Atmospheric Pollution Particulate Matter Absorption Efficiency by Bryophytes in Laboratory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Experimental Material
- Species are cosmopolitan, growing in different parts of the world, commonly widespread in Europe’s temperate climate zone and urban environments;
- Species can sustain different environmental conditions, including hot sun and shading areas, a wide range of temperature fluctuations, and have a high capacity to absorb water.
2.2. Laboratory Design, Equipment Properties, and Validation
3. Results
4. Discussion
LOAC Instrument Testing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Air Pollution: How It Affects Our Health. Available online: https://www.eea.europa.eu/en/topics/in-depth/air-pollution/eow-it-affects-our-health (accessed on 20 November 2024).
- Fowler, D. A Chronology of Global Air Quality. Philos. Trans. R. Soc. A. 2020, 378, 20190314. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B. Air Pollution and Human Health: From Local to Global Issues. Proc. Soc. Behav. Sci. 2010, 2, 6661–6669. [Google Scholar] [CrossRef]
- Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 20 November 2024).
- Environment, U.N. Pollution and Health. Available online: https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health (accessed on 20 November 2024).
- Nazarenko, Y.; Pal, D.; Ariya, P.A. Air Quality Standards for the Concentration of Particulate Matter 2.5, Global Descriptive Analysis. Bull. World Health Organ. 2020, 99, 125–137. [Google Scholar] [CrossRef]
- Henning, R.J. Particulate Matter Air Pollution Is a Significant Risk Factor for Cardiovascular Disease. Curr. Probl. Cardiol. 2024, 49, 102094. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The Impact of PM2.5 on the Human Respiratory System. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Li, B.; Ma, Y.; Zhou, Y.; Chai, E. Research Progress of Different Components of PM2.5 and Ischemic Stroke. Sci. Rep. 2023, 13, 15965. [Google Scholar] [CrossRef]
- Zhou, J.; Huebner, G.; Liu, K.Y.; Ucci, M. Heart Rate Variability, Electrodermal Activity and Cognition in Adults: Association with Short-Term Indoor PM2.5 Exposure in a Real-World Intervention Study. Environ. Res. 2024, 263, 120245. [Google Scholar] [CrossRef]
- Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 20 November 2024).
- Alves, C.; Evtyugina, M.; Vicente, E.; Vicente, A.; Rienda, I.C.; de la Campa, A.S.; Tomé, M.; Duarte, I. PM2.5 Chemical Composition and Health Risks by Inhalation near a Chemical Complex. J. Environ. Sci. 2023, 124, 860–874. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of Atmospheric PM2.5 Sources at a Central European Urban Background Site. Sci. Total. Environ. 2020, 713, 136729. [Google Scholar] [CrossRef]
- Dominici, F.; Wang, Y.; Correia, A.W.; Ezzati, M.; Pope, C.A.; Dockery, D.W. Chemical Composition of Fine Particulate Matter and Life Expectancy. Epidemiology 2015, 26, 556–564. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Liu, Y.; Xinag, P.; Cui, X.; Ye, H.; Hu, B.; Lou, L. Physical and Chemical Characteristics of PM2.5 and Its Toxicity to Human Bronchial Cells BEAS-2B in the Winter and Summer. J. Zhejiang Univ. Sci. B 2018, 19, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Sources of Indoor Particulate Matter (PM). Available online: https://www.epa.gov/indoor-air-quality-iaq/sources-indoor-particulate-matter-pm (accessed on 20 November 2024).
