Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = monzogranites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7821 KiB  
Article
The Multiple Stages of Regional Triassic Crustal Reworking in Eastern Tianshan, NW China: Evidence from the Xigebi Area
by Ming Wei, Haiquan Li, Wenxiao Zhou, Mahemuti Muredili, Ernest Chi Fru and Thomas Sheldrick
Minerals 2025, 15(8), 829; https://doi.org/10.3390/min15080829 - 4 Aug 2025
Viewed by 203
Abstract
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their [...] Read more.
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their associated hornblende-rich dioritic enclaves to decipher the tectonic and magmatic evolution of the Xigebi area, eastern Tianshan. Zircon geochronology indicates a Triassic and Permian crystallization age of ca. 224.2 ± 1.7 Ma and ca. 268.3 ± 3.0 Ma for the host monzogranites and the dioritic enclaves, respectively. Major, trace and rare earth element distribution, together with Hf isotope systematics displaying noticeable positive εHf(t) anomalies for both rock types, point to partial melting of meta-mafic rocks in an intraplate extensional setting. The diorite was formed by the melting of lower crustal meta-igneous rocks mixed with mantle melts, and the monzogranite, predominantly from deep crustal meta-basalts contaminated by shallow metasedimentary rocks, with some degree of mixing with deeply sourced mantle magma. While both the host monzogranites and their dioritic enclaves are the products of upwelling magma, the younger Triassic monzogranites captured and preserved fragments of the dioritic Permian lower continental crust during crystallization. These multiple stages of magmatic underplating and crustal reworking associated with vertical stratification of the juvenile paleo-continental crust suggest the monzogranites and diorites indicate a change from a post-collisional setting to a regional intraplate regime on the southern margin of the CAOB. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

23 pages, 25056 KiB  
Article
Mineral Chemistry and Whole-Rock Analysis of Magnesian and Ferroan Granitic Suites of Magal Gebreel, South Eastern Desert: Clues for Neoproterozoic Syn- and Post-Collisional Felsic Magmatism
by El Saeed R. Lasheen, Gehad M. Saleh, Amira El-Tohamy, Farrage M. Khaleal, Mabrouk Sami, Ioan V. Sanislav and Fathy Abdalla
Minerals 2025, 15(7), 751; https://doi.org/10.3390/min15070751 - 17 Jul 2025
Viewed by 396
Abstract
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian [...] Read more.
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian Nubian Shield is significantly improved by the Neoproterozoic granitic rocks of the seldom studied MGGs in Egypt’s south Eastern Desert. According to detailed field, mineralogical, and geochemical assessments, they comprise syn-collision (granodiorites) and post-collision (monzogranites, syenogranites, and alkali feldspar rocks). Granodiorite has strong positive Pb, notable negative P, Ti, and Nb anomalies, and is magnesian in composition. They have high content of LREEs (light rare-earth elements) compared to HREEs (heavy rare-earth elements) and clear elevation of LFSEs (low-field strength elements; K Rb, and Ba) compared to HFSEs (high-field strength elements; Zr and Nb), which are in accord with the contents of I-type granites from the Eastern Desert. In this context, the granodiorites are indicative of an early magmatic phase that probably resulted from the partial melting of high K-mafic sources in the subduction zone. Conversely, the post-collision rocks have low contents of Mg#, CaO, P2O5, MgO, Fe2O3, Sr, and Ti, and high SiO2, Fe2O3/MgO, Nb, Ce, and Ga/Al, suggesting A-type features with ferroan affinity. Their P, Nb, Sr, Ba, and Ti negative anomalies are in accord with the findings for Eastern Desert granites of the A2-type. Furthermore, they exhibit a prominent negative anomaly in Eu and a small elevation of LREEs in relation to HREEs. The oxygen fugacity (fO2) for the rocks under investigation can be calculated using the biotite chemistry. The narrow Fe/(Fe + Mg) ratio range (0.6–0.75) indicates that they crystallized under moderately oxidizing conditions between ~QFM +0.1 and QFM +1. The A-type rocks were formed by the partial melting of a tonalite source (underplating rocks) in a post-collisional environment during the late period of extension via slab delamination. The lithosphere became somewhat impregnated with particular elements as a result of the interaction between the deeper crust and the upwelling mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 17130 KiB  
Article
Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau
by Chao Hui, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Haoran Li, Jianfeng Qiao, Tao Tian, Renyi Song, Desheng Dou, Shouye Dong and Xiangyu Lu
Minerals 2025, 15(7), 685; https://doi.org/10.3390/min15070685 - 27 Jun 2025
Viewed by 351
Abstract
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to [...] Read more.
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to address these controversies. LA-ICP-MS zircon U-Pb dating constrains the emplacement age of the MG to 247.1 ± 1.5 Ma. The MG exhibits a peraluminous and low Na2O A2-type granite affinity, characterized by high K2O (4.69–6.80 wt.%) and Zr + Nb + Ce + Y (>350 ppm) concentrations, coupled with high Y/Nb (>1.2) and A/CNK ratios (1.54–2.46). It also displays low FeOT, MnO, TiO2, P2O5, and Mg# values (26–49), alongside pronounced negative Eu anomalies (Eu/Eu* = 0.37–0.49) and moderately fractionated rare earth element (REE) patterns ((La/Yb)N = 3.30–5.11). The MG exhibits enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; such as Sr and Ba), and depletion in high field strength elements (HFSEs; such as Nb, Ta, and Ti), collectively indicating an arc magmatic affinity. Zircon saturation temperatures (TZr = 868–934 °C) and geochemical discriminators suggest that the MG was generated under high-temperature, low-pressure, relatively dry conditions. Combined with positive zircon εHf(t) (1.8 to 4.7) values, it is suggested that the MG was derived from partial melting of juvenile crust. Synthesizing regional data, this study suggests that the Xingshugou MG was formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

