 1

14 pages, 7150 KiB  
Article
The Effect of Metal Shielding Layer on Electrostatic Attraction Issue in Glass–Silicon Anodic Bonding
by Wenqi Yang, Yong Ruan and Zhiqiang Song
Micromachines 2025, 16(1), 31; https://doi.org/10.3390/mi16010031 - 28 Dec 2024
Viewed by 3822
Abstract
Silicon–glass anode bonding is the key technology in the process of wafer-level packaging for MEMS sensors. During the anodic bonding process, the device may experience adhesion failure due to the influence of electric field forces. A common solution is to add a metal [...] Read more.
Silicon–glass anode bonding is the key technology in the process of wafer-level packaging for MEMS sensors. During the anodic bonding process, the device may experience adhesion failure due to the influence of electric field forces. A common solution is to add a metal shielding layer between the glass substrate and the device. In order to solve the problem of device failure caused by the electrostatic attraction phenomenon, this paper designed a double-ended solidly supported cantilever beam parallel plate capacitor structure, focusing on the study of the critical size of the window opening in the metal layer for the electric field shielding effect. The metal shield consists of 400 Å of Cr and 3400 Å of Au. Based on theoretical calculations, simulation analysis, and experimental testing, it was determined that the critical size for an individual opening in the metal layer is 180 μm × 180 μm, with the movable part positioned 5 μm from the bottom, which does not lead to failure caused by stiction due to electrostatic pull-in of the detection structure. It was proven that the metal shielding layer is effective in avoiding suction problems in secondary anode bonding. Full article
(This article belongs to the Special Issue Recent Advances in Silicon-Based MEMS Sensors and Actuators)
Show Figures

Figure 1

31 pages, 3793 KiB  
Article
A Circular Touch Mode Capacitive Rainfall Sensor: Analytical Solution and Numerical Design and Calibration
by Xiao-Ting He, Jun-Song Ran, Ji Wu, Fei-Yan Li and Jun-Yi Sun
Sensors 2024, 24(19), 6291; https://doi.org/10.3390/s24196291 - 28 Sep 2024
Viewed by 1148
Abstract
A circular capacitive rainfall sensor can operate from non-touch mode to touch mode; that is, under the action of enough rainwater, its movable electrode plate can form a circular contact area with its fixed electrode plate. Therefore, the weight of rainwater is borne [...] Read more.
A circular capacitive rainfall sensor can operate from non-touch mode to touch mode; that is, under the action of enough rainwater, its movable electrode plate can form a circular contact area with its fixed electrode plate. Therefore, the weight of rainwater is borne by only its movable electrode plate in non-touch mode operation but by both its movable and fixed electrode plates in touch mode operation, and the total capacitance of its touch mode operation is much larger than that of its non-touch mode operation. Essential to its numerical design and calibration is the ability to predict the deflection shape of its moveable electrode plate to determine its total capacitance. This requires the analytical solution to the fluid–structure interaction problem of its movable electrode plate under rainwater. In our previous work, only the analytical solution for the fluid–structure interaction problem before its movable electrode plate touches its fixed electrode plate was obtained, and how to numerically design and calibrate a circular non-touch mode capacitive rainfall sensor was illustrated. In this paper, the analytical solution for the fluid–structure interaction problem after its movable electrode plate touches its fixed electrode plate is obtained, and how to numerically design and calibrate a circular touch mode capacitive rainfall sensor is illustrated for the first time. The numerical results show that the total capacitance and rainwater volume when the circular capacitive rainfall sensor operates in touch mode is indeed much larger than that when the same circular capacitive rainfall sensor operates in non-touch mode, and that the average increase in the maximum membrane stress per unit rainwater volume when the circular capacitive rainfall sensor operates in touch mode can be about 20 times smaller than that when the same circular capacitive rainfall sensor operates in non-touch mode. This is where the circular touch mode capacitive rainfall sensor excels. Full article
(This article belongs to the Special Issue Recent Advances in Low Cost Capacitive Sensors)
Show Figures