- Mukherjee, A.; Agrawal, M. World Air Particulate Matter: Sources, Distribution and Health Effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2011, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Kleeman, M.J.; Schauer, J.J.; Cass, G.R. Size and Composition Distribution of Fine Particulate Matter Emitted from Wood Burning, Meat Charbroiling, and Cigarettes. Environ. Sci. Technol. 1999, 33, 3516–3523. [Google Scholar] [CrossRef]
- Fernández, E.; Ballbè, M.; Sureda, X.; Fu, M.; Saltó, E.; Martínez-Sánchez, J.M. Particulate Matter from Electronic Cigarettes and Conventional Cigarettes: A Systematic Review and Observational Study. Curr. Environ. Health Rep. 2015, 2, 423–429. [Google Scholar] [CrossRef]
- Fadel, M.; Ledoux, F.; Seigneur, M.; Oikonomou, K.; Sciare, J.; Courcot, D.; Afif, C. Chemical Profiles of PM2.5 Emitted from Various Anthropogenic Sources of the Eastern Mediterranean: Cooking, Wood Burning, and Diesel Generators. Environ. Res. 2022, 211, 113032. [Google Scholar] [CrossRef]
- Canha, N.; Almeida, S.M.; do Carmo Freitas, M.; Wolterbeek, H.T.; Cardoso, J.; Pio, C.; Caseiro, A. Impact of Wood Burning on Indoor PM2.5 in a Primary School in Rural Portugal. Atmos. Environ. 2014, 94, 663–670. [Google Scholar] [CrossRef]
- Villalobos, A.M.; Barraza, F.; Jorquera, H.; Schauer, J.J. Wood Burning Pollution in Southern Chile: PM 2.5 Source Apportionment Using CMB and Molecular Markers. Environ. Pollut. 2017, 225, 514–523. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Zhang, Q.; Lei, Y.; Huang, Y.; Niu, X.; Xu, H.; Cao, J.; Ho, S.S.H.; et al. Characterization of PM2.5 Source Profiles from Typical Biomass Burning of Maize Straw, Wheat Straw, Wood Branch, and Their Processed Products (Briquette and Charcoal) in China. Atmos. Environ. 2019, 205, 36–45. [Google Scholar] [CrossRef]
- Favez, O.; Cachier, H.; Sciare, J.; Sarda-Estève, R.; Martinon, L. Evidence for a Significant Contribution of Wood Burning Aerosols to PM2.5 during the Winter Season in Paris, France. Atmos. Environ. 2009, 43, 3640–3644. [Google Scholar] [CrossRef]
- Molnar, P.; Gustafson, P.; Johannesson, S.; Boman, J.; Barregard, L.; Sallsten, G. Domestic Wood Burning and PM Trace Elements: Personal Exposures, Indoor and Outdoor Levels. Atmos. Environ. 2005, 39, 2643–2653. [Google Scholar] [CrossRef]
- Singh, D.; Tassew, D.D.; Nelson, J.; Chalbot, M.-C.G.; Kavouras, I.G.; Tesfaigzi, Y.; Demokritou, P. Physicochemical and Toxicological Properties of Wood Smoke Particulate Matter as a Function of Wood Species and Combustion Condition. J. Hazard. Mater. 2023, 441, 129874. [Google Scholar] [CrossRef]
- Martins, N.R.; Carrilho da Graça, G. Health Effects of PM2.5 Emissions from Woodstoves and Fireplaces in Living Spaces. J. Build. Eng. 2023, 79, 107848. [Google Scholar] [CrossRef]
- Borchers-Arriagada, N.; Vander Hoorn, S.; Cope, M.; Morgan, G.; Hanigan, I.; Williamson, G.; Johnston, F.H. The Mortality Health Burden Attributable to Wood Heater Smoke Particulate Matter (PM2.5) in Australia. Sci. Total Environ. 2024, 921, 171069. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.-B.; Surcin, J.; Annesi-Maesano, I.; Poincelet, E. Temporal Evolution of PM2.5 Levels and COVID-19 Mortality in Europe for the 2020–2022 Period. Atmosphere 2023, 14, 1222. [Google Scholar] [CrossRef]
- Government Takes Action to Cut Pollution from Household Burning. Available online: https://www.gov.uk/government/news/government-takes-action-to-cut-pollution-from-household-burning (accessed on 20 November 2024).
- Air Quality Guidelines for Europe, 2nd ed.; World Health Organization: Copenhagen, Denmark, 2000; Regional Office for Europe; Available online: https://iris.who.int/handle/10665/107335 (accessed on 20 November 2024).
