Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = morphogenic dynamic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1311 KiB  
Article
Exploring Bone Morphogenetic Protein-2 and -4 mRNA Expression and Their Receptor Assessment in a Dynamic In Vitro Model of Vascular Calcification
by Manuela Cabiati, Federico Vozzi, Elisa Ceccherini, Letizia Guiducci, Elisa Persiani, Ilaria Gisone, Agnese Sgalippa, Antonella Cecchettini and Silvia Del Ry
Cells 2024, 13(24), 2091; https://doi.org/10.3390/cells13242091 - 18 Dec 2024
Cited by 2 | Viewed by 1071
Abstract
Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (BMP-2 [...] Read more.
Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (BMP-2, BMP-4, BMPR-1a/1b, and BMPR-2) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs). Methods: HCASMCs were grown in mono- and co-culture with human coronary artery endothelial cells (HCAECs) in a double-flow bioreactor (LiveBox2 and IVTech), allowing static and dynamic conditions through a peristaltic pump. The VC was stimulated by incubation in a calcifying medium for 7 days. A BMP system Real-Time PCR was performed at the end of each experiment. Results: In monocultures, BMP-2 expression increased in calcified HCASMCs in static (p = 0.01) and dynamic conditions. BMP-4 and the biological receptors were expressed in all the experimental settings, increasing mainly in dynamic flow conditions. In co-cultures, we observed a marked increase in BMP-2 and BMP-4, BMPR-1a (p = 0.04 and p = 0.01, respectively), and BMPR-2 (p = 0.001) in the calcifying setting mostly in dynamic conditions. Conclusions: The increase in BMP-2/4 in co-culture suggests that these genes might promote the switch towards an osteogenic-like phenotype, data also supported by the rise of both BMPR-1a and BMPR-2. Thus, our findings provide insights into the mechanisms by which dynamic co-culture modulates the BMP system activation in an environment mimicking in vivo VC’s cellular and mechanical characteristics. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Figure 1

9 pages, 738 KiB  
Article
Morphogenesis, Structure, and Tillering Dynamics of Tanzania Grass under Nitrogen Fertilization in the Amazon Region
by Nauara Moura Lage Filho, Airton da Conceição dos Santos, Suianne Lorena da Silva e Silva, João Victor Costa de Oliveira, Vitor Hugo Maués Macedo, Antônio Marcos Quadros Cunha, Aníbal Coutinho do Rêgo and Ebson Pereira Cândido
Grasses 2024, 3(3), 154-162; https://doi.org/10.3390/grasses3030011 - 7 Aug 2024
Cited by 4 | Viewed by 1470
Abstract
Nitrogen fertilization is one of the main management strategies for continuous pasture management with high productivity. We examined the effects of nitrogen fertilization on the morphogenic, structural, and tillering dynamic characteristics of Tanzania grass in the Amazon region in the state of Pará, [...] Read more.
Nitrogen fertilization is one of the main management strategies for continuous pasture management with high productivity. We examined the effects of nitrogen fertilization on the morphogenic, structural, and tillering dynamic characteristics of Tanzania grass in the Amazon region in the state of Pará, Brazil. The study was conducted using a randomized block design with six treatments (0, 100, 200, 300, 400, and 500 kg N ha−1 year−1) and five replicates. The treatments were performed during the rainy season in 2016 and 2017 using urea as the nitrogen source. The leaf elongation rate was increased by 68.5% compared with that of the control treatment (p < 0.01). The leaf appearance rate and number of alive leaves increased with higher doses of nitrogen (p < 0.01, each). The regrowth period was reduced by approximately 13 days under 500 kg N ha−1 (p < 0.01), thus providing more production cycles. Nitrogen fertilization was also associated with a higher tillering rate (p < 0.01); however, the rate of this increase decreased with increasing nitrogen dose. Higher nitrogen doses thus improved the development of Tanzania grass; however, this became less pronounced at doses < 300 kg N ha−1. Full article
Show Figures

