Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = mounted on metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16950 KiB  
Article
A Near-Ground Shielding Structure for Grounded Capacitive Proximity Sensors to Mitigate Performance Discrepancies Between Flush and Non-Flush Mounting
by Yong Ye, Xiaotong Li, Qi Zhang, Yuting Liu, Haimin Qian and Jiahao Deng
Electronics 2025, 14(11), 2166; https://doi.org/10.3390/electronics14112166 - 27 May 2025
Viewed by 522
Abstract
The interference of metal working surfaces on the electric field can lead to performance variations between the flush mounting and non-flush mounting of capacitive proximity sensors in industrial applications. Traditional active shielding circuit designs are complex, while grounding shields not only reduce the [...] Read more.
The interference of metal working surfaces on the electric field can lead to performance variations between the flush mounting and non-flush mounting of capacitive proximity sensors in industrial applications. Traditional active shielding circuit designs are complex, while grounding shields not only reduce the sensor sensitivity but are also unsuitable for grounded sensors. To address this issue, this paper proposes an innovative near-ground (NG) shielding structure. This structure effectively concentrates the electric field between the sensing electrode and ground by adding a common ground electrode around the sensing electrode, thereby reducing the electrical coupling between the metal working surface and the sensing electrode and achieving the desired shielding effect. Through finite element analysis and experimental verification, this study performed an in-depth investigation of the capacitance difference Cd and the rate of change of capacitance with the target distance of sensors under the two mounting methods. The proposed structure achieved a performance comparable with active shielding (17 fF Cd) while operating passively, which addressed a critical cost–adaptability trade-off in industrial CPS designs. The results show that although the performance of the NG shielding was slightly inferior to active shielding, it was significantly better than traditional grounding shielding, and its structure was simple and low cost, showing great potential in practical applications. Full article
Show Figures

Graphical abstract

10 pages, 1735 KiB  
Communication
Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring
by Si Hyeok Yang, Lim Kyung Oh, Dong Ho Lee, Donghoon Gwak, Nara Song, Bowon Oh, Na Young Lee, Hongki Kim, Han Seul Kim and Jin Woo Choi
Biosensors 2025, 15(5), 311; https://doi.org/10.3390/bios15050311 - 13 May 2025
Viewed by 690
Abstract
The low-dimensional metal halide Cs3Cu2I5 exhibits unique electrical and chemical properties. Notably, it undergoes a phase transition to CsCu2I3 upon exposure to hydroxyl (-OH) gas, resulting in significant changes in its electrical characteristics. In this [...] Read more.
The low-dimensional metal halide Cs3Cu2I5 exhibits unique electrical and chemical properties. Notably, it undergoes a phase transition to CsCu2I3 upon exposure to hydroxyl (-OH) gas, resulting in significant changes in its electrical characteristics. In this study, we developed a highly selective semiconductor-based gas sensor utilizing Cs3Cu2I5. The material was synthesized on an Al2O3 substrate with carbon electrodes using a solution-based process, enabling gas sensing based on its electrical properties. The sensor was further integrated into an Arduino-based real-time monitoring system for wearable applications. The final system was mounted onto a face mask, enabling the real-time detection of human respiration. This research presents a next-generation sensor platform for real-time respiratory monitoring, demonstrating the potential of Cs3Cu2I5 in advanced wearable bio-gas sensing applications. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