- Manzueta, R.; Kumar, P.; Ariño, A.H.; Martín-Gómez, C. Strategies to Reduce Air Pollution Emissions from Urban Residential Buildings. Sci. Total Environ. 2024, 951, 175809. [Google Scholar] [CrossRef]
- Li, T.; Fellini, S.; van Reeuwijk, M. Urban Air Quality: What Is the Optimal Place to Reduce Transport Emissions? Atmos. Environ. 2023, 292, 119432. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, J.; Jiao, L.; He, M.; Hou, X.; Coffman, D.; Wang, S. The Synergic Impacts of Air Pollution Control Policies on Pollutants and Carbon Emissions. J. Environ. Manag. 2024, 370, 122730. [Google Scholar] [CrossRef]
- Khreis, H.; Sanchez, K.A.; Foster, M.; Burns, J.; Nieuwenhuijsen, M.J.; Jaikumar, R.; Ramani, T.; Zietsman, J. Urban Policy Interventions to Reduce Traffic-Related Emissions and Air Pollution: A Systematic Evidence Map. Environ. Int. 2023, 172, 107805. [Google Scholar] [CrossRef]
- Ercan, T.; Onat, N.C.; Keya, N.; Tatari, O.; Eluru, N.; Kucukvar, M. Autonomous Electric Vehicles Can Reduce Carbon Emissions and Air Pollution in Cities. Transp. Res. D Transp. Environ. 2022, 112, 103472. [Google Scholar] [CrossRef]
- Krecl, P.; Targino, A.C.; Landi, T.P.; Ketzel, M. Determination of Black Carbon, PM2.5, Particle Number and NOx Emission Factors from Roadside Measurements and Their Implications for Emission Inventory Development. Atmos. Environ. 2018, 186, 229–240. [Google Scholar] [CrossRef]
- Kim, I.; Lee, K.; Lee, S.; Kim, S.D. Characteristics and Health Effects of PM2.5 Emissions from Various Sources in Gwangju, South Korea. Sci. Total Environ. 2019, 696, 133890. [Google Scholar] [CrossRef]
- McCutcheon, S.C.; Jørgensen, S.E. Phytoremediation. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: New York, NY, USA, 2008; Volume 1, pp. 2751–2766. [Google Scholar]
- James, A.; Rene, E.R.; Bilyaminu, A.M.; Chellam, P.V. Advances in Amelioration of Air Pollution Using Plants and Associated Microbes: An Outlook on Phytoremediation and Other Plant-Based Technologies. Chemosphere 2024, 358, 142182. [Google Scholar] [CrossRef]
- Irga, P.J.; Morgan, A.; Fleck, R.; Torpy, F.R. Phytoremediation of Indoor Air Pollutants from Construction and Transport by a Moveable Active Green Wall System. Atmos. Pollut. Res. 2023, 14, 101896. [Google Scholar] [CrossRef]
- Prigioniero, A.; Zuzolo, D.; Niinemets, Ü.; Guarino, C. Nature-Based Solutions as Tools for Air Phytoremediation: A Review of the Current Knowledge and Gaps. Environ. Pollut. 2021, 277, 116817. [Google Scholar] [CrossRef]
- Biswal, B.K.; Bolan, N.; Zhu, Y.-G.; Balasubramanian, R. Nature-Based Systems (NbS) for Mitigation of Stormwater and Air Pollution in Urban Areas: A Review. Resour. Conserv. Recycl. 2022, 186, 106578. [Google Scholar] [CrossRef]
- Encyclopedia of the Anthropocene|ScienceDirect. Available online: https://www.sciencedirect.com/referencework/9780128135761/encyclopedia-of-the-anthropocene (accessed on 20 November 2024).