Figure 1

20 pages, 5634 KiB  
Article
The Interconnected Relationship between Auxin Concentration Gradient Changes in Chinese Fir Radial Stems and Dynamic Cambial Activity
by Liwei Yang and Sheng Zhu
Forests 2022, 13(10), 1698; https://doi.org/10.3390/f13101698 - 15 Oct 2022
Cited by 5 | Viewed by 2189
Abstract
Auxin has been shown to exhibit a striking concentration gradient distribution in radial sections of angiosperm and gymnosperm species, in which peak auxin levels are concentrated in dividing cambial cells, while the absolute auxin concentration sharply declines toward developing secondary phloem and xylem [...] Read more.
Auxin has been shown to exhibit a striking concentration gradient distribution in radial sections of angiosperm and gymnosperm species, in which peak auxin levels are concentrated in dividing cambial cells, while the absolute auxin concentration sharply declines toward developing secondary phloem and xylem regions. The coincidence of auxin concentration gradient across shoot tissues and xylem cell developmental gradient has prompted that auxin could act as “a plant morphogen” to provide a positional signal for cambial cell development. However, the specific location of vascular cambium and the lack of mutants altering auxin distribution in shoots of woody species made further verification experiments difficult to explore. To address this issue, different concentrations of exogenous IAA were applied to decapitated Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) trunks in this study to induce the change in the auxin concentration gradient in radial stems, and its effects on cambial activities were examined on the physiological, cellular and molecular levels. Our findings manifested that exogenous IAA treatments resulted in vast changes in endogenous hormone concentrations (including IAA, ZR, GA3 and ABA), cambial cell developmental behaviors and transcriptional activities of genes related to polar auxin transport (PAT), auxin signaling, the biosynthesis and signal transduction of other plant hormones and the genetic control of cambial activity. Based on above findings, we postulated a model of auxin concentration gradient involved in the control of cambial activity and secondary growth in tree trunks. In this model, the contrasting expression of AUX1/LAX and PIN family carriers in distinct Chinese fir wood-forming tissues dynamically modulates PAT into the cambial zone adjacent to the secondary phloem side and secondary xylem tissues, resulting in a sharp and wide auxin spatial gradient distribution across shoots in different stages of secondary growth, respectively. This change in auxin concentration gradient distribution in radial sections in turn acts on cambial developmental behaviors by modulating the expression of auxin signaling genes and key transcription factors and the production of other plant hormones in distinct woody tissues. Findings in this study provide important insights for understanding the biological significance of auxin concentration gradient existing in the radial stems of woody species. Full article
(This article belongs to the Special Issue Forest Tree Breeding and Directed Cultivation Techniques)
Show Figures

Figure 1

14 pages, 2217 KiB  
Review
Feedback Regulation of Signaling Pathways for Precise Pre-Placodal Ectoderm Formation in Vertebrate Embryos
by Tatsuo Michiue and Kohei Tsukano
J. Dev. Biol. 2022, 10(3), 35; https://doi.org/10.3390/jdb10030035 - 26 Aug 2022
Cited by 2 | Viewed by 3274
Abstract
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic [...] Read more.
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is necessary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation of signaling pathways for robust formation of the PPE, showing the importance of this regulation. Full article
Show Figures