Figure 1

30 pages, 2918 KiB  
Article
A Theoretical Study on Static Gas Pressure Measurement via Circular Non-Touch Mode Capacitive Pressure Sensor
by Ji Wu, Xiao-Ting He and Jun-Yi Sun
Sensors 2024, 24(16), 5314; https://doi.org/10.3390/s24165314 - 16 Aug 2024
Cited by 1 | Viewed by 1301
Abstract
A circular non-touch mode capacitive pressure sensor can operate in both transverse and normal uniform loading modes, but the elastic behavior of its movable electrode plate is different under the two different loading modes, making its input–output analytical relationships between pressure and capacitance [...] Read more.
A circular non-touch mode capacitive pressure sensor can operate in both transverse and normal uniform loading modes, but the elastic behavior of its movable electrode plate is different under the two different loading modes, making its input–output analytical relationships between pressure and capacitance different. This suggests that when such a sensor operates, respectively, in transverse and normal uniform loading modes, the theory of its numerical design and calibration is different, in other words, the theory for the transverse uniform loading mode (available in the literature) cannot be used as the theory for the normal uniform loading mode (not yet available in the literature). In this paper, a circular non-touch mode capacitive pressure sensor operating in normal uniform loading mode is considered. The elastic behavior of the movable electrode plate of the sensor under normal uniform loading is analytically solved with the improved governing equations, and the improved analytical solution obtained can be used to mathematically describe the movable electrode plate with larger elastic deflections, in comparison with the existing two analytical solutions in the literature. This provides a larger technical space for developing the circular non-touch mode capacitive pressure sensors used for measuring the static gas pressure (belonging to normal uniform loading). Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

20 pages, 14280 KiB  
Article
Understanding Low-Speed Streaks and Their Function and Control through Movable Shark Scales Acting as a Passive Separation Control Mechanism
by Leonardo M. Santos, Amy Lang, Redha Wahidi, Andrew Bonacci and Sashank Gautam
Biomimetics 2024, 9(7), 378; https://doi.org/10.3390/biomimetics9070378 - 22 Jun 2024
Cited by 2 | Viewed by 1751
Abstract
The passive bristling mechanism of the scales on the shortfin mako shark (Isurus oxyrinchus) is hypothesized to play a crucial role in controlling flow separation. In the hypothesized mechanism, the scales are triggered in response to patches of reversed flow at [...] Read more.
The passive bristling mechanism of the scales on the shortfin mako shark (Isurus oxyrinchus) is hypothesized to play a crucial role in controlling flow separation. In the hypothesized mechanism, the scales are triggered in response to patches of reversed flow at the onset of separation occurring in the low-speed streaks that form in a turbulent boundary layer. The two goals of this investigation were as follows: (1) to measure the reversing flow occurring within the low-speed streaks in a separating turbulent boundary layer; (2) to understand the passive flow control mechanism of movable shark skin scales that inhibit reversing flow within the low-speed streaks. Experiments were conducted using digital particle image velocimetry (DPIV). DPIV was used to analyze the flow in a turbulent boundary layer subjected to an adverse pressure gradient formation over both a smooth flat plate and a flat plate on which shark skin specimens were affixed. The experimental analysis of the flow over the smooth flat plate corroborated the findings of previous direct numerical simulation studies, which indicated that the average spanwise spacing of the low-speed streaks increases in the presence of adverse pressure gradients upstream of the point of separation. However, the characteristics of the flow over the shark skin specimen more closely resemble that of a zero-pressure gradient turbulent boundary layer. A comparative analysis of the width and velocity of the reversed streaks between flat plate and shark skin cases reveals that the mean spanwise spacing decreases, and thus, the number of streaks increases over the shark skin. Additionally, the reversed streaks observed over shark scales are thinner and the highest negative velocity within the streaks falls within the range required to bristle the scales. Full article
(This article belongs to the Special Issue Research in Biomimetic Underwater Devices)
Show Figures

Figure 1

18 pages, 5434 KiB  
Article
A Method of Precise Auto-Calibration in a Micro-Electro-Mechanical System Accelerometer
by Sergiusz Łuczak, Magdalena Ekwińska and Daniel Tomaszewski
Sensors 2024, 24(12), 4018; https://doi.org/10.3390/s24124018 - 20 Jun 2024
Cited by 1 | Viewed by 1446
Abstract
A novel design of a MEMS (Micro-Electromechanical System) capacitive accelerometer fabricated by surface micromachining, with a structure enabling precise auto-calibration during operation, is presented. Precise auto-calibration was introduced to ensure more accurate acceleration measurements compared to standard designs. The standard mechanical structure of [...] Read more.
A novel design of a MEMS (Micro-Electromechanical System) capacitive accelerometer fabricated by surface micromachining, with a structure enabling precise auto-calibration during operation, is presented. Precise auto-calibration was introduced to ensure more accurate acceleration measurements compared to standard designs. The standard mechanical structure of the accelerometer (seismic mass integrated with elastic suspension and movable plates coupled with fixed plates forming a system of differential sensing capacitors) was equipped with three movable detection electrodes coupled with three fixed electrodes, thus creating three atypical tunneling displacement transducers detecting three specific positions of seismic mass with high precision, enabling the auto-calibration of the accelerometer while it was being operated. Auto-calibration is carried out by recording the accelerometer indication while the seismic mass occupies a specific position, which corresponds to a known value of acting acceleration determined in a pre-calibration process. The diagram and the design of the mechanical structure of the accelerometer, the block diagram of the electronic circuits, and the mathematical relationships used for auto-calibration are presented. The results of the simulation studies related to mechanical and electric phenomena are discussed. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