- Kaveh, S.; Habibi, A.; Nikkar, M.; Aflaki, A. Optimizing Green Infrastructure Strategies for Microclimate Regulation and Air Quality Improvement in Urban Environments: A Case Study. Nat. Based Solut. 2024, 6, 100167. [Google Scholar] [CrossRef]
- Wu, H.-W.; Kumar, P.; Cao, S.-J. The Role of Roadside Green Infrastructure in Improving Air Quality in and around Elderly Care Centres in Nanjing, China. Atmos. Environ. 2024, 332, 120607. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green Infrastructure for Air Quality Improvement in Street Canyons. Environ. Int. 2021, 146, 106288. [Google Scholar] [CrossRef]
- Tiwari, A.; Kumar, P.; Baldauf, R.; Zhang, K.M.; Pilla, F.; Di Sabatino, S.; Brattich, E.; Pulvirenti, B. Considerations for Evaluating Green Infrastructure Impacts in Microscale and Macroscale Air Pollution Dispersion Models. Sci. Total Environ. 2019, 672, 410–426. [Google Scholar] [CrossRef]
- Khalili, S.; Kumar, P.; Jones, L. Evaluating the Benefits of Urban Green Infrastructure: Methods, Indicators, and Gaps. Heliyon 2024, 10, e38446. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air Pollution Abatement Performances of Green Infrastructure in Open Road and Built-up Street Canyon Environments—A Review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Tiwari, A.; Kumar, P. Integr Atmospheric Environment ed Dispersion-Deposition Modelling for Air Pollutant Reduction via Green Infrastructure at an Urban Scale. Sci. Total Environ. 2020, 723, 138078. [Google Scholar] [CrossRef]
- Karklina, J.; Karklins, E.; Abele, L.; Strazdina, L. Bryophytes for the Linear Barrier as a PM2.5 Mitigation Technology in the Urban Landscape. Landsc. Archit. Art. 2024, 24, 45–50. [Google Scholar] [CrossRef]
- Sheikh, H.A.; Maher, B.A.; Woods, A.W.; Tung, P.Y.; Harrison, R.J. Efficacy of Green Infrastructure in Reducing Exposure to Local, Traffic-Related Sources of Airborne Particulate Matter (PM). Sci. Total Environ. 2023, 903, 166598. [Google Scholar] [CrossRef]
- Ottosen, T.-B.; Kumar, P. The Influence of the Vegetation Cycle on the Mitigation of Air Pollution by a Deciduous Roadside Hedge. Sustain. Cities Soc. 2019, 53, 101919. [Google Scholar] [CrossRef]
- Kumar, P.; Zavala-Reyes, J.C.; Tomson, M.; Kalaiarasan, G. Understanding the Effects of Roadside Hedges on the Horizontal and Vertical Distributions of Air Pollutants in Street Canyons. Environ. Int. 2022, 158, 106883. [Google Scholar] [CrossRef]
- Mobarhan, M.; Yeganeh, M.; Motie, M.B.; Ahmadi, S. Assessing the Efficacy of Green Walls versus Street Green Lanes in Mitigating Air Pollution: A Critical Evaluation. Environ. Sustain. Indic. 2024, 24, 100475. [Google Scholar] [CrossRef]
- Farrell, C.; Livesley, S.J.; Arndt, S.K.; Beaumont, L.; Burley, H.; Ellsworth, D.; Esperon-Rodriguez, M.; Fletcher, T.D.; Gallagher, R.; Ossola, A.; et al. Can We Integrate Ecological Approaches to Improve Plant Selection for Green Infrastructure? Urban. For. Urban Green 2022, 76, 127732. [Google Scholar] [CrossRef]
- Ndayambaje, P.; MacIvor, J.S.; Cadotte, M.W. Plant Diversity on Green Roofs: A Review of the Ecological Benefits, Challenges, and Best Management Practices. Nat. Based Solut. 2024, 6, 100162. [Google Scholar] [CrossRef]