Figure 1

16 pages, 3269 KiB  
Article
Detection and Analysis of Critical Dynamic Properties of Oligodendrocyte Differentiation
by Svetoslav G. Nikolov, Olaf Wolkenhauer, Momchil Nenov and Julio Vera
Mathematics 2022, 10(16), 2928; https://doi.org/10.3390/math10162928 - 14 Aug 2022
Cited by 1 | Viewed by 1587
Abstract
In this paper, we derive a four-dimensional ordinary differential equation (ODE) model representing the main interactions between Sox9, Sox10, Olig2 and several miRNAs, which drive the process of (olygodendrocyte) differentiation. We utilize the Lyapunov–Andronov theory to analyze its dynamical properties. Our results indicated [...] Read more.
In this paper, we derive a four-dimensional ordinary differential equation (ODE) model representing the main interactions between Sox9, Sox10, Olig2 and several miRNAs, which drive the process of (olygodendrocyte) differentiation. We utilize the Lyapunov–Andronov theory to analyze its dynamical properties. Our results indicated that the strength of external signaling (morphogenic gradients shh and bmp), and the transcription rate of mOlig2 explain the existence of stable and unstable (sustained oscillations) behavior in the system. Possible biological implications are discussed. Full article
(This article belongs to the Special Issue Mathematical Modeling and Simulation of Oscillatory Phenomena)
Show Figures

Figure 1

21 pages, 4882 KiB  
Article
Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics
by Florian Meslard, Yann Balouin, Nicolas Robin and François Bourrin
Water 2022, 14(16), 2463; https://doi.org/10.3390/w14162463 - 9 Aug 2022
Cited by 9 | Viewed by 2720
Abstract
River mouths are highly dynamic environments responding very rapidly to changes in wave energy or river floods. While the morphological response during floods or during marine storm events has been widely documented in the literature, little is known about the mechanisms acting during [...] Read more.
River mouths are highly dynamic environments responding very rapidly to changes in wave energy or river floods. While the morphological response during floods or during marine storm events has been widely documented in the literature, little is known about the mechanisms acting during the co-occurrence of fluvial and marine hazards. This concomitance of river flood and marine storm is quite common in the western Mediterranean Sea, and was the case for the Gloria event, considered to be the most extreme event in recent decades. During this event, monitoring of hydrodynamics and morphological evolution was implemented, making it possible to better understand the impact of concomitant marine storm and fluvial flood during an extreme meteorological event on spit breaching of a small Mediterranean river mouth. Monitoring using a combination of high-resolution hydrodynamic measurements, topographic and bathymetric surveys, and sediment cores was used before, during, and after the storm “Gloria”. The results suggest an amplification of the morphological impact of the events and a different morphogenic response than if each of the events had acted independently on the system. The marine storm, occurring first, weakened the spit and initiated its breaching, which was continued by the extreme fluvial flood, thus leading to the complete destruction of the mouth. The destruction of the spit acted as a sediment source for subaqueous large delta deposition amounting to 50% of the total volume. The contribution of the river, estimated at 30%, was quite low for an exceptional event, showing the importance of locating rainfall in a catchment area controlled by a dam. For this event, extreme morphological evolution was observed, as well as the importance of water levels in the river mouth, which probably increased flood hazards, demonstrating the importance of including the compounding effect of extreme coastal water levels in river flood risk management. Full article
Show Figures

Figure 1

18 pages, 5357 KiB  
Article
Designing Organoid Models to Monitor Cancer Progression, Plasticity and Resistance: The Right Set Up for the Right Question
by Flora Doffe, Fabien Bonini, Emile Lakis, Stéphane Terry, Salem Chouaib and Pierre Savagner
Cancers 2022, 14(15), 3559; https://doi.org/10.3390/cancers14153559 - 22 Jul 2022
Cited by 2 | Viewed by 3419
Abstract
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell–cell interactions to preclinical assays for personalized medicine. It is clear that no single model will [...] Read more.
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell–cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated. In this report, we focused on cancer progression. We describe our model which is designed to emulate breast carcinoma progression during the invasive phase. We chose to provide topological clues to the target cells by growing them on microsupports, favoring a polarized epithelial organization before they are embedded in a 3D matrix. We then watched for cell organization and differentiation for these models, adding stroma cells then immune cells to follow and quantify cell responses to drug treatment, including quantifying cell death and viability, as well as morphogenic and invasive properties. We used model cell lines including Comma Dβ, MCF7 and MCF10A mammary epithelial cells as well as primary breast cancer cells from patient-derived xenografts (PDX). We found that fibroblasts impacted cell response to Docetaxel and Palbociclib. We also found that NK92 immune cells could target breast cancer cells within the 3D configuration, providing quantitative monitoring of cell cytotoxicity. We also tested several sources for the extracellular matrix and selected a hyaluronan-based matrix as a promising alternative to mouse tumor basement membrane extracts for primary human cancer cells. Overall, we validated a new 3D model designed for breast cancer for preclinical use in personalized medicine. Full article
(This article belongs to the Special Issue Applications and Advances in Organoids for Cancer Research)
Show Figures

