Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = moss health evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 504 KiB  
Article
Yield, Phytonutritional and Essential Mineral Element Profiles of Selected Aromatic Herbs: A Comparative Study of Hydroponics, Soilless and In-Soil Production Systems
by Beverly M. Mampholo, Mariette Truter and Martin M. Maboko
Plants 2025, 14(14), 2179; https://doi.org/10.3390/plants14142179 - 14 Jul 2025
Viewed by 254
Abstract
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of [...] Read more.
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of research has focused on enhancing yield, frequently overlooking the impact of production practices on the antioxidant and phytonutritional content of the produce. Thus, the study aimed to evaluate the yield, phytonutrients, and essential mineral profiling in selected aromatic herbs and their intricate role in nutritional quality when grown under different production systems. Five selected aromatic herbs (coriander, rocket, fennel, basil, and moss-curled parsley) were evaluated at harvest when grown under three production systems: in a gravel-film technique (GFT) hydroponic system and in soil, both under the 40% white shade-net structure, as well as in a soilless medium using sawdust under a non-temperature-controlled plastic tunnel (NTC). The phytonutritional quality properties (total phenolic, flavonoids, β-carotene-linoleic acid, and condensed tannins contents) as well as 1,1-diphenyl-2-picrylhydrazyl (DPPH) were assessed using spectrophotometry, while vitamin C and β-carotene were analyzed using HPLC-PDA, and leaf mineral content was evaluated using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The results show that the health benefits vary greatly owing to the particular culinary herb. The fresh leaf mass (yield) of coriander, parsley, and rocket was not significantly affected by the production system, whereas basil was high in soil cultivation, followed by GFT. Fennel had a high yield in the GFT system compared to in-soil and in-soilless cultivation. The highest levels of vitamin C were found in basil leaves grown in GFT and in soil compared to the soilless medium. The amount of total phenolic and flavonoid compounds, β-carotene, β-carotene-linoleic acid, and DPPH, were considerably high in soil cultivation, except on condensed tannins compared to the GFT and soilless medium, which could be a result of Photosynthetic Active Radiation (PAR) values (683 μmol/m2/s) and not favoring the accumulation of tannins. Overall, the mineral content was greatly influenced by the production system. Leaf calcium and magnesium contents were highly accumulated in rockets grown in the soilless medium and the GFT hydroponic system. The results have highlighted that growing environmental conditions significantly impact the accumulation of health-promoting phytonutrients in aromatic herbs. Some have positive ramifications, while others have negative ramifications. As a result, growers should prioritize in-soil production systems over GFT (under the shade-net) and soilless cultivation (under NTC) to produce aromatic herbs to improve the functional benefits and customer health. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

17 pages, 2582 KiB  
Article
Atmospheric Pollution Particulate Matter Absorption Efficiency by Bryophytes in Laboratory Conditions
by Juta Karklina, Edgars Karklins, Lilita Abele, Jean-Baptiste Renard and Liga Strazdina
Atmosphere 2025, 16(4), 479; https://doi.org/10.3390/atmos16040479 - 19 Apr 2025
Viewed by 744
Abstract
The World Health Organization (WHO) has recognized Particulate Matter (PM) as the main threat to human health from air pollution. One of the solutions is Green Infrastructure (GI), which uses different plants to mitigate pollution. Among these plants are bryophytes (or more commonly [...] Read more.
The World Health Organization (WHO) has recognized Particulate Matter (PM) as the main threat to human health from air pollution. One of the solutions is Green Infrastructure (GI), which uses different plants to mitigate pollution. Among these plants are bryophytes (or more commonly used mosses), which have easier maintenance, lighter weight, and durability compared to vascular plants. However, currently, there is limited knowledge of its effectiveness in air pollution mitigation. By addressing this gap in current scientific knowledge, more effective deployment of GI could be introduced by municipalities for society’s health benefits. This study aimed to evaluate three species of mosses (Dicranum scoparium, Plagiomnium affine, and Hypnum cupressiforme) and one thuja (Thuja plicata) as a control species for a possible GI vertical barrier for local de-pollution. The objective was to assess different moss species’ effectiveness in air pollution PM2.5 and PM10 absorption in a laboratory setting. The practical experiment was conducted from June–July 2024 in the Laboratory of the Physics and Chemistry of Environment and Space in Orleans (LPC2E-CNRS), France. For the experiment, a unique air pollution chamber was engineered and built with a linear barrier of GI inside to measure pollution absorption before and after the barrier. With the obtained data from the sensors, the efficiency of the vegetation barrier was calculated. The total average efficiency of all 18 tests and tested moss species is 41% for PM2.5 and 47% for PM10 mass concentrations. Efficiency shows moss species’ maximum or optimal ability to absorb pollution PM2.5 and PM10 in laboratory environments, with the limitations indicated in this article. This research is an essential step towards further and more profound research on the effectiveness of GI barriers of mosses in urban environments. It significantly contributes to understanding GI effects on air pollution and presents the results for specific moss species and their capacity for PM2.5 and PM10 mitigation in the air. The novelty of the study lies in a particular application of the chosen moss species. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