- Nagase, A.; Katagiri, T.; Lundholm, J. Investigation of Moss Species Selection and Substrate for Extensive Green Roofs. Ecol. Eng. 2023, 189, 106899. [Google Scholar] [CrossRef]
- Zuberbier, T.; Stevanovic, K.; Ansotegui, I.J.; Anto, J.M.; Bergmann, K.-C.; D’Amato, G.; Grüntuch-Ernst, A.; Haahtela, T.; Maurer, M.; Pietikäinen, S.; et al. Green Roof Gardens—Selecting Allergy Friendly Vegetation: A GA2LEN Position Paper. J. Allergy Clin. Immunol. 2023, 12, 347–354. [Google Scholar] [CrossRef]
- Perini, K.; Castellari, P.; Gisotti, D.; Giachetta, A.; Turcato, C.; Roccotiello, E. MosSkin: A Moss-Based Lightweight Building System. Build. Environ. 2022, 221, 109283. [Google Scholar] [CrossRef]
- Yin, H.; Perera-Castro, A.; Randall, K.; Turnbull, J.D.; Waterman, M.J.; Dunn, J.W.; Robinson, S.A. Basking in the Sun: How Mosses Photosynthesise and Survive in Antarctica. Photosyn. Res. 2023, 158, 151–169. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Guirado, E.; Reich, P.B.; Ochoa-Hueso, R.; Berdugo, M.; Sáez-Sandino, T.; Blanco-Pastor, J.L.; Tedersoo, L.; Plaza, C.; Ding, J.; et al. The Global Contribution of Soil Mosses to Ecosystem Services. Nat. Geosci. 2023, 16, 430–438. [Google Scholar] [CrossRef]
- Drake, P.; Grimshaw-Surette, H.; Heim, A.; Lundholm, J. Mosses Inhibit Germination of Vascular Plants on an Extensive Green Roof. Ecol. Eng. 2018, 117, 111–114. [Google Scholar] [CrossRef]
- Perini, K.; Castellari, P.; Calbi, M.; Prandi, S.; Roccotiello, E. Fine Dust Collection Capacity of a Moss Greening System for the Building Envelope: An Experimental Approach. Build. Environ. 2024, 267, 112203. [Google Scholar] [CrossRef]
- Wang, A.; Wang, J.; Zhang, R.; Cao, S.-J. Mitigating Urban Heat and Air Pollution Considering Green and Transportation Infrastructure. Transportation research. Transp. Res. Part A Policy Pract. 2024, 184, 104079. [Google Scholar] [CrossRef]
- Haughian, S.R.; Lundholm, J.L. Mosses for Minimalist Green Roofs: A Preliminary Study of the Effects of Rooftop Exposure, Species Selection, and Lab-Grown vs. Wild-Harvested Propagule Sources. Nat. Based Solut. 2024, 5, 100119. [Google Scholar] [CrossRef]
- Crandall-Stotler, B.; Stotler, R.E.; Long, D.G.; Goffinet, B. Morphology and classification of the Marchantiophyta. In Bryophyte Biology; Cambridge University Press: Cambridge, UK, 2008; pp. 1–54. [Google Scholar]
- Haynes, A.; Popek, R.; Boles, M.; Paton-Walsh, C.; Robinson, S.A. Roadside Moss Turfs in South East Australia Capture More Particulate Matter along an Urban Gradient than a Common Native Tree Species. Atmosphere 2019, 10, 224. [Google Scholar] [CrossRef]
- Hong, B.; Qin, H.; Lin, B. Prediction of Wind Environment and Indoor/Outdoor Relationships for PM2.5 in Different Building–Tree Grouping Patterns. Atmosphere 2018, 9, 39. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Z.; Buccolieri, R.; Zhang, M.; Shen, J. Effect of Greening on Pollutant Dispersion and Ventilation at Urban Street Intersections. Build. Environ. 2021, 203, 108075. [Google Scholar] [CrossRef]