Figure 1

20 pages, 4628 KiB  
Article
Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain)
by José Juan de Sanjosé Blasco, Alan D. Atkinson, Manuel Sánchez-Fernández, Antonio Gómez-Ortiz, Montserrat Salvà-Catarineu and Ferran Salvador-Franch
Land 2022, 11(5), 613; https://doi.org/10.3390/land11050613 - 21 Apr 2022
Cited by 2 | Viewed by 6229
Abstract
During the Little Ice Age (LIA), Corral del Veleta (Sierra Nevada) housed a small glacier of which relict glacial ice and permafrost still remain under packets of ice blocks. Currently, it is considered the southernmost rock glacier in Europe. The analysis and results [...] Read more.
During the Little Ice Age (LIA), Corral del Veleta (Sierra Nevada) housed a small glacier of which relict glacial ice and permafrost still remain under packets of ice blocks. Currently, it is considered the southernmost rock glacier in Europe. The analysis and results of monitoring carried out on this rock glacier reveal it to be in an accelerated process of immobilization and that the relict glacial ice blocks and permafrost on which it lies are in a continual process of degradation. The rock glacier was monitored from 2001 to 2019 using diverse geomatic techniques, to which geophysical and thermal techniques were added. The results obtained during the observation period shed light on the dynamic of the rock glacier (morpho-topographic movements and deformations) as well as the physical state of the underlying frozen bodies (volumetric reduction and spatial distribution). The changes observed are related to variations in the dominant high-mountain climate of Sierra Nevada, particularly since the end of the 20th century, the general tendencies of which are increasing temperatures, decreasing annual snowfall, and a shorter duration of snow on the ground. Full article
(This article belongs to the Special Issue GIS and Glaciers Landscape: Past and Present)
Show Figures

Figure 1

31 pages, 8409 KiB  
Review
Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease
by Bradley B. Keller, William J. Kowalski, Joseph P. Tinney, Kimimasa Tobita and Norman Hu
J. Cardiovasc. Dev. Dis. 2020, 7(2), 23; https://doi.org/10.3390/jcdd7020023 - 12 Jun 2020
Cited by 12 | Viewed by 4853
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic [...] Read more.
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of “Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms” was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure–function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD. Full article
Show Figures

Figure 1

18 pages, 21397 KiB  
Article
Application of Remote Sensing Methods to Study the Relief of Lowland River Valleys with a Complex Geological Structure—A Case Study of the Bug River
by Piotr Ostrowski and Tomasz Falkowski
Water 2020, 12(2), 487; https://doi.org/10.3390/w12020487 - 11 Feb 2020
Cited by 16 | Viewed by 4998
Abstract
River valleys of the Central European Lowlands are the zones of the highest dynamics of morphogenic processes. In the case of areas affected by glacial processes, despite their lowland nature, often they also have a complex geological structure. Sub-alluvial bedrock, composed of erosion-resistant [...] Read more.
River valleys of the Central European Lowlands are the zones of the highest dynamics of morphogenic processes. In the case of areas affected by glacial processes, despite their lowland nature, often they also have a complex geological structure. Sub-alluvial bedrock, composed of erosion-resistant deposits, commonly forms morphological protrusions within them. Their presence significantly affects both the course of flood flows and the valley floor relief. Effective forecasting of fluvial processes in such valley reaches requires conducting research within the entire geomorphologically active zone, both in the channel and the floodplain. The effectiveness of such research should be enhanced by simultaneous use of several different remote sensing methods, including short-range remote sensing. The verification of this hypothesis was the aim of the presented works. Such methods were used in the study of morphodynamics of a Bug valley reach. This area is characterized by a complex geological structure. High-resolution multispectral satellite images (VHRs) and a digital elevation model (DEM) based on aerial laser scanning (ALS) were used to examine the terrain relief. The morphology of the river channel itself was determined based on a series of bathymetric measurements made by a research team. Due to induced climate change and increasing maximum flow values, it can be assumed that the effect of a geological structure in the Central European Lowlands will play an increasing role. The threat and losses associated with floods will also increase. Rational flood prevention requires improvement of remote sensing research methods in lowland river valleys, especially those with complex geological structures. The valley reach presented in this article is an example of such a landform. Full article
Show Figures