17 pages, 1430 KiB  
Review
Exploring Microbial Ecosystem Services for Environmental Stress Amelioration: A Review
by Pradeep Semwal, Anand Dave, Juveriya Israr, Sankalp Misra, Manish Kumar and Diby Paul
Int. J. Mol. Sci. 2025, 26(10), 4515; https://doi.org/10.3390/ijms26104515 - 9 May 2025
Cited by 1 | Viewed by 864
Abstract
The increasing global population and intensifying resource limitations present a formidable challenge for sustainable crop production, especially in developing regions. This review explores the pivotal role of microbial ecosystem services in alleviating environmental stresses that impede agricultural productivity. Soil microbiota, particularly plant growth-promoting [...] Read more.
The increasing global population and intensifying resource limitations present a formidable challenge for sustainable crop production, especially in developing regions. This review explores the pivotal role of microbial ecosystem services in alleviating environmental stresses that impede agricultural productivity. Soil microbiota, particularly plant growth-promoting microbes (PGPMs), are integral to soil health and fertility and plant resilience against both abiotic (drought, salinity, temperature extremes, heavy metals) and biotic (pathogen) stresses. These microorganisms employ a variety of direct and indirect mechanisms, including the modulation of phytohormones, nutrient solubilization, the production of stress-alleviating enzymes, and the synthesis of antimicrobial compounds, to enhance plant growth and mitigate adverse environmental impacts. Advances in microbial biotechnology have expanded the toolkit for harnessing beneficial microbes, enabling the development of microbial inoculants and consortia tailored for specific stress conditions. This review highlights the multifaceted contributions of soil microbes, such as improving nutrient uptake, promoting root development, facilitating pollutant degradation, and supporting carbon sequestration, all of which underpin ecosystem resilience and sustainable agricultural practices. Furthermore, the synergistic interactions between plant roots and rhizospheric microbes are emphasized as key drivers of soil structure enhancement and long-term productivity. By synthesizing current research on the mechanisms of microbe-mediated stress tolerance, this review underscores the potential of microbial interventions to bridge the gap between food security and environmental conservation. The integration of microbial solutions into agroecosystems offers a promising, eco-friendly strategy to revitalize soils, boost crop yields, and ensure agricultural sustainability in the face of mounting environmental challenges. Full article
(This article belongs to the Special Issue Microorganisms in the Environment)
Show Figures

Figure 1

17 pages, 4101 KiB  
Article
Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles
by Zhentao Yu, Liwei Ye, Can Ding, Cheng Chi, Cong Liu and Pu Cheng
Sensors 2025, 25(9), 2954; https://doi.org/10.3390/s25092954 - 7 May 2025
Viewed by 545
Abstract
Aeromagnetic detection is a geophysical exploration technology that utilizes aircraft-mounted magnetometers to map variations in the Earth’s magnetic field. As a critical methodology for subsurface investigations, it has been extensively applied in geological mapping, mineral resource prospecting, hydrocarbon exploration, and engineering geological assessments. [...] Read more.
Aeromagnetic detection is a geophysical exploration technology that utilizes aircraft-mounted magnetometers to map variations in the Earth’s magnetic field. As a critical methodology for subsurface investigations, it has been extensively applied in geological mapping, mineral resource prospecting, hydrocarbon exploration, and engineering geological assessments. However, the metallic composition of aircraft platforms inherently generates magnetic interference, which significantly distorts the measurements acquired by onboard magnetometers. Aeromagnetic compensation aims to mitigate these platform-induced magnetic disturbances, thereby enhancing the accuracy of magnetic anomaly detection. Building upon the conventional Tolles-Lawson (T-L) model, this study introduces an enhanced compensation framework that addresses two key limitations: (1) minor deformations that occur due to the non-rigidity of the aircraft fuselage, resulting in additional interfering magnetic fields, and (2) coupled interference between geomagnetic field variations and aircraft maneuvers. The proposed model expands the original 18 compensation coefficients to 57 through dynamic parameterization, achieving a 22.41% improvement in compensation efficacy compared with the traditional T-L model. Furthermore, recognizing the operational challenges of large unmanned aerial vehicles (UAVs) in conventional calibration flights, this work redesigns the flight protocol by eliminating high-risk yaw maneuvers and optimizing the flight path geometry. Experimental validations conducted in the South China Sea demonstrate exceptional performance, with the interference magnetic field reduced to 0.0385 nT (standard deviation) during level flight, achieving an improvement ratio (IR) of 4.1688. The refined methodology not only enhances compensation precision but also substantially improves operational safety for large UAVs, offering a robust solution for modern aeromagnetic surveys. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