- Wang, L.; An, X.; Li, Y.; Jing, K.; Wang, Q.; Sun, F.; Liu, B. Hourly Variation Characteristics of PM2.5 and Main Components in Beijing Based on Wind Direction. Atmos. Environ. 2024, 327, 120493. [Google Scholar] [CrossRef]
- Quantitative Evaluation of Impacts of the Steadiness and Duration of Urban Surface Wind Patterns on Air Quality. Sci. Total Environ. 2022, 850, 157957. [CrossRef] [PubMed]
- Li, L.; Zheng, M.; Zhang, J.; Li, C.; Ren, Y.; Jin, X.; Chen, J. Effects of Green Infrastructure on the Dispersion of PM2.5 and Human Exposure on Urban Roads. Environ. Res. 2023, 223, 115493. [Google Scholar] [CrossRef]
- Keyes, T.; Domingo, R.; Dynowski, S.; Graves, R.; Klein, M.; Leonard, M.; Pilgrim, J.; Sanchirico, A.; Trinkaus, K. Low-Cost PM2.5 Sensors Can Help Identify Driving Factors of Poor Air Quality and Benefit Communities. Heliyon 2023, 9, e19876. [Google Scholar] [CrossRef]
- Gaglio, M.; Pace, R.; Muresan, A.N.; Grote, R.; Castaldelli, G.; Calfapietra, C.; Fano, E.A. Species-Specific Efficiency in PM2.5 Removal by Urban Trees: From Leaf Measurements to Improved Modeling Estimates. Sci. Total Environ. 2022, 844, 157131. [Google Scholar] [CrossRef] [PubMed]
- Demková, L.; Árvay, J.; Bobuľská, L.; Hauptvogl, M.; Michalko, M.; Michalková, J.; Jančo, I. Evaluation of Soil and Ambient Air Pollution Around Un-Reclaimed Mining Bodies in Nižná Slaná (Slovakia) Post-Mining Area. Toxics 2020, 8, 96. [Google Scholar] [CrossRef]
- Florek, M.; Mankovska, B.; Frontasyeva, M.; Oprea, K.; Pavlov, S.; Sýkora, L.; Kluciarova, D. Air Pollution Studies in Slovakia Using the Moss Technique. In Proceedings of the NAA and AAS Conference: “Vývoj v Rádioenvironmentalistike a Súvisiace Problémy Energetiky”, III Banskoštiavnicke dni 2001, Bratislava, Slovak Republic, 1–10 October 2001. [Google Scholar]
- Chaudhuri, S.; Roy, M. Global Ambient Air Quality Monitoring: Can Mosses Help? A Systematic Meta-Analysis of Literature about Passive Moss Biomonitoring. Environ. Dev. Sustain. 2023, 26, 5735–5773. [Google Scholar] [CrossRef]
- Garton, C.; Rausch, J.; Shaw, C. Analysis of Lead Uptake by Dicranum Scoparium from Contaminated Soil Solutions; University of Michigan Biological Station: Pellston, MI, USA, 2019. [Google Scholar]
- Payne, R.J.; Stevens, C.J.; Dise, N.B.; Gowing, D.J.; Pilkington, M.G.; Phoenix, G.K.; Emmett, B.A.; Ashmore, M.R. Impacts of Atmospheric Pollution on the Plant Communities of British Acid Grasslands. Environ. Pollut. 2011, 159, 2602–2608. [Google Scholar] [CrossRef] [PubMed]
- Leith, I.D.; Mitchell, R.J.; Truscott, A.-M.; Cape, J.N.; van Dijk, N.; Smith, R.I.; Fowler, D.; Sutton, M.A. The Influence of Nitrogen in Stemflow and Precipitation on Epiphytic Bryophytes, Isothecium Myosuroides Brid., Dicranum Scoparium Hewd. And Thuidium Tamariscinum (Hewd.) Schimp of Atlantic Oakwoods. Environ. Pollut. 2008, 155, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.-B.; Marchand, C. High Resolution Mapping of PM2.5 Concentrations in Paris (France) Using Mobile Pollutrack Sensors Network in 2020. Atmosphere 2021, 12, 529. [Google Scholar] [CrossRef]