Figure 1

22 pages, 965 KiB  
Review
Fibroinflammatory Liver Injuries as Preneoplastic Condition in Cholangiopathies
by Stefania Cannito, Chiara Milani, Andrea Cappon, Maurizio Parola, Mario Strazzabosco and Massimiliano Cadamuro
Int. J. Mol. Sci. 2018, 19(12), 3875; https://doi.org/10.3390/ijms19123875 - 4 Dec 2018
Cited by 24 | Viewed by 5050
Abstract
The cholangipathies are a class of liver diseases that specifically affects the biliary tree. These pathologies may have different etiologies (genetic, autoimmune, viral, or toxic) but all of them are characterized by a stark inflammatory infiltrate, increasing overtime, accompanied by an excess of [...] Read more.
The cholangipathies are a class of liver diseases that specifically affects the biliary tree. These pathologies may have different etiologies (genetic, autoimmune, viral, or toxic) but all of them are characterized by a stark inflammatory infiltrate, increasing overtime, accompanied by an excess of periportal fibrosis. The cellular types that mount the regenerative/reparative hepatic response to the damage belong to different lineages, including cholagiocytes, mesenchymal and inflammatory cells, which dynamically interact with each other, exchanging different signals acting in autocrine and paracrine fashion. Those messengers may be proinflammatory cytokines and profibrotic chemokines (IL-1, and 6; CXCL1, 10 and 12, or MCP-1), morphogens (Notch, Hedgehog, and WNT/β-catenin signal pathways) and finally growth factors (VEGF, PDGF, and TGFβ, among others). In this review we will focus on the main molecular mechanisms mediating the establishment of a fibroinflammatory liver response that, if perpetuated, can lead not only to organ dysfunction but also to neoplastic transformation. Primary Sclerosing Cholangitis and Congenital Hepatic Fibrosis/Caroli’s disease, two chronic cholangiopathies, known to be prodrome of cholangiocarcinoma, for which several murine models are also available, were also used to further dissect the mechanisms of fibroinflammation leading to tumor development. Full article
Show Figures