15 pages, 7496 KiB  
Article
The Behavior of Long Thin Rectangular Plates under Normal Pressure—A Thorough Investigation
by Gilad Hakim and Haim Abramovich
Materials 2024, 17(12), 2902; https://doi.org/10.3390/ma17122902 - 13 Jun 2024
Cited by 1 | Viewed by 1100
Abstract
Thin rectangular plates are considered basic structures in various sectors like aerospace, civil, and mechanical engineering. Moreover, isotropic and laminated composite plates subjected to transverse normal loading and undergoing small and large deflections have been extensively studied and published in the literature. Yet, [...] Read more.
Thin rectangular plates are considered basic structures in various sectors like aerospace, civil, and mechanical engineering. Moreover, isotropic and laminated composite plates subjected to transverse normal loading and undergoing small and large deflections have been extensively studied and published in the literature. Yet, it seems that the particular case of long thin plates having a high aspect ratio appears to be almost ignored by various scholars despite its engineering importance. The present study tries to fill this gap, yielding novel findings regarding the structural behavior of long thin plates in the small- and large-deflection regimes. In contrast to what is normally assumed in the literature, namely that a long plate with a high aspect ratio can be considered an infinitely long plate, the present results clearly show that the structural effects of the ends continue to exist near the remote ends of the long plate. An innovative finding is that long plates would (only on movable boundary conditions for the large-deflection regime) exhibit a larger mid-width displacement in comparison with deflections of infinitely long plates. This innovative higher deflection appears for both small and large-deflection regimes for both all-around simply supported and all-around clamped boundary conditions. This new finding was shown to be valid for both isotropic and orthotropic materials and presents a novel engineering approach for the old assumption well quoted in the literature that a relatively long plate on any boundary condition can be considered an infinite plate. Based on the present research, it is recommended that this assumption should be used carefully as the largest plate mid-deflection might occur at finite aspect ratios. Full article
Show Figures

Figure 1

15 pages, 4498 KiB  
Article
Performance Optimization and Experimental Study of Small-Scale Potato-Grading Device
by Haohao Zhao, Weigang Deng, Shengshi Xie and Zexin Zhao
Agriculture 2024, 14(6), 822; https://doi.org/10.3390/agriculture14060822 - 24 May 2024
Cited by 3 | Viewed by 1886
Abstract
Traditional potato grading in China relies mostly on manual sorting, which is labor-intensive, time-consuming, costly, and inefficient. To enhance the operational performance of potato-grading devices, this paper focuses on optimizing the slide rail structure, which is the key component of a self-developed first-generation [...] Read more.
Traditional potato grading in China relies mostly on manual sorting, which is labor-intensive, time-consuming, costly, and inefficient. To enhance the operational performance of potato-grading devices, this paper focuses on optimizing the slide rail structure, which is the key component of a self-developed first-generation potato-grading device. A five-factor, three-level orthogonal experiment was designed, with the experimental factors being the height of the horizontal slide rail, angle of the first-stage inclined slide, angle of the second-stage inclined rail, chain horizontal movement speed, and conveyor belt speed. The indoor experiments were conducted using grading accuracy and grading efficiency as the experimental indicators. On the basis of the analysis of the orthogonal experiment results, two relatively optimal solutions were obtained, and validation experiments were conducted. The validation results show that when the height of the horizontal slide rail was 185 mm, the angle of the first-stage inclined rail was 4°, the angle of the second-stage inclined rail was 2.5°, the horizontal movement speed of the chain was 700 mm/s, and the movement speed of the conveyor belt was 275.60 mm/s, the performance of the movable rotating plate (MRP)-type grading device for potatoes reached its optimum. At this point, the grading accuracy was 94.88%, and the grading efficiency was 13.9477 t/h. Compared with the first-generation grading device, the optimized grading device achieved an improvement of 3.84% in grading accuracy and 12.94% in grading efficiency. The research methodology provided in this paper serves as a reference for the performance optimization of potato-grading devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 7950 KiB  
Article
Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
by Mohammed Y. Abdellah, Hamzah Alharthi, Rami Alfattani, Dhia K. Suker, H. M. Abu El-Ainin, Ahmed F. Mohamed, Mohamed K. Hassan and Ahmed H. Backar
Metals 2024, 14(3), 352; https://doi.org/10.3390/met14030352 - 19 Mar 2024
Cited by 2 | Viewed by 3322
Abstract
Temperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub [...] Read more.
Temperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temperatures for 20 min to ensure a homogeneous temperature distribution along the entire length of the specimen, before a tensile load was applied. Specimens were deformed to various levels of uniform strain (0%, 25%, 50%, 75%, and 100%). These degrees of deformation were measured with a dial gauge attached to a movable cross plate. Three strain rates were used for each specimen and temperature: 1.8×104 s1, 9×104 s1 and 4.5×103 s1. A simple analytical model was extracted based on the CT tensile test geometry and yield stress and a 0.2% offset strain to measure the fracture toughness (JIC). To validate the analytical model, an extended finite element method (XFEM) was implemented for specimens tested at different temperatures, with a strain rate of 1.8×104 s1. The model was then extended to include the tested specimens at other strain rates. The results show that increasing strain rates and temperature, especially at 850 °C, increased the ductility of the cast iron and thus its formability. The largest percentage strains were 1 and 1.5 at a temperature of 750 °C and a strain rate of 1.8×104 s1 and 9×104 s1, respectively, and reached their maximum value of 1.7 and 2.2% at 850 °C and a strain rate of 9×104 s1 and 4.5×103 s1, respectively. In addition, the simple and fast analytical model is useful in selecting materials for determining the fracture toughness (JIC) at various elevated temperatures and different strain rates. Full article
(This article belongs to the Special Issue Thermomechanical Treatment of Metals and Alloys—Second Edition)
Show Figures