- Renard, J.B.; Poincelet, E.; Annesi-Maesano, I.; Surcin, J. Spatial Distribution of PM2.5 Mass and Number Concentrations in Paris (France) from the Pollutrack Network of Mobile Sensors during 2018–2022. Sensors 2023, 23, 8560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Renard, J.B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Jeannot, M.; Couté, B.; Akiki, R.; et al. LOAC: A Small Aerosol Optical Counter/Sizer for Ground-Based and Balloon Measurements of the Size Distribution. Atmos. Meas. Tech. Discuss. 2015, 8, 1203–1259. [Google Scholar] [CrossRef]
Wind Speed (WS) | Humidity Inside the Chamber | Temperature Inside the Chamber | Atmospheric Pressure |
---|---|---|---|
Two WS tested: 0.5 m s−1 and 1.2 m s−1 | 78–93% (mostly around 82–87%) | 20.2–21.2 °C | 1012 to 1015 Pa |
PM2.5 | PM10 | ||||||
---|---|---|---|---|---|---|---|
Moss Species | Number of Tests | Average Efficiency (WS 0.5 m s−1) | Average Efficiency (WS 1.2 m s−1) | Average Efficiency | Average Efficiency (WS 0.5 m s−1) | Average Efficiency (WS 1.2 m s−1) | Average Efficiency |
D. scoparium | 6 | 36.82 | 35.54 | 36.18 | 43.30 | 42.99 | 43.15 |
P. affine | 6 | 50.06 | 33.19 | 41.63 | 55.73 | 47.16 | 51.45 |
H. cupressiforme | 6 | 42.58 | 48.06 | 45.32 | 39.28 | 52.58 | 45.93 |
3 moss species | 18 | 43.15 | 38.93 | 41.04 | 46.10 | 47.58 | 46.84 |
T. plicata | 4 | No data | −20.34 | −20.34 | No data | −34.57 | −34.57 |
Group 1 (D. scoparium) | Group 2 (P. affine) | Group 3 (H. cupressiforme) |
---|---|---|
37 | 50 | 43 |
36 | 33 | 48 |
43 | 56 | 39 |
43 | 47 | 53 |
Group 12 | Group 22 | Group 32 |
---|---|---|
1369 | 2500 | 1849 |
1296 | 1089 | 2304 |
1849 | 3136 | 1521 |
1849 | 2209 | 2809 |
Groups | N | ∑x | Mean | ∑x2 | Std.Dev. |
---|---|---|---|---|---|
Group 1 | 4 | 159 | 39.75 | 6363 | 3.7749 |
Group 2 | 4 | 186 | 46.5 | 8934 | 9.7468 |
Group 3 | 4 | 183 | 45.75 | 8483 | 6.0759 |
Total | 12 | 528 | 44 | 23,780 |
Source | DF | SS | MS | F-Stat | p-Value |
---|---|---|---|---|---|
Between Groups | 2 | 109.5 | 54.75 | 1.12 | 0.36665 |
Within Groups | 9 | 438.5 | 48.72 | ||
Total | 11 | 548 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karklina, J.; Karklins, E.; Abele, L.; Renard, J.-B.; Strazdina, L. Atmospheric Pollution Particulate Matter Absorption Efficiency by Bryophytes in Laboratory Conditions. Atmosphere 2025, 16, 479. https://doi.org/10.3390/atmos16040479
Karklina J, Karklins E, Abele L, Renard J-B, Strazdina L. Atmospheric Pollution Particulate Matter Absorption Efficiency by Bryophytes in Laboratory Conditions. Atmosphere. 2025; 16(4):479. https://doi.org/10.3390/atmos16040479
Chicago/Turabian StyleKarklina, Juta, Edgars Karklins, Lilita Abele, Jean-Baptiste Renard, and Liga Strazdina. 2025. "Atmospheric Pollution Particulate Matter Absorption Efficiency by Bryophytes in Laboratory Conditions" Atmosphere 16, no. 4: 479. https://doi.org/10.3390/atmos16040479
APA StyleKarklina, J., Karklins, E., Abele, L., Renard, J.-B., & Strazdina, L. (2025). Atmospheric Pollution Particulate Matter Absorption Efficiency by Bryophytes in Laboratory Conditions. Atmosphere, 16(4), 479. https://doi.org/10.3390/atmos16040479