Figure 1

21 pages, 4600 KiB  
Article
Heart Development, Coronary Vascularization and Ventricular Maturation in a Giant Danio (Devario malabaricus)
by Olubusola Shifatu, Sarah Glasshagel-Chilson, Hannah M. Nelson, Purva Patel, Wendy Tomamichel, Clay Higginbotham, Paula K. Evans, Gregory S. Lafontant, Alan R. Burns and Pascal J. Lafontant
J. Dev. Biol. 2018, 6(3), 19; https://doi.org/10.3390/jdb6030019 - 21 Jul 2018
Cited by 4 | Viewed by 6307
Abstract
Giant danios (genus Devario), like zebrafish, are teleosts belonging to the danioninae subfamily of cyprinids. Adult giant danios are used in a variety of investigations aimed at understanding cellular and physiological processes, including heart regeneration. Despite their importance, little is known about [...] Read more.
Giant danios (genus Devario), like zebrafish, are teleosts belonging to the danioninae subfamily of cyprinids. Adult giant danios are used in a variety of investigations aimed at understanding cellular and physiological processes, including heart regeneration. Despite their importance, little is known about development and growth in giant danios, or their cardiac and coronary vessels development. To address this scarcity of knowledge, we performed a systematic study of a giant danio (Devario malabaricus), focusing on its cardiac development, from the segmentation period to ten months post-fertilization. Using light and scanning electron microscopy, we documented that its cardiovascular development and maturation proceed along well defined dynamic and conserved morphogenic patterns. The overall size and cardiovascular expansion of this species was significantly impacted by environmental parameters such as rearing densities. The coronary vasculature began to emerge in the late larval stage. More importantly, we documented two possible loci of initiation of the coronary vasculature in this species, and compared the emergence of the coronaries to that of zebrafish and gourami. This is the first comprehensive study of the cardiac growth in a Devario species, and our findings serve as an important reference for further investigations of cardiac biology using this species. Full article
Show Figures

Figure 1

18 pages, 3774 KiB  
Article
Turing Instability-Driven Biofabrication of Branching Tissue Structures: A Dynamic Simulation and Analysis Based on the Reaction–Diffusion Mechanism
by Xiaolu Zhu and Hao Yang
Micromachines 2018, 9(3), 109; https://doi.org/10.3390/mi9030109 - 2 Mar 2018
Cited by 11 | Viewed by 5132
Abstract
Four-dimensional (4D) biofabrication techniques aim to dynamically produce and control three-dimensional (3D) biological structures that would transform their shapes or functionalities with time, when a stimulus is imposed or cell post-printing self-assembly occurs. The evolution of 3D branching patterns via self-assembly of cells [...] Read more.
Four-dimensional (4D) biofabrication techniques aim to dynamically produce and control three-dimensional (3D) biological structures that would transform their shapes or functionalities with time, when a stimulus is imposed or cell post-printing self-assembly occurs. The evolution of 3D branching patterns via self-assembly of cells is critical for the 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear how the formation and evolution of these branching patterns are biologically encoded. Here, we study the biofabrication of lung branching structures utilizing a simulation model based on Turing instability that raises a dynamic reaction–diffusion (RD) process of the biomolecules and cells. The simulation model incorporates partial differential equations of four variables, describing the tempo-spatial distribution of the variables in 3D over time. The simulation results present the formation and evolution process of 3D branching patterns over time and also interpret both the behaviors of side-branching and tip-splitting as the stalk grows and the fabrication style under an external concentration gradient of morphogen, through 3D visualization. This provides a theoretical framework for rationally guiding the 4D biofabrication of lung airway grafts via cellular self-organization, which would potentially reduce the complexity of future experimental research and number of trials. Full article
(This article belongs to the Special Issue Selected Papers from ICMEAS 2017)
Show Figures

Figure 1

17 pages, 1002 KiB  
Review
Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord?
by Cathy Danesin and Cathy Soula
J. Dev. Biol. 2017, 5(2), 4; https://doi.org/10.3390/jdb5020004 - 12 Apr 2017
Cited by 22 | Viewed by 9414
Abstract
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural [...] Read more.
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field. Full article
(This article belongs to the Collection Hedgehog Signaling in Embryogenesis)
Show Figures

Figure 1

18 pages, 1060 KiB  
Review
The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease
by Yesser H. Belgacem, Andrew M. Hamilton, Sangwoo Shim, Kira A. Spencer and Laura N. Borodinsky
J. Dev. Biol. 2016, 4(4), 35; https://doi.org/10.3390/jdb4040035 - 10 Dec 2016
Cited by 43 | Viewed by 13107
Abstract
Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding [...] Read more.
Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action. Full article
(This article belongs to the Collection Hedgehog Signaling in Embryogenesis)
Show Figures

Figure 1

Back to TopTop