Figure 1

11 pages, 2655 KiB  
Article
Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials
by Shengru Zhou, Chao Liang, Ziqi Mei, Rongbo Xie, Zhenci Sun, Ji Li, Wenqiang Zhang, Yong Ruan and Xiaoguang Zhao
Micromachines 2024, 15(2), 219; https://doi.org/10.3390/mi15020219 - 31 Jan 2024
Cited by 3 | Viewed by 2644
Abstract
Actuators play a crucial role in microelectromechanical systems (MEMS) and hold substantial potential for applications in various domains, including reconfigurable metamaterials. This research aims to design, fabricate, and characterize structures for the actuation of the EMA. The electromagnetic actuator overcomes the lack of [...] Read more.
Actuators play a crucial role in microelectromechanical systems (MEMS) and hold substantial potential for applications in various domains, including reconfigurable metamaterials. This research aims to design, fabricate, and characterize structures for the actuation of the EMA. The electromagnetic actuator overcomes the lack of high drive voltage required by other actuators. The proposed actuator configuration comprises supporting cantilever beams with fixed ends, an integrated coil positioned above the cantilever’s movable plate, and a permanent magnet located beneath the cantilever’s movable plate to generate a static magnetic field. Utilizing flexible polyimide, the fabrication process of the EMA is simplified, overcoming limitations associated with silicon-based micromachining techniques. Furthermore, this approach potentially enables large-scale production of EMA, with displacement reaching up to 250 μm under a 100 mA current, thereby expanding their scope of applications in manufacturing. To demonstrate the function of the EMA, we integrated it with a metamaterial structure to form a compact, tunable terahertz absorber, demonstrating a potential for reconfigurable electromagnetic space. Full article
(This article belongs to the Special Issue Terahertz and Infrared Metamaterial Devices, 2nd Edition)
Show Figures

Figure 1

7 pages, 1677 KiB  
Proceeding Paper
Sensitivity Analysis of Internally Reinforced Beam-Subjected Torsion Loading
by Hugo Miguel Silva and Jerzy Wojewoda
Eng. Proc. 2023, 56(1), 284; https://doi.org/10.3390/ASEC2023-15815 - 2 Nov 2023
Cited by 1 | Viewed by 679
Abstract
The objective of this study was to examine various techniques aimed at improving the mechanical performance and maneuverability of industrial machinery that incorporates movable components under the influence of three-point torsional loads. Multiple measures were implemented to achieve the goal of creating effective [...] Read more.
The objective of this study was to examine various techniques aimed at improving the mechanical performance and maneuverability of industrial machinery that incorporates movable components under the influence of three-point torsional loads. Multiple measures were implemented to achieve the goal of creating effective technical solutions. A sensitivity analysis was performed on one of the beams to assess the impact of each parameter within the mass and displacement parameter space. Previous studies have shown that the process of parameterizing the ANSYS input file is advantageous in assessing the system’s suitability to the design factors being considered. The parameters analyzed were the distance of the inner side plates to the center of mass (VA1), the distance of the inner upper and bottom plates to the center of mass (VA2) and the thickness of all the plates (VA3). The methodology followed was based on the parametrization of an ANSYS input file that was run every time the value of a parameter was changed. This work has potential applications in design optimization procedures, as well as in practical engineering applications, such as laser cutting and engraving machines, and industrial printers, including 3D printers. In future investigations, further research could be undertaken to employ the methodology in diverse circumstances and/or models. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop