Soil Heavy Metal Accumulation and Ecological Risk in Mount Wuyi: Impacts of Vegetation Types and Pollution Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Measurement
2.3. Heavy Metal Evaluation and Source Apportionment
2.4. Statistical Analysis
3. Results
3.1. Heavy Metal Distribution Patterns
3.2. Pollution Status and Ecological Risk of Heavy Metals
3.3. Analysis of Heavy Metal Sources
4. Discussion
4.1. Vegetation-Mediated Heavy Metal Accumulation and Spatial Distribution
4.2. Ecological Risk Assessment and Source Apportionment of Heavy Metals
4.3. Mitigation Strategies and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Gopinath, K.A.; Sheoran, S.; Meena, R.S.; Srinivasarao, C.; Bedwal, S.; Jangir, C.K.; Mrunalini, K.; Jat, R.; Praharaj, C.S. Pulse-based cropping systems for soil health restoration, resources conservation, and nutritional and environmental security in rainfed agroecosystems. Front. Microbiol. 2022, 13, 1041124. [Google Scholar]
- Chen, L.; Luo, X.; He, H.; Duan, T.; Zhou, Y.; Yang, L.; Zeng, Y.; Chen, H.; Fang, L. Hg-mining-induced soil pollution by potentially toxic metal(loid)s presents a potential environmental risk and threat to human health: A global meta-analysis. Soil Ecol. Lett. 2024, 6, 240233. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control–A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar]
- Tošić Jojević, S.; Mrvić, V.; Stajković-Srbinović, O.; Jovković, M.; Antić Mladenović, S.; Krpović, M.; Belanović Simić, S. Geochemical Distribution of Ni, Cr, and Co in the Main Soil Types of the Čemernica River Basin in Serbia (In a Serpentine Environment). Land 2024, 13, 2075. [Google Scholar] [CrossRef]
- Bi, R.; Fu, W.; Fu, X. Heavy Metal Spatial Variation Mechanism and Ecological Health Risk Assessment in Volcanic Island Soils: A Case Study of Weizhou Island, China. Land 2025, 14, 35. [Google Scholar]
- Du, W.; Zeng, P.; Yu, S.; Liu, F.; Sun, P.a. Distribution, Risk Assessment, and Quantitative Source Analysis of Soil Heavy Metals in a Typical Agricultural City of East-Central China. Land 2025, 14, 66. [Google Scholar] [CrossRef]
- Zgorelec, Ž.; Šprem, N.; Abramović, R.; Galić, M.; Hrelja, I.; Delač, D.; Safner, T.; Kisić, I. Temporal and Spatial Changes in Soil Quality at Shooting Ranges: A Case Study in Croatia. Land 2025, 14, 78. [Google Scholar] [CrossRef]
- Meng, F.; Liu, D.; Bu, T.; Zhang, M.; Peng, J.; Ma, J. Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. J. Environ. Manag. 2025, 376, 124448. [Google Scholar]
- Saha, A.; Sen Gupta, B.; Patidar, S.; Hernández-Martínez, J.L.; Martín-Romero, F.; Meza-Figueroa, D.; Martínez-Villegas, N. A comprehensive study of source apportionment, spatial distribution, and health risks assessment of heavy metal(loid)s in the surface soils of a semi-arid mining region in Matehuala, Mexico. Environ. Res. 2024, 260, 119619. [Google Scholar]
- Singh, S.; Maiti, S.K.; Raj, D. An approach to quantify heavy metals and their source apportionment in coal mine soil: A study through PMF model. Environ. Monit. Assess. 2023, 195, 306. [Google Scholar]
- Anaman, R.; Peng, C.; Jiang, Z.C.; Liu, X.; Zhou, Z.R.; Guo, Z.H.; Xiao, X.Y. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar]
- Shao, F.; Li, K.; Ouyang, D.; Zhou, J.; Luo, Y.; Zhang, H. Sources apportionments of heavy metal(loid)s in the farmland soils close to industrial parks: Integrated application of positive matrix factorization (PMF) and cadmium isotopic fractionation. Sci. Total Environ. 2024, 924, 171598. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yue, X.; Chen, Y.; Liu, Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. Sci. Total Environ. 2024, 906, 167772. [Google Scholar]
- Yang, Y.B.; Zhu, B.Q.; Rehman, A.; Du, Y.Z. A review of Leuctridae (Insecta, Plecoptera) in Wuyi Mountains, China. Biodivers. Data J. 2022, 10, e86735. [Google Scholar] [CrossRef]
- Hu, J.T.; Zheng, Z.L.; Wen, X.Y.; Hu, X.S.; Lin, Y.M.; Li, J.; Ni, J.; Wu, C.Z. Variation in Niche and Interspecific Associations across Elevations in Subtropical Forest Communities of the Wuyi Mountains, Southeastern China. Forests 2024, 15, 1256. [Google Scholar] [CrossRef]
- Chen, J.; Shi, S.; Zhong, X.; Si, Y.; Ma, H.; Gao, R.; Yin, Y. Soil microbial biomass carbon, nitrogen, phosphorus contents and their ecological stoichiometric characteristics along an elevation gradient in the Wuyi Mountains. Chin. J. Ecol. 2024, 43, 2999–3004. [Google Scholar]
- Ahmad, Z.; Khan, S.M.; Page, S.E.; Balzter, H.; Ullah, A.; Ali, S.; Jehangir, S.; Ejaz, U.; Afza, R.; Razzaq, A.; et al. Environmental sustainability and resilience in a polluted ecosystem via phytoremediation of heavy metals and plant physiological adaptations. J. Clean. Prod. 2023, 385, 135733. [Google Scholar]
- Xu, J.Y.; Zheng, L.L.; Xu, L.G.; Wang, X.L. Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena 2020, 189, 104477. [Google Scholar]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar]
- Ma, J.; Lei, K.; Li, Y.; Zhang, Y.; Li, F.; Xia, F.; Li, Y. Spatiotemporal simulation, early warning, and driving factors of soil heavy metal pollution in a typical industrial city in southeast China. Stoch. Environ. Res. Risk Assess. 2024, 38, 315–337. [Google Scholar]
- HJ/T166-2004; Technical Specification for Soil Environmental Monitoring. Ministry of Ecology and Environment: Beijing, China, 2004.
- Yang, T.; Wu, F.; Luo, M.; Xiong, J.; Nie, X.; Cao, F.; Ruan, Y.; Li, F.; Huang, W.; Liang, T.; et al. Accumulation Pattern and Potential Ecological Risk of Heavy Metals in Topsoil as Affected by Diverse Sources in Different Ecosystems in Western Dabie Mountain. Forests 2024, 15, 1116. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhang, Q.Y.; Li, X.Z.; Jia, X.X.; Wei, X.R.; Shao, M.A. Determination of Soil Texture by Laser Diffraction Method. Soil Sci. Soc. Am. J. 2015, 79, 1556–1566. [Google Scholar]
- Fan, K.; Weisenhorn, P.; Gilbert, J.A.; Shi, Y.; Bai, Y.; Chu, H. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol. Biochem. 2018, 121, 185–192. [Google Scholar]
- Yaşar Korkanç, S.; Korkanç, M.; Amiri, A.F. Effects of land use/cover change on heavy metal distribution of soils in wetlands and ecological risk assessment. Sci. Total Environ. 2024, 923, 171603. [Google Scholar]
- De Nicola, F.; Maisto, G.; Alfani, A. Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils. Sci. Total Environ. 2003, 311, 191–203. [Google Scholar]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 109–118. [Google Scholar]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- GB 15618-1995; Environmental Quality Standard for Soils. Ministry of Ecology and Environment: Beijing, China, 1995.
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar]
- China National Environmental Monitoring Centre. Background Values of Chinese Soil Elements; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Oyebamiji, A.O.; Olaolorun, O.A.; Popoola, O.J.; Zafar, T. Assessment of heavy metal pollution in soils of Jebba Area, Nigeria: Concentrations, source analysis and implications for ecological and human health risks. Sci. Total Environ. 2024, 945, 173860. [Google Scholar]
- Chu, X.; Ma, Z.; Wu, D.; Wang, H.; He, J.; Chen, T.; Zheng, Z.; Li, H.; Wei, P. High Fe and Mn groundwater in the Nanchang, Poyang Lake Basin of China: Hydrochemical characteristics and genesis mechanisms. Environ. Monit. Assess. 2022, 195, 124. [Google Scholar]
- Han, R.; Liu, W.; Xu, Z. The constraint of soil Zn isotope compositions by diverse land utilizations: Evidence from geochemical fingerprint in a typical karst area. Catena 2024, 240, 108005. [Google Scholar]
- Peana, M.; Pelucelli, A.; Chasapis, C.T.; Perlepes, S.P.; Bekiari, V.; Medici, S.; Zoroddu, M.A. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2023, 13, 36. [Google Scholar]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar]
- Palacios-Torres, Y.; de la Rosa, J.D.; Olivero-Verbel, J. Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environ. Pollut. 2020, 256, 113290. [Google Scholar]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631–632, 942–950. [Google Scholar]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.G.P.W.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar]
- Reimann, C.; Fabian, K.; Flem, B.; Englmaier, P. The large-scale distribution of Cu and Zn in sub- and topsoil: Separating topsoil bioaccumulation and natural matrix effects from diffuse and regional contamination. Sci. Total Environ. 2019, 655, 730–740. [Google Scholar]
- Du, H.; Wang, J.; Wang, Y.; Yao, Y.; Liu, X.; Zhou, Y. Contamination characteristics, source analysis, and spatial prediction of soil heavy metal concentrations on the Qinghai-Tibet Plateau. J. Soils Sediments 2023, 23, 2202–2215. [Google Scholar]
- Sharifi, S.A.; Zaeimdar, M.; Jozi, S.A.; Hejazi, R. Effects of Soil, Water and Air Pollution with Heavy Metal Ions Around Lead and Zinc Mining and Processing Factories. Water Air Soil Pollut. 2023, 234, 760. [Google Scholar]
- Wang, S.F.; Du, Z.Y.; Shi, X.; Chen, Y.T.; Chen, G.C. Linking root traits to phytoremediation in trees and shrubs: Implications of root economics spectrum. J. Appl. Ecol. 2024, 61, 249–259. [Google Scholar]
- Taka, M.; Sillanpää, N.; Niemi, T.; Warsta, L.; Kokkonen, T.; Setälä, H. Heavy metals from heavy land use? Spatio-temporal patterns of urban runoff metal loads. Sci. Total Environ. 2022, 817, 152855. [Google Scholar]
- Fu, J.W.; Liu, X.; Han, Y.H.; Mei, H.Y.; Cao, Y.; de Oliveira, L.M.; Liu, Y.G.; Rathinasabapathi, B.; Chen, Y.S.; Ma, L.Q. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. J. Hazard. Mater. 2017, 330, 68–75. [Google Scholar]
- Qin, S.M.; Zhang, H.Y.; He, Y.H.; Chen, Z.J.; Yao, L.G.; Han, H. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. Sci. Total Environ. 2023, 868, 161685. [Google Scholar]
- Shi, G.; Wang, X.; Wang, W.; Liu, D.; Liu, Q.; Zhou, J.; Chi, Q.; Liu, H. Nation-wide concentration and spatial distribution of manganese with links to manganese mineralization in China. J. Geochem. Explor. 2023, 244, 107130. [Google Scholar]
- Gao, S.; Walker, W.J.; Dahlgren, R.A.; Bold, J. Simultaneous Sorption of Cd, Cu, Ni, Zn, Pb, and Cr on Soils Treated with Sewage Sludge Supernatant. Water Air Soil Pollut. 1997, 93, 331–345. [Google Scholar]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar]
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar]
- Guria, M.K.; Guha, A.K.; Bhattacharyya, M. A green chemical approach for biotransformation of Cr(VI) to Cr(III), utilizing Fusarium sp. MMT1 and consequent structural alteration of cell morphology. J. Environ. Chem. Eng. 2014, 2, 424–433. [Google Scholar]
- Banerjee, S.; Ghosh, S.; Jha, S.; Kumar, S.; Mondal, G.; Sarkar, D.; Datta, R.; Mukherjee, A.; Bhattacharyya, P. Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches. Sci. Total Environ. 2023, 880, 163228. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef] [PubMed]
- Lough, G.C.; Schauer, J.J.; Park, J.S.; Shafer, M.M.; Deminter, J.T.; Weinstein, J.P. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Kung, H.C.; Wu, C.H.; Huang, B.W.; Chang-Chien, G.P.; Mutuku, J.K.; Lin, W.C. Mercury abatement in the environment: Insights from industrial emissions and fates in the environment. Heliyon 2024, 10, e28253. [Google Scholar] [CrossRef]
- Andersson, M.E.; Gårdfeldt, K.; Wängberg, I.; Strömberg, D. Determination of Henry’s law constant for elemental mercury. Chemosphere 2008, 73, 587–592. [Google Scholar] [CrossRef]
- Petrash, D.A.; Novák, M.; Bohdálková, L.; Krachler, M.; Curík, J.; Veselovsky, F.; Stepánová, M.; Umbría-Salinas, K.; Prechová, E.; Komárek, A. Winter arsenic pollution in 10 forest ecosystems in the mountainous border regions of the Czech Republic. Environ. Sci. Pollut. Res. 2021, 28, 16107–16121. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure. Environ. Pollut. 2020, 265, 114884. [Google Scholar] [CrossRef]
- Karttunen, S.; Kurppa, M.; Auvinen, M.; Hellsten, A.; Järvi, L. Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations–A case study from a city-boulevard. Atmos. Environ. X 2020, 6, 100073. [Google Scholar] [CrossRef]
- Hahn, J.; Mann, B.; Bange, U.; Kimmel, M. Horizon-specific effects of heavy metal mobility on nitrogen binding forms in forest soils near a historic smelter (Germany). Geoderma 2019, 355, 113895. [Google Scholar] [CrossRef]
EF | Pollution Status | Igeo | Pollution Status | Ei | RI | Risk Level |
---|---|---|---|---|---|---|
≤1 | No | ≤0 | No | <40 | <150 | Low |
1~2 | No to moderate | 0–1 | Slight | 40–80 | 150–300 | Moderate |
2~5 | Moderate | 1–2 | Slight to moderate | 80–160 | 300–600 | Moderate to high |
5~20 | Moderate to strong | 2–3 | Moderate | 160–320 | 600–1200 | High |
20~40 | Strong | 3–4 | Strong | >320 | >1200 | Very high |
>40 | Extremely strong | 4–5 | Strong to very strong | |||
≥5 | Extremely strong |
Soil Properties | Cultivated Land | Shrubland | Coniferous Forest | Broad-Leaved Forest | Bamboo Forest |
---|---|---|---|---|---|
n = 2409 | 324 | 662 | 1094 | 217 | 112 |
pH | 4.99 ± 0.02 a | 4.79 ± 0.01 b | 4.78 ± 0.01 b | 4.78 ± 0.02 b | 4.84 ± 0.04 b |
TOC (g/kg) | 19.97 ± 0.48 a | 19.10 ± 0.31 a | 16.42 ± 0.23 b | 17.04 ± 0.45 b | 17.34 ± 0.84 b |
TN (g/kg) | 1.68 ± 0.03 a | 1.61 ± 0.02 ab | 1.44 ± 0.02 c | 1.47 ± 0.03 c | 1.54 ± 0.06 bc |
TP (g/kg) | 0.51 ± 0.02 a | 0.42 ± 0.01 b | 0.47 ± 0.01 a | 0.46 ± 0.02 ab | 0.48 ± 0.02 a |
TK (g/kg) | 20.23 ± 0.34 b | 18.88 ± 0.30 b | 19.99 ± 0.24 b | 19.82 ± 0.54 b | 24.34 ± 0.87 a |
AN (mg/kg) | 152.34 ± 3.05 a | 151.30 ± 2.06 a | 137.49 ± 1.61 b | 142.05 ± 3.11 b | 153.12 ± 5.36 a |
AP (mg/kg) | 60.20 ± 5.81 a | 26.92 ± 1.34 b | 49.85 ± 2.64 a | 52.67 ± 5.03 a | 50.54 ± 8.39 a |
AK (mg/kg) | 90.29 ± 3.14 ab | 79.70 ± 1.64 c | 90.30 ± 1.40 ab | 84.75 ± 3.07 bc | 95.16 ± 4.35 a |
Mn (mg/kg) | 241.98 ± 6.39 d | 253.73 ± 7.36 cd | 283.70 ± 5.65 c | 319.54 ± 17.63 b | 375.35 ± 18.44 a |
Cu (mg/kg) | 20.85 ± 0.50 | 20.82 ± 0.49 | 20.13 ± 0.45 | 18.03 ± 0.68 | 21.47 ± 1.75 |
Zn (mg/kg) | 86.96 ± 1.76 | 88.84 ± 1.75 | 84.60 ± 1.11 | 86.99 ± 2.33 | 90.49 ± 3.38 |
Cd (mg/kg) | 0.16 ± 0.00 a | 0.16 ± 0.00 ab | 0.14 ± 0.00 b | 0.16 ± 0.01 a | 0.15 ± 0.01 ab |
Hg (mg/kg) | 0.13 ± 0.01 a | 0.10 ± 0.00 b | 0.10 ± 0.00 b | 0.11 ± 0.01 b | 0.10 ± 0.01 b |
As (mg/kg) | 2.56 ± 0.08 b | 2.91 ± 0.08 ab | 3.06 ± 0.06 a | 2.71 ± 0.13 ab | 2.85 ± 0.19 ab |
Pb (mg/kg) | 56.90 ± 0.98 ab | 57.62 ± 1.82 a | 48.08 ± 0.79 c | 48.41 ± 2.33 c | 51.51 ± 2.78 bc |
Cr (mg/kg) | 42.74 ± 1.30 b | 52.56 ± 1.45 a | 49.05 ± 1.08 ab | 45.31 ± 2.08 b | 42.88 ± 3.53 b |
Ni (mg/kg) | 15.27 ± 0.52 c | 19.71 ± 0.57 a | 18.15 ± 0.40 ab | 17.01 ± 0.79 bc | 16.46 ± 1.26 bc |
Mn | Cu | Zn | Cd | Hg | As | Pb | Cr | Ni | |
---|---|---|---|---|---|---|---|---|---|
Mn | 1.000 | ||||||||
Cu | 0.508 ** | 1.000 | |||||||
Zn | 0.533 ** | 0.602 ** | 1.000 | ||||||
Cd | 0.317 ** | 0.376 ** | 0.683 ** | 1.000 | |||||
Hg | −0.009 | 0.079 ** | 0.092 ** | 0.097 ** | 1.000 | ||||
As | 0.246 ** | 0.330 ** | 0.140 ** | 0.049 * | 0.060 ** | 1.000 | |||
Pb | 0.160 ** | 0.187 ** | 0.596 ** | 0.383 ** | 0.102 ** | 0.089 ** | 1.000 | ||
Cr | 0.478 ** | 0.796 ** | 0.501 ** | 0.282 ** | −0.014 | 0.318 ** | 0.037 | 1.000 | |
Ni | 0.508 ** | 0.808 ** | 0.539 ** | 0.280 ** | −0.013 | 0.283 ** | 0.049 * | 0.937 ** | 1.000 |
pH | 0.003 | 0.018 | −0.014 | −0.017 | −0.005 | 0.021 | −0.027 | 0.044 ** | 0.060 ** |
TOC | 0.041 ** | 0.025 * | −0.012 | −0.006 | 0.002 | 0.043 ** | −0.016 | 0.042 ** | 0.051 * |
Nutrient | 0.043 ** | 0.023 * | −0.016 | 0.004 | 0.008 | 0.038 ** | −0.027 | 0.024 * | 0.035 ** |
Clay | 0.040 ** | 0.024 * | 0.006 | 0.006 | −0.011 | 0.024 | 0.046 ** | 0.017 | −0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zhu, D.; Yang, T.; Mao, C.; Huang, W.; Zhou, S.; Yang, Y. Soil Heavy Metal Accumulation and Ecological Risk in Mount Wuyi: Impacts of Vegetation Types and Pollution Sources. Land 2025, 14, 712. https://doi.org/10.3390/land14040712
Wu F, Zhu D, Yang T, Mao C, Huang W, Zhou S, Yang Y. Soil Heavy Metal Accumulation and Ecological Risk in Mount Wuyi: Impacts of Vegetation Types and Pollution Sources. Land. 2025; 14(4):712. https://doi.org/10.3390/land14040712
Chicago/Turabian StyleWu, Feng, Donghai Zhu, Tao Yang, Cong Mao, Wubiao Huang, Shuangshi Zhou, and Yujing Yang. 2025. "Soil Heavy Metal Accumulation and Ecological Risk in Mount Wuyi: Impacts of Vegetation Types and Pollution Sources" Land 14, no. 4: 712. https://doi.org/10.3390/land14040712
APA StyleWu, F., Zhu, D., Yang, T., Mao, C., Huang, W., Zhou, S., & Yang, Y. (2025). Soil Heavy Metal Accumulation and Ecological Risk in Mount Wuyi: Impacts of Vegetation Types and Pollution Sources. Land, 14(4), 712. https://doi.org/10.3390/land14040712