16 pages, 3843 KiB  
Article
Spatial Distribution Characteristics and Relationships of Salt-Based Ions and Nutrients in Old Protected Vegetable Fields
by Nanbiao Zhan, Haotian Yang, Jiayang Li, Xiaodi Shi, Binhao Yang, Yuhang Sun, Gengzi Guo and Xiumin Cui
Horticulturae 2025, 11(2), 126; https://doi.org/10.3390/horticulturae11020126 - 24 Jan 2025
Viewed by 704
Abstract
To achieve a scientific and objective evaluation of soil acidification, secondary salinization, and nutrient imbalance in old protected vegetable fields (OPVs) with over 30 years of cultivation history, a soil surface breeding vigorous moss was investigated. Here, quantitative laboratory analysis and mathematical statistics [...] Read more.
To achieve a scientific and objective evaluation of soil acidification, secondary salinization, and nutrient imbalance in old protected vegetable fields (OPVs) with over 30 years of cultivation history, a soil surface breeding vigorous moss was investigated. Here, quantitative laboratory analysis and mathematical statistics were employed to explore the spatial distribution of soil salinity and nutrients, as well as their relationships. The results revealed that OPVs exhibited slightly acidified values. The measured anions and cations in the soil salt composition constituted approximately 77% of the total ions. Among which, Ca2+ was the dominant cation, while SO42− and NO3 were predominant anions. The total water-soluble salt (TDS) content of the surface soil reached 4.52 g kg−1, exceeding the Chinese Saline Soils standard (1.0 g kg−1) by 350%. In the OPVs, nitrate nitrogen was significantly higher than ammonium nitrogen, and available phosphorus and available potassium were generally abundant. Despite exhibited various soil health concerns, a field visit survey presented consistently high and stable yields in OPVs. We hypothesize that this seemingly contradictory finding may be attributable to several factors, including the abundance of divalent cations (Ca2+ and Mg2+), the soil fertility and water retention capacity of unsaturated salt-based suitable soil, as well as good soil aggregate structure. These factors had the potential to reduce the stresses on the soil. This study provided a foundational understanding of the nutrient and salinity status of soils in OPVs, offering valuable data and theoretical groundwork for future research endeavors. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

27 pages, 6805 KiB  
Article
Enhancing Acclimatization Conditions for Vriesea splendens ‘Fire’: A Comparative Analysis of Substrate Effects on Growth and Survival
by Eman Abdelhakim Eisa, Daniela Salome Pasquel Davila and Máté Ördögh
Plants 2025, 14(2), 172; https://doi.org/10.3390/plants14020172 - 9 Jan 2025
Cited by 2 | Viewed by 1023
Abstract
This study investigates the acclimatization success of Vriesea splendens ’Fire’, a popular ornamental bromeliad, through in vitro propagation on various substrates. Due to the increasing demand for V. splendens, micropropagation offers a promising solution to overcome the limitations of traditional propagation methods. [...] Read more.
This study investigates the acclimatization success of Vriesea splendens ’Fire’, a popular ornamental bromeliad, through in vitro propagation on various substrates. Due to the increasing demand for V. splendens, micropropagation offers a promising solution to overcome the limitations of traditional propagation methods. In this research, acclimatization was conducted in two trial types: in the one-step greenhouse conditions, and in two-step acclimatization, which introduced a controlled laboratory step before transferring plants to the greenhouse. The substrates examined included pure and mixed forms of turf, perlite, coco coir, pine bark (hereafter referred to as bark), moss, and vermiculite. Morphological traits such as plant height, leaf length, number and length of roots, and fresh weight were evaluated, together with physiological parameters, such as chlorophyll and carotenoid concentrations and survival percentage, to test the effectiveness of acclimatization. Coco coir-based substrates significantly enhanced plant height, root development, and survival percentages in both experiments compared with other substrates, thus proving its suitability for the propagation of V. splendens. Vermiculite had the highest survival rate during one-step acclimatization, whereas turf showed a very good performance in two-step acclimatization. On the opposite side, substrates containing bark and moss showed a reduced effect on plant growth and survival, which indicated the vital role of substrates for best development. Statistical analyses confirmed the superiority of some combinations of substrates related to physiological health, showing that optimal acclimatization results could be improved by a chosen substrate. These results strengthen the present in vitro propagation protocols of the Vriesea species by confirming the relevance of substrate choice in producing hardy plants with good commercial prospects. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

25 pages, 2124 KiB  
Article
Seaweed Nutritional Value and Bioactive Properties: Insights from Ascophyllum nodosum, Palmaria palmata, and Chondrus crispus
by Natália Čmiková, Przemysław Łukasz Kowalczewski, Dominik Kmiecik, Aneta Tomczak, Agnieszka Drożdżyńska, Mariusz Ślachciński, Łukasz Szala, Sanja Matić, Tijana Marković, Suzana Popović, Dejan Baskic and Miroslava Kačániová
Life 2024, 14(11), 1522; https://doi.org/10.3390/life14111522 - 20 Nov 2024
Cited by 3 | Viewed by 4135
Abstract
This study investigates the nutritional composition and bioactive properties of Palmaria palmata (dulse), Ascophyllum nodosum (knotted wrack), and Chondrus crispus (Irish moss). Understanding the nutritional values of these seaweeds is very important due to their potential health benefits, especially their antioxidant properties and cytotoxic [...] Read more.
This study investigates the nutritional composition and bioactive properties of Palmaria palmata (dulse), Ascophyllum nodosum (knotted wrack), and Chondrus crispus (Irish moss). Understanding the nutritional values of these seaweeds is very important due to their potential health benefits, especially their antioxidant properties and cytotoxic activities, which point to their ability to inhibit cancer cell proliferation. Comprehensive analyses were conducted to assess protein content, amino acid composition, mineral profile, fatty acids, polyphenols, total carotenoids, antioxidant activity, and cytotoxicity against cervical (HeLa), and colon (HCT-116) cell lines. P. palmata exhibited the highest protein content, while C. crispus was richest in calcium, iron, manganese, and zinc. Amino acid analysis revealed C. crispus as being particularly high in essential and non-essential amino acids, including alanine, glutamic acid, and glycine. A. nodosum and C. crispus were rich in polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). A. nodosum showed the highest total carotenoid content. Polyphenol analysis highlighted the presence of compounds such as p-coumaric acid, gallic acid, and p-hydroxybenzoic acid across the species. Both the ethanolic and hexane A. nodosum extracts demonstrated the strongest antioxidant potential in DPPH and ABTS+ assays. The cytotoxicity evaluation revealed high anticancer activity of A. nodosum and C. crispus hexane extract against HeLa and HCT-116, though it employed cell cycle arrest and apoptosis. A. nodosum hexane extract exhibited moderate selective anticancer activity against HCT-116. These findings underscore the nutritional diversity and potential health benefits of these macroalgae (seaweed) species, suggesting their suitability as functional foods or supplements, offering diverse nutritional and therapeutic benefits. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

27 pages, 5204 KiB  
Article
Effect of Moringa oleifera Seeds Powder on Metallic Trace Elements Concentrations in a Wastewater Treatment Plant in Senegal
by Nini Sané, Malick Mbengue, Seyni Ndoye, Serge Stoll, John Poté and Philippe Le Coustumer
Int. J. Environ. Res. Public Health 2024, 21(8), 1031; https://doi.org/10.3390/ijerph21081031 - 5 Aug 2024
Viewed by 2160
Abstract
A wastewater treatment plant (WWTP) prototype coupled with Moringa oleifera seeds (MOSs) was developed to evaluate its effectiveness to reduce metallic trace elements (MTEs) in domestic wastewater. The WWTP is composed of a septic tank (F0) where wastewater is treated by biological processes [...] Read more.
A wastewater treatment plant (WWTP) prototype coupled with Moringa oleifera seeds (MOSs) was developed to evaluate its effectiveness to reduce metallic trace elements (MTEs) in domestic wastewater. The WWTP is composed of a septic tank (F0) where wastewater is treated by biological processes under anaerobic conditions, followed by a bacterial filter (F1) where wastewater is filtered under aerobic conditions, followed by an infiltration well (F2), which provides additional filtration of wastewater before discharge into the soil. MTEs present in waters can bind with humic substances contained in colloid particles and then be eliminated by coagulation–flocculation with a cationic polyelectrolyte. MOSs contain positively charged cationic polymers that can neutralize the colloids contained in waters, which are negatively charged. Based on this observation, 300 mg·L−1 of MOS was added into F0, 50 mg·L−1 into F1, and 50 mg·L−1 into F2 mg·L−1. MOS activation in samples was performed by stirring rapidly for 1.5 min, followed by 5 min of gentle stirring and 3 h of settling. The data analysis shows that wastewater samples had significant concentrations of MTEs, particularly for Cu, Ni, Sr, and Ti, and sediment samples had high amounts of Cr, Cu, Ni, Sr, Ti, and V. The addition of MOS to F0, F1, and F2 samples resulted in reductions in MTE concentration of up to 36%, 71%, 71%, 29%, 93%, 81%, 13%, 52%, and 67% for Co, Cr, Cu, Ni, Pb, Se, Sr, Ti, and V, respectively. The quantified MTEs (As, Co, Cr, Cu, Ni, Pb, Se and V) in treated samples were reported to be lower than UN-EP standards for a safe reuse for irrigation and MOS proved to be as effective as chemical coagulants such as lime and ferric iron for the removal of MTEs contained in wastewater. These results highlight the potential of MOSs as natural coagulants for reducing MTE content in domestic wastewater. This study could be the first to evaluate the effectiveness of MOS in reducing 10 MTEs, including As, Co, Se, Sr, Ti, and V, which are currently understudied. It could also provide a better understanding of the origin of MTEs found in domestic wastewaters and how an effective treatment process can result in high-quality treated wastewaters that can be reused for irrigation without posing health or environmental risks. However, more research on MOSs is needed to determine the type and composition of the coagulant substance found in the seeds, as well as the many mechanisms involved in the decrease in MTEs by MOSs, which is currently understudied. A better understanding of MOS structure is required to determine the optimum alternative for ensuring the optimal effect of MOS paired with WWTP in removing MTEs from domestic wastewaters. Full article
Show Figures

Figure 1

22 pages, 1487 KiB  
Review
Plant Tissues as Biomonitoring Tools for Environmental Contaminants
by Mariam Tarish, Rania T. Ali, Muhammad Shan, Zarmeena Amjad, Qingchen Rui, Sayed Abdul Akher and Abdullah Al Mutery
Int. J. Plant Biol. 2024, 15(2), 375-396; https://doi.org/10.3390/ijpb15020030 - 28 Apr 2024
Cited by 11 | Viewed by 3283
Abstract
Environmental toxins pose significant threats to ecosystems and human health. Monitoring and assessing these toxins are crucial for effective environmental management and public health protection. Recently, plant species have garnered increasing attention as potential bioindicators for identifying and evaluating ecological toxins. Since plants [...] Read more.
Environmental toxins pose significant threats to ecosystems and human health. Monitoring and assessing these toxins are crucial for effective environmental management and public health protection. Recently, plant species have garnered increasing attention as potential bioindicators for identifying and evaluating ecological toxins. Since plants often come into touch with harmful compounds in soil, water, and the atmosphere, they are particularly valuable for analyzing how human activities influence the terrestrial ecosystem, the aquatic system, and the atmosphere. This review paper emphasizes using plant species as a resource for tracking environmental pollution and analyzing contaminants. We focused on plants because they are significant indicators of soil, water, and air quality changes. Many plants have been used as bio-indicators to assess and predict pollution, toxicity, and environmental changes. These include Allium cepa, Vicia faba, Pisum sativum, Zea mays, Nicotiana tabacum, lichens, and mosses. The idea of bioindicators is discussed in the current paper, with a focus on plants as possible candidates for bioindicators for toxin assessment and related outcomes. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

15 pages, 2069 KiB  
Article
Rotary Drum Composting of Organic School Wastes and Compost Valorization
by Laila Almulla, Binson Mavelil Thomas, Mustapha F. A. Jallow, Amwaj Al-Roumi, Yeddu Devi and Joby Jacob
Sustainability 2024, 16(6), 2428; https://doi.org/10.3390/su16062428 - 14 Mar 2024
Cited by 2 | Viewed by 3142
Abstract
Inappropriate waste disposal imposes significant health risks in densely populated urban environments and schools, necessitating sustainable waste management. Therefore, a study was carried out at Al-Jazaer School, Kuwait, to evaluate rotary drum composting (RDC) of organic school waste comprising used paper, dry leaves, [...] Read more.
Inappropriate waste disposal imposes significant health risks in densely populated urban environments and schools, necessitating sustainable waste management. Therefore, a study was carried out at Al-Jazaer School, Kuwait, to evaluate rotary drum composting (RDC) of organic school waste comprising used paper, dry leaves, and vegetable food wastes in a 1:4:20 ratio. Feedstock comprising 42% organic school wastes, 42% horse manure, and 16% sawdust produced mature compost with a C:N ratio of 20.55 on the 43rd day of composting. Distinct mesophilic, thermophilic, cooling, and curing phases were observed during composting. Mature compost recorded a moisture content of 54.3%, pH 8.56, EC of 2.71 mS/cm, total nitrogen of 0.77%, total organic carbon of 18.25%, carbon content of 15.86%, and sulfur content of 0.14%. Soilless growing media comprising peat moss, perlite, and rotary drum compost in three proportions (1:1:1, 1:1:2, and 1:1:3), and peat moss, perlite, and commercial organic compost in a 1:1:3 ratio were evaluated for greenhouse vegetable production. The performance of cucumbers (Cucumis sativus cv. Ramos) raised in the lowest proportion of in-house prepared rotary drum compost (1:1:1 ratio) was comparable with that raised in the highest proportion of commercial compost (1:1:3). The study revealed the potential of RDC for decentralized sustainable waste management at the small-community scale and the suitability of compost from school wastes for soilless culture. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 4712 KiB  
Article
Effects of Tactile Stimulation Using an Assortment of Natural Elements on the Psychophysiological Responses of Adults
by Yun-Jin Kim, Soo-Wan Choi and Sin-Ae Park
Horticulturae 2023, 9(12), 1293; https://doi.org/10.3390/horticulturae9121293 - 30 Nov 2023
Cited by 2 | Viewed by 2400
Abstract
Contact with the natural environment has positive effects on physical and mental health and well-being. This study aimed to investigate the effects of tactile stimulation on the psychophysiological responses of adults, using natural gardening elements. The participants were 30 adults (20–60 years old). [...] Read more.
Contact with the natural environment has positive effects on physical and mental health and well-being. This study aimed to investigate the effects of tactile stimulation on the psychophysiological responses of adults, using natural gardening elements. The participants were 30 adults (20–60 years old). The participants received tactile stimulation by touching five natural elements with their hands and feet, and tactile stimulation for each natural element was performed for 90 s. Geranium, tiny ardisia, decomposed granite soil, log hardwood, and culture soil were used as tactile stimulation factors for the hand, and moss, grass, pebble, bark, and culture soil were used as tactile stimulation factors for the foot. Oxyhemoglobin (oxy-Hb) concentrations in the prefrontal cortex during the stimulation as well as blood pressure and pulse rate after each activity were measured. Additionally, the semantic differential method was used to evaluate the psychological effects of contact with the elements on the participants. Compared to before tactile stimulation, the oxy-Hb concentration related to prefrontal lobe cortical activity significantly decreased in some sections using tiny ardisia, log hardwood, and culture soil on the hands, and using grass, moss, pebble, and bark on the feet. Blood pressure also showed a significant decrease after tactile stimulation using geranium, tiny ardisia, and log hardwood. The findings of this study suggest that tactile stimulation using natural gardening elements could be a significant intervention in inducing physiological stability and reducing stress by calming the activity of the prefrontal cortex. Full article
Show Figures

Figure 1

20 pages, 1651 KiB  
Article
Seed Priming Based on Iodine and Selenium Influences the Nutraceutical Compounds in Tomato (Solanum lycopersicum L.) Crop
by Fernando Mejía-Ramírez, Adalberto Benavides-Mendoza, Susana González-Morales, Antonio Juárez-Maldonado, Francisco Marcelo Lara-Viveros, América Berenice Morales-Díaz and Álvaro Morelos-Moreno
Antioxidants 2023, 12(6), 1265; https://doi.org/10.3390/antiox12061265 - 13 Jun 2023
Cited by 4 | Viewed by 2435
Abstract
The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting [...] Read more.
The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L−1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L−1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, β-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

16 pages, 1402 KiB  
Article
Growth and Biochemical Composition of Microgreens Grown in Different Formulated Soilless Media
by Roksana Saleh, Lokanadha R. Gunupuru, Rajasekaran Lada, Vilis Nams, Raymond H. Thomas and Lord Abbey
Plants 2022, 11(24), 3546; https://doi.org/10.3390/plants11243546 - 15 Dec 2022
Cited by 24 | Viewed by 6788
Abstract
Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard [...] Read more.
Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition. Full article
(This article belongs to the Special Issue Vegetable and Fruit Production)
Show Figures

Figure 1

22 pages, 1899 KiB  
Article
Revitalization of Total Petroleum Hydrocarbon Contaminated Soil Remediated by Landfarming
by Woo-Chun Lee, Jong-Hwan Lee, Sang-Hun Lee, Sang-Woo Lee, Ji-Hoon Jeon, Sang-Hwan Lee and Soon-Oh Kim
Toxics 2022, 10(3), 147; https://doi.org/10.3390/toxics10030147 - 19 Mar 2022
Cited by 6 | Viewed by 3433
Abstract
Soil health deteriorates through the contamination and remediation processes, resulting in the limitation of the reuse and recycling of the remediated soils. Therefore, soil health should be recovered for the intended purposes of reuse and recycling. This study aimed to evaluate the applicability [...] Read more.
Soil health deteriorates through the contamination and remediation processes, resulting in the limitation of the reuse and recycling of the remediated soils. Therefore, soil health should be recovered for the intended purposes of reuse and recycling. This study aimed to evaluate the applicability and effectiveness of several amendments to revitalize total petroleum hydrocarbon contaminated soils remediated by the landfarming process. Ten inorganic, organic, and biological amendments were investigated for their dosage and duration, and nine physicochemical, four fertility, and seven microbial (soil enzyme activity) factors were compared before and after the treatment of amendments. Finally, the extent of recovery was quantitatively estimated, and the significance of results was confirmed with statistical methods, such as simple regression and correlation analyses assisted by principal component analysis. The landfarming process is considered a somewhat environmentally friendly remediation technology to minimize the adverse effect on soil quality, but four soil properties—such as water holding capacity (WHC), exchangeable potassium (Ex. K), nitrate-nitrogen (NO3-N), available phosphorus (Av. P), and urease—were confirmed to deteriorate through the landfarming process. The WHC was better improved by organic agents, such as peat moss, biochar, and compost. Zeolite was evaluated as the most effective material for improving Ex. K content. The vermicompost showed the highest efficacy in recovering the NO3-N content of the remediated soil. Chlorella, vermicompost, and compost were investigated for their ability to enhance urease activity effectively. Although each additive showed different effectiveness according to different soil properties, their effect on overall soil properties should be considered for cost-effectiveness and practical implementation. Their overall effect was evaluated using statistical methods, and the results showed that compost, chlorella, and vermicompost were the most relevant amendments for rehabilitating the overall health of the remediated soil for the reuse and/or recycling of agricultural purposes. This study highlighted how to practically improve the health of remediated soils for the reuse and recycling of agricultural purposes. Full article
(This article belongs to the Special Issue Heavy Metal Contamination in Soil and Health Risks)
Show Figures

Figure 1

24 pages, 495 KiB  
Article
Investigating the Quality and Efficiency of Biosolid Produced in Qatar as a Fertilizer in Tomato Production
by Majeed Ali, Talaat Ahmed, Mohammed Abu-Dieyeh and Mohammad A. Al-Ghouti
Agronomy 2021, 11(12), 2552; https://doi.org/10.3390/agronomy11122552 - 15 Dec 2021
Cited by 4 | Viewed by 3942
Abstract
This study evaluated biosolid quality over time and the efficiency of using amounts (5 and 7 kg/m2) of municipal class A biosolids in Qatar to fertilize tomato plants (Solanum lycopersicum). Random samples were subjected to physical and chemical analysis, [...] Read more.
This study evaluated biosolid quality over time and the efficiency of using amounts (5 and 7 kg/m2) of municipal class A biosolids in Qatar to fertilize tomato plants (Solanum lycopersicum). Random samples were subjected to physical and chemical analysis, which revealed excellent particle uniformity and stability with minor odor defects. The analysis confirmed the product was nutrient-rich while pollutant levels were below the international standards. The nominated rates were used to fertilize tomato plants in pots grown in a greenhouse for four months with a control treatment of manure and Peat-Moss, before measuring the plant biological characteristics. Plants were examined via chemical analysis of nutrients and pollutants both for the whole plant and for stems, fruits, and leaves. Results indicated that both experimental treatments enhanced plant growth and development as compared to the control treatment. However, the chemical analyses also revealed levels of zinc, copper, and manganese in the plant fruits that were well in excess of the maximum acceptable levels, as defined by international health organizations. This study found that while the application of class A biosolids as organic fertilizer for tomato plants greatly enhanced the overall plant growth, the plant fruits contained toxic levels of trace heavy metals. Full article
Show Figures

Figure 1

30 pages, 4108 KiB  
Review
Atmospheric Deposition and Element Accumulation in Moss Sampled across Germany 1990–2015: Trends and Relevance for Ecological Integrity and Human Health
by Angela Schlutow, Winfried Schröder and Stefan Nickel
Atmosphere 2021, 12(2), 193; https://doi.org/10.3390/atmos12020193 - 31 Jan 2021
Cited by 9 | Viewed by 2845
Abstract
Deposition of N and heavy metals can impact ecological and human health. This state-of-the-art review addresses spatial and temporal trends of atmospheric deposition as monitored by element accumulation in moss and compares heavy metals Critical Loads for protecting human health and ecosystem’s integrity [...] Read more.
Deposition of N and heavy metals can impact ecological and human health. This state-of-the-art review addresses spatial and temporal trends of atmospheric deposition as monitored by element accumulation in moss and compares heavy metals Critical Loads for protecting human health and ecosystem’s integrity with modelled deposition. The element accumulation due to deposition was measured at up to 1026 sites collected across Germany 1990–2015. The deposition data were derived from chemical transport modelling and evaluated with regard to Critical Loads published in relevant legal regulations. The moss data indicate declining nitrogen and HM deposition. Ecosystem and human health Critical Loads for As, Ni, Zn, and Cr were not exceeded in Germany 2009–2011. Respective Critical Loads were exceeded by Hg and Pb inputs, especially in the low rainfall regions with forest coverage. The Critical Load for Cu was exceeded by atmospheric deposition in 2010 in two regions. Human health Critical Loads for Cd were not exceeded by atmospheric deposition in 2010. However, the maximum deposition in 2010 exceeded the lowest human health Critical Load. This impact assessment was based only on deposition but not on inputs from other sources such as fertilizers. Therefore, the assessment should be expanded with regard to other HM sources and specified for different ecosystem types. Full article
Show Figures

Figure 1

26 pages, 13502 KiB  
Article
Vegetation Abundance and Health Mapping Over Southwestern Antarctica Based on WorldView-2 Data and a Modified Spectral Mixture Analysis
by Xiaohui Sun, Wenjin Wu, Xinwu Li, Xiyan Xu and Jinfeng Li
Remote Sens. 2021, 13(2), 166; https://doi.org/10.3390/rs13020166 - 6 Jan 2021
Cited by 13 | Viewed by 3568
Abstract
In polar regions, vegetation is especially sensitive to climate dynamics and thus can be used as an indicator of the global and regional environmental change. However, in Antarctica, there is very little information on vegetation distribution and growth status. To fill this gap, [...] Read more.
In polar regions, vegetation is especially sensitive to climate dynamics and thus can be used as an indicator of the global and regional environmental change. However, in Antarctica, there is very little information on vegetation distribution and growth status. To fill this gap, we evaluated the ability of both linear and nonlinear spectral mixture analysis (SMA) models, including a group of newly developed modified Nascimento’s models for Antarctic vegetated areas (MNM-AVs), in estimating the abundance of major Antarctic vegetation types, i.e., mosses and lichens. The study was conducted using WorldView-2 satellite data and field measurements over the Fildes Peninsula and its surroundings, which are representative vegetated areas in Antarctica. In MNM-AVs, we introduced secondary scattering components for vegetation and its background to account for the sparsity of vegetation cover and reassigned their coefficients. The new models achieved improved performances, among which MNM-AV3 achieved the lowest error for mosses (lichens) abundance estimation with RMSE = 0.202 (0.213). Compared with MNM-AVs, the linear model performed particularly poor for lichens (RMSE = 0.322), which is in contrast to the case of mosses (RMSE = 0.212), demonstrating that spectral signals of lichens are more prone to mix with their backgrounds. Abundance maps of mosses and lichens, as well as a map of moss health status for the entire study area, were then obtained based on MNM-AV3 with around 80% overall accuracy. Moss areas account for 0.7695 km2 in Fildes and 0.3259 km2 in Ardley Island; unhealthy mosses amounted to 40% (49%) of the area in the summer of 2018 (2019), indicating considerable environmental stress. Full article
(This article belongs to the Special Issue Remote Sensing for Land Cover and Vegetation Mapping)
Show Figures

Graphical abstract

Back to TopTop