14 pages, 5999 KiB  
Article
Frequency-Selective Surface Based 360-Degree Beam-Steerable Cavity Antenna for UAV Swarm Coordination
by Mashrur Zawad, Chandana Kolluru, Sohel Rana, Kalyan C. Durbhakula and Mohamed Z. M. Hamdalla
Electronics 2025, 14(9), 1725; https://doi.org/10.3390/electronics14091725 - 24 Apr 2025
Viewed by 611
Abstract
A swarm of unmanned aerial vehicles (UAVs) often rely on exceptional wireless coverage of embedded or flush-mounted antennas or arrays, especially in long-range communication. While arrays offer significant range and beam steerability control, they often suffer from size, weight, and power (SWaP) limitations. [...] Read more.
A swarm of unmanned aerial vehicles (UAVs) often rely on exceptional wireless coverage of embedded or flush-mounted antennas or arrays, especially in long-range communication. While arrays offer significant range and beam steerability control, they often suffer from size, weight, and power (SWaP) limitations. On the other hand, achieving a wideband, high-gain, and beam-steerable response from a single antenna is highly desired for its compact SWaP characteristics. In this study, a cube-shaped cavity antenna excited by a monopole feed is designed, fabricated, and measured. The proposed antenna operates from 4.1 to 5.56 GHz with a 30.22% fractional bandwidth and a peak gain of 8 dBi. In addition, a frequency-selective surface (FSS) is developed to replace the metallic faces of the cavity, enabling 360° electronic beam steerability. Thermal analysis of the FSS-based cavity design is conducted to determine its maximum power handling capability, revealing a maximum power handling capability of 1.3 KW continuous. In addition, the maximum rating currents of the FSS diodes can be reached only at 165 W, limiting the maximum power handling to only 165 W in the case of using the diodes used in this analysis. The antenna prototype is successfully fabricated, and the radiation pattern is experimentally measured, showing a strong agreement between the simulated and measured results. The electronic steerability of the proposed antenna indicates its suitability for 5G new radio and UAV applications. Full article
(This article belongs to the Special Issue Control Systems for Autonomous Vehicles)
Show Figures

Figure 1

30 pages, 11610 KiB  
Review
Bump-Fabrication Technologies for Micro-LED Display: A Review
by Xin Wu, Xueqi Zhu, Shuaishuai Wang, Xuehuang Tang, Taifu Lang, Victor Belyaev, Aslan Abduev, Alexander Kazak, Chang Lin, Qun Yan and Jie Sun
Materials 2025, 18(8), 1783; https://doi.org/10.3390/ma18081783 - 14 Apr 2025
Cited by 1 | Viewed by 1609
Abstract
Micro Light Emitting Diode (Micro-LED) technology, characterized by exceptional brightness, low power consumption, fast response, and long lifespan, holds significant potential for next-generation displays, yet its commercialization hinges on resolving challenges in high-density interconnect fabrication, particularly micrometer-scale bump formation. Traditional fabrication approaches such [...] Read more.
Micro Light Emitting Diode (Micro-LED) technology, characterized by exceptional brightness, low power consumption, fast response, and long lifespan, holds significant potential for next-generation displays, yet its commercialization hinges on resolving challenges in high-density interconnect fabrication, particularly micrometer-scale bump formation. Traditional fabrication approaches such as evaporation enable precise bump control but face scalability and cost limitations, while electroplating offers lower costs and higher throughput but suffers from substrate conductivity requirements and uneven current density distributions that compromise bump-height uniformity. Emerging alternatives include electroless plating, which achieves uniform metal deposition on non-conductive substrates through autocatalytic reactions albeit with slower deposition rates; ball mounting and dip soldering, which streamline processes via automated solder jetting or alloy immersion but struggle with bump miniaturization and low yield; and photosensitive conductive polymers that simplify fabrication via photolithography-patterned composites but lack validated long-term stability. Persistent challenges in achieving micrometer-scale uniformity, thermomechanical stability, and environmental compatibility underscore the need for integrated hybrid processes, eco-friendly manufacturing protocols, and novel material innovations to enable ultra-high-resolution and flexible Micro-LED implementations. This review systematically compares conventional and emerging methodologies, identifies critical technological bottlenecks, and proposes strategic guidelines for industrial-scale production of high-density Micro-LED displays. Full article
Show Figures

Figure 1

16 pages, 415 KiB  
Article
Assessing Water Filtration and Purification Practices and Their Impact on Tap Water Mineral Levels in Jeddah City
by Loai Wadea Hazzazi, Waleed Alharbi, Abeer Mahmoud, Afnan O. Al-Zain, Nadia A. Al-Hazmi, Esperanza Angeles Martinez-Mier, Armando E. Soto-Rojas, Hani Mohammed Nassar, George J. Eckert and Frank Lippert
Water 2025, 17(8), 1110; https://doi.org/10.3390/w17081110 - 8 Apr 2025
Viewed by 971
Abstract
This study investigated the prevalence of water filtration and purification systems [WFPSs] in Jeddah, Saudi Arabia, and the impact of WFPSs on mineral concentrations in tap water. A convenience sample of residents completed a questionnaire on water usage/sources and provided water samples. Water [...] Read more.
This study investigated the prevalence of water filtration and purification systems [WFPSs] in Jeddah, Saudi Arabia, and the impact of WFPSs on mineral concentrations in tap water. A convenience sample of residents completed a questionnaire on water usage/sources and provided water samples. Water was analyzed [fluoride—ion-specific electrode; metals—atomic absorption spectrometry]. Nonparametric testing was performed to compare mineral concentrations between different water sources, and questionnaire associations underwent correlation tests. Ninety-nine participants completed the study. Sixty percent reported using some type of WFPS. The most used WFPSs were reverse osmosis [RO] systems [62%], followed by whole-house carbon filters [8%] and faucet-mounted filters [6%]. Fluoride concentrations were very low across all WFPSs [all median; RO—0.02 ppm, other WFPS—0.01 to 0.05 ppm] and in unfiltered tap water [0.02 ppm]. RO systems reduced the concentrations of several minerals [magnesium—1.40 ppm, p = 0.006; potassium—0.55 ppm, p = 0.016; sodium—7.88 ppm, p = 0.001] compared to those in unfiltered tap water [magnesium—1.8 ppm; potassium—0.62 ppm; sodium—10.60 ppm]. However, RO systems did not affect calcium concentrations [10.93 ppm] compared to those in unfiltered tap water [11.47 ppm]. Participants with larger households were significantly more likely to use tap water treatment systems [p = 0.002]. The observed reduction in certain mineral concentrations raises concerns about potential nutritional implications. Full article
(This article belongs to the Special Issue Water Quality, Wastewater Treatment and Water Recycling)
Show Figures

Figure 1

14 pages, 9642 KiB  
Article
Design and Process Implementation of Silicon-Based Carrier for 100 G/200 G Electro-Absorption Modulated Laser Chips
by Liang Li, Xuan Chen, Linfeng Zhan, Chenggang Guan, Wengang Yao, Yuming Zhang, Yifan Xiao, Xuelong Fan, Chen Xu and Yifeng Chen
Electronics 2025, 14(7), 1398; https://doi.org/10.3390/electronics14071398 - 30 Mar 2025
Viewed by 460
Abstract
This paper presents a highly stable and integrated silicon-based carrier with broad application prospects. Traditional 800 G optical modules employ architectures based on aluminum nitride (AlN) carriers with externally mounted capacitors. However, such AlN-based architectures suffer from issues including high process complexity, elevated [...] Read more.
This paper presents a highly stable and integrated silicon-based carrier with broad application prospects. Traditional 800 G optical modules employ architectures based on aluminum nitride (AlN) carriers with externally mounted capacitors. However, such AlN-based architectures suffer from issues including high process complexity, elevated costs, poor environmental temperature adaptability, and difficulties in systematic crosstalk optimization. To address these challenges, this study conducted research on coplanar waveguide (CPW) transmission line structure design and optimization, high-density capacitor design and process implementation, and multi-channel crosstalk suppression. Based on these investigations, a silicon-based integrated carrier was designed and fabricated, incorporating resistors, capacitors, high-speed signal lines, and preformed AuSn structures. Test results demonstrate that the CPW transmission line structures fabricated on the silicon carrier exhibit excellent radio frequency performance with transmission losses below 1 dB within 67 GHz. The developed high-density capacitor structure achieves a remarkable capacitance density of 26.83 nF/mm2 and withstands voltages exceeding 24 V at 1 μA current, reaching state-of-the-art levels. This paper also proposes crosstalk reduction solutions including increased channel spacing, the addition of wave-absorbing materials, and the implementation of metal barriers. Experimental results confirm that the developed integrated carrier demonstrates outstanding performance and reliability in high-frequency communications and optoelectronic devices. Full article
Show Figures

Figure 1

16 pages, 4471 KiB  
Article
Soil Heavy Metal Accumulation and Ecological Risk in Mount Wuyi: Impacts of Vegetation Types and Pollution Sources
by Feng Wu, Donghai Zhu, Tao Yang, Cong Mao, Wubiao Huang, Shuangshi Zhou and Yujing Yang
Land 2025, 14(4), 712; https://doi.org/10.3390/land14040712 - 26 Mar 2025
Viewed by 526
Abstract
Soil heavy metal (HM) contamination has become a critical global environmental issue, predominantly caused by industrial and agricultural operations. This study focuses on Mount Wuyi, a UNESCO biodiversity hotspot and major tea production base, to examine vegetation-mediated soil HM accumulation under anthropogenic impacts. [...] Read more.
Soil heavy metal (HM) contamination has become a critical global environmental issue, predominantly caused by industrial and agricultural operations. This study focuses on Mount Wuyi, a UNESCO biodiversity hotspot and major tea production base, to examine vegetation-mediated soil HM accumulation under anthropogenic impacts. We analyzed nine HMs (Mn, Cu, Zn, Cd, Hg, As, Pb, Cr, Ni) across diverse vegetation types using geochemical indices and Positive Matrix Factorization (PMF) modeling. The findings revealed Mn and Zn were dominant elements, and Cr and Pb concentrations exceeded regional background values by 3.47 and 1.26 times, respectively. Cr, Cd, and Pb demonstrated significant pollution levels, while Cd and Hg posed the highest ecological risks. Vegetation type significantly influenced HM distribution patterns, with cultivated areas and shrublands (including tea gardens) accumulating higher concentrations of Cu, Cd, Pb, and Hg from agricultural and transportation sources. Notably, bamboo forests exhibited natural resistance to HM contamination. PMF analysis identified four primary pollution sources: urbanization (27.94%), transport–agriculture activities (21.40%), agricultural practices (12.98%), and atmospheric deposition (12.96%). These results underscore the need for implementing clean energy solutions, phytoremediation strategies, and tea-specific detoxification measures to maintain ecological security and agricultural sustainability in this ecologically significant region. Full article
Show Figures

Figure 1

25 pages, 16804 KiB  
Article
Development and Demonstration of a Novel Test Bench for the Experimental Validation of Fuselage Stiffened Panel Simulations
by Panagiotis D. Kordas, Konstantinos T. Fotopoulos and George N. Lampeas
Aerospace 2025, 12(3), 263; https://doi.org/10.3390/aerospace12030263 - 20 Mar 2025
Viewed by 500
Abstract
The subject of the present work is the development and implementation of a novel testing facility to carry out an experimental campaign on an advanced fuselage panel manufactured from both thermoplastic and metallic materials, as well as the validation of its numerical simulation. [...] Read more.
The subject of the present work is the development and implementation of a novel testing facility to carry out an experimental campaign on an advanced fuselage panel manufactured from both thermoplastic and metallic materials, as well as the validation of its numerical simulation. The experimental arrangement was specifically designed, assembled, and instrumented to have multi-axial loading capabilities. The investigated load cases comprised uniaxial in-plane compression, lateral distributed pressure, and their combination. The introduction of pressure was enabled by inflatable airbags, and compression was applied up to the onset of local skin buckling. Calibration of the load introduction and inspection equipment was performed in multiple steps to acquire accurate and representative measurements. Data were recorded by external sensors mounted on a hydraulic actuator and an optical Digital Image Correlation (DIC) system. A numerical simulation of the fuselage panel and the test rig was developed, and a validation study was conducted. In the Finite Element (FE) model, several of the experimental configuration’s supporting elements and their connections to the specimen were integrated as constraints and boundary conditions. Data procured from the tests were correlated to the simulation’s predictions, presenting low errors in most displacement/strain distributions. The results show that the proposed test rig concept is suitable for stiffened panel level testing and could be used for future studies on similar aeronautical components. Full article
Show Figures

Figure 1

23 pages, 7934 KiB  
Article
Investigation of Airborne Particulate Matter from a Holiday Celebration in Central Oklahoma Using an Unmanned Aerial Vehicle (UAV)
by John-Thomas Murray, Mark Lohatepanont, Fernando Sisniega Serrano, Diego Perez Avendano and Wilson Merchan-Merchan
Appl. Sci. 2025, 15(6), 3151; https://doi.org/10.3390/app15063151 - 14 Mar 2025
Cited by 1 | Viewed by 942
Abstract
Herein, a recently developed UAV/Drone approach as a new vector for the collection of airborne particulate matter is reported. In this study, airborne particle emissions from plumes generated in a holiday fireworks display were collected. A platform fabricated using a 3D printer was [...] Read more.
Herein, a recently developed UAV/Drone approach as a new vector for the collection of airborne particulate matter is reported. In this study, airborne particle emissions from plumes generated in a holiday fireworks display were collected. A platform fabricated using a 3D printer was mounted on the drone, which allowed for particulate capture using double-sided carbon tape attached to aluminum disks. The drone platform was used to trap airborne samples from two types of plumes: high-altitude sampling (HAS), which relates to professional fireworks, and low-altitude sampling (LAS), associated with personal fireworks. Collected samples were studied using a Scanning Electron Microscope alongside Electron Dispersal X-ray Spectroscopy (EDX) for elemental composition analysis. The overall findings regarding the physical morphology reveal several key observations. Firstly, particles from professional fireworks are significantly larger and more spheroidal than those from personal fireworks. Secondly, both types of fireworks show a consistent trend in which some of the larger particles have finer particulates deposited on their surfaces. Lastly, the plumes produced by both types contain spheres that are either solid, hollow or exhibit a core–shell structure. EDX analysis revealed the presence of various types of metals within the samples. EDX analysis shows that the samples collected from the HAS and LAS contain particulates with common elements. However, the samples from the plume of professional fireworks appear to have Ba, Mg, and Fe compared to the samples from personal fireworks. These elements are known to be used in powerful fireworks to create colored displays. A proposed mechanism for particulate growth in fireworks is proposed and discussed. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

18 pages, 13167 KiB  
Article
Research on Low-Profile Directional Flexible Antenna with 3D Coplanar Waveguide for Partial Discharge Detection
by Yan Mi, Wentao Liu, Yiqin Peng, Lei Deng, Benxiang Shu, Xiaopeng Wang and Songyuan Li
Micromachines 2025, 16(3), 253; https://doi.org/10.3390/mi16030253 - 24 Feb 2025
Viewed by 1409
Abstract
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing [...] Read more.
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing flexible antennas, this paper proposes a directional flexible antenna design to mitigate these issues and improve detection performance. The proposed design employs a coplanar waveguide (CPW)-fed monopole antenna structure, where the grounding plane is extended to the back of the antenna to enhance directional reception. The designed flexible antenna measures 88.5 × 70 × 20 mm, and its low-profile design allows it to be easily mounted on the outer wall of the epoxy sleeve at the GIS cable terminal. The measurement results show that the flexible antenna has a Voltage Standing Wave Ratio (VSWR) of less than 2 in the 0.541–3 GHz frequency range. It also maintains stable impedance characteristics across various bending radii, with an average effective height of 10.79 mm in the 0.3–1.5 GHz frequency range. A GIS cable terminal PD experimental platform was established, and the experimental results demonstrate that the bending has minimal impact on the detection performance of the flexible antenna, which can cover the detection range of the GIS cable terminal; metal obstruction significantly impacts the PD signal amplitude, and the designed flexible antenna is suitable for detecting PDs in confined spaces with metal obstruction. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

24 pages, 22130 KiB  
Article
Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia
by Hongyan Quan, Ian Graham, Rohan Worland, Lewis Adler, Christian Dietz, Emmanuel Madayag, Huixin Wang and David French
Minerals 2025, 15(2), 134; https://doi.org/10.3390/min15020134 - 29 Jan 2025
Cited by 1 | Viewed by 974
Abstract
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. [...] Read more.
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. These deposits occur exclusively within the Drake Volcanics, a 60 × 20 km NW-SE trending sequence of Late Permian volcanics and related epiclastics. Drilling of the Copper Deeps geochemical anomaly suggests that the volcanics are over 600 m thick. The Drake Volcanics are centered upon a geophysical anomaly called “the Drake Quiet Zone” (DQZ), interpreted to be a collapsed volcanic caldera structure. A total of 105 fresh carbonate samples were micro-drilled from diamond drillcores from across the field and at various depths. A pXRD analysis of these carbonates identified five types as follows: ankerite, calcite, dolomite, magnesite, and siderite. Except for three outlier values (i.e., −21.32, −19.48, and 1.42‰), the δ13CVPDB generally ranges from−15.06 to −5.00‰, which is less variable compared to the δ18OVSMOW, which varies from −0.92 to 17.94‰. μ-XRF was used to analyze the elemental distribution, which indicated both syngenetic/epigenetic relationships between calcite and magnesite. In addition, a total of 53 sulfide samples (primarily sphalerite and pyrite) from diamond drillcores from across the Drake Goldfield were micro-drilled for S isotope analysis. Overall, these have a wide range in δ34SCDT values from −16.54 to 2.10‰. The carbon and oxygen isotope results indicate that the fluids responsible for the precipitation of carbonates from across the Drake Goldfield had complex origins, involving extensive mixing of hydrothermal fluids from several sources including those of magmatic origin, meteoric fluids and fluids associated with low-temperature alteration processes. Sulfur isotope ratios of sulfide minerals indicate that although the sulfur was most likely derived from at least two different sources; magmatic sulfur was the dominant source while sedimentary-derived sulfur was more significant for the deposits distal from the DQZ, with the relative importance of each varying from one deposit to another. Our findings contribute to a greater understanding of Au-Ag formation in epithermal environments, particularly in collapsed calderas, enhancing exploration strategies and models for ore deposition. Full article
Show Figures

Figure 1

19 pages, 8495 KiB  
Article
Design and Development of a Precision Defect Detection System Based on a Line Scan Camera Using Deep Learning
by Byungcheol Kim, Moonsun Shin and Seonmin Hwang
Appl. Sci. 2024, 14(24), 12054; https://doi.org/10.3390/app142412054 - 23 Dec 2024
Cited by 1 | Viewed by 3500
Abstract
The manufacturing industry environment is rapidly evolving into smart manufacturing. It prioritizes digital innovations such as AI and digital transformation (DX) to increase productivity and create value through automation and intelligence. Vision systems for defect detection and quality control are being implemented across [...] Read more.
The manufacturing industry environment is rapidly evolving into smart manufacturing. It prioritizes digital innovations such as AI and digital transformation (DX) to increase productivity and create value through automation and intelligence. Vision systems for defect detection and quality control are being implemented across industries, including electronics, semiconductors, printing, metal, food, and packaging. Small and medium-sized manufacturing companies are increasingly demanding smart factory solutions for quality control to create added value and enhance competitiveness. In this paper, we design and develop a high-speed defect detection system based on a line-scan camera using deep learning. The camera is positioned for side-view imaging, allowing for detailed inspection of the component mounting and soldering quality on PCBs. To detect defects on PCBs, the system gathers extensive images of both flawless and defective products to train a deep learning model. An AI engine generated through this deep learning process is then applied to conduct defect inspections. The developed high-speed defect detection system was evaluated to have an accuracy of 99.5% in the experiment. This will be highly beneficial for precision quality management in small- and medium-sized enterprises Full article
(This article belongs to the Special Issue Future Information & Communication Engineering 2024)
Show Figures

Figure 1

36 pages, 6182 KiB  
Article
Waste SMD LEDs from End-of-Life Residential LED Lamps: Presence and Characterisation of Rare Earth Elements and Precious Metals as a Function of Correlated Colour Temperature
by Konstantinos M. Sideris, Ioannis Katsiris, Dimitrios Fragkoulis, Vassilis N. Stathopoulos and Panagiotis Sinioros
Recycling 2024, 9(6), 128; https://doi.org/10.3390/recycling9060128 - 21 Dec 2024
Viewed by 1828
Abstract
Energy consumption in buildings is linked to lighting technology. Light-emitting diode (LED) technology includes lamps and luminaires for general lighting applications. Due to their structure, LED lamps are expected to generate specific waste electrical and electronic equipment (WEEE) streams. LEDs are the main [...] Read more.
Energy consumption in buildings is linked to lighting technology. Light-emitting diode (LED) technology includes lamps and luminaires for general lighting applications. Due to their structure, LED lamps are expected to generate specific waste electrical and electronic equipment (WEEE) streams. LEDs are the main source of luminous flux, and their elemental composition is of particular interest to the recycling sector. In this study, surface-mount device (SMD) LEDs from six types of LED lamps (E27, E14, G9, R7S, GU10, and MR16) were removed, collected, separated by correlated colour temperature (CCT) (2700 K, 3000 K, 4000 K, and 6500 K), and characterised for the presence of rare earth elements and precious metals. They were digested with HNO3, aqua regia, and HF in a hot plate and characterised by inductively coupled plasma mass spectrometry (ICP-MS). The concentration of each element as a function of CCT ranged as follows: lanthanum, 242–1840 mg/kg; cerium, 132–284 mg/kg; europium, 15–69 mg/kg; gadolinium, 1.9–3.8 mg/kg; terbium, 0.1–0.4 mg/kg; lutetium, 29–6381 mg/kg; yttrium, 4804–11,551 mg/kg; silver, 2712–5262 mg/kg; gold, 502–956 mg/kg; and palladium, 32–110 mg/kg. These results indicate the need for selective removal and separate recycling processes of SMD LEDs from LED lamps. Full article
Show Figures

Figure 1

Back to TopTop