22 pages, 4738 KiB  
Article
The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
by Tongtong He, Yuxi Wang, Jing Yan, Zhiyong Yang, Kangning Li, Zirui Liu, Zixuan Wang and Lei Wu
Minerals 2025, 15(6), 632; https://doi.org/10.3390/min15060632 - 10 Jun 2025
Viewed by 330
Abstract
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the [...] Read more.
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the southern margin of the CAOB and Paleo-Asian Ocean. We present zircon U-Pb chronology, in situ Lu-Hf isotopes, and whole-rock geochemistry data for Early–Middle Devonian volcanic rocks in the Sangejing Formation and granites from the Shuangyingshan-Huaniushan (SH) unit in the SBOB. The Wudaomingshiu volcanic rocks (Ca. 411.5 Ma) are calc-alkaline basalt-basaltic andesites with low SiO2 (47.35~55.59 wt.%) and high TiO2 (1.46~4.16 wt.%) contents, and are enriched in LREEs and LILEs (e.g., Rb, Ba, and Th), depleted in HREEs and HFSEs (Nb, Ta, and Ti), and weakly enriched in Zr-Hf. These mafic rocks are derived from the partial melting of the depleted lithosphere metasomatized by subduction fluid and contaminated by the lower crust. Wudaomingshui’s high-K calc-alkaline I-type granite has a crystallization age of 383.6 ± 2.2 Ma (MSWD = 0.11, n = 13), high Na2O (3.46~3.96 wt.%) and MgO (1.25~1.68 wt.%) contents, and a high DI differentiation index (70.69~80.45); it is enriched in LREEs and LILEs (e.g., Rb, Ba, and Th) and depleted in HREEs and HFSEs (e.g., Nb, Ta, and Ti). Granites have variable zircon εHf(t) values (−2.5~3.3) with Mesoproterozoic TDM2 ages (1310~1013 Ma) and originated from lower crustal melting with mantle inputs and minor upper crustal assimilation. An integrated analysis of magmatic suites in the SBOB, including rock assemblages, geochemical signatures, and zircon εHf(t) values (−2.5 to +3.3), revealed a tectonic transition from advancing to retreating subduction during the Early–Middle Devonian. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

21 pages, 8878 KiB  
Article
Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry
by Ke Gao, Zhi Zhang, Linkui Zhang, Peiyan Xu, Yi Yang, Jianyang Wu, Yingxu Li, Miao Sun and Wenpeng Su
Minerals 2025, 15(5), 500; https://doi.org/10.3390/min15050500 - 8 May 2025
Viewed by 463
Abstract
The Wubaduolai copper deposit, a newly discovered porphyry-type deposit located in the western section of the Gangdese metallogenic belt, shows great potential for mineralization. Investigating the ore-bearing potentiality of the adakitic granite in this area is crucial for identifying concealed ore bodies and [...] Read more.
The Wubaduolai copper deposit, a newly discovered porphyry-type deposit located in the western section of the Gangdese metallogenic belt, shows great potential for mineralization. Investigating the ore-bearing potentiality of the adakitic granite in this area is crucial for identifying concealed ore bodies and assessing the metallogenic potential. This paper presents the zircon U-Pb dating, Hf isotope analysis, and whole-rock major and trace geochemical analysis of the plutons in the Wubaduolai mining area. The results indicate that the zircon U-Pb concordia age of the monzogranite is 15.7 ± 0.1 Ma, while the granodiorite porphyry has a concordia age of 15.9 ± 0.2 Ma, both corresponding to a Miocene diagenesis. The geochemical data show that both plutons belong to the high-K calc-alkaline series, characterized by a relative enrichment of large-ion lithophile elements (K, Rb, Ba, and Sr) and a depletion of high-field-strength elements (Nb, Ta, and Ti). Both plutons are characterized by low Y, low Yb, and high Sr/Y values, displaying the typical geochemical characteristics of adakites. Their mineral composition is similar to that of adakite. The εHf(t) values of the monzogranite and granodiorite porphyry range from −5.34 to −2.3 and −5.2 to −3.43, respectively, with two-stage model ages (TDM2) of 1246–1441 Ma and 1318–1432 Ma. Based on the regional data and this study, the plutons in the Wubaduolai mining area formed in a post-collision setting following the India–Asia continental collision. The magma source is identified as the partial melting of a thickened, newly formed lower crust. The above characteristics are consistent with the diagenetic and metallogenic ages, magma source, and dynamic backgrounds of the typical regional deposits. Full article
Show Figures

Figure 1

21 pages, 10400 KiB  
Article
Origin of the Xulaojiugou Pb–Zn Deposit, Heilongjiang Province, NE China: Constraints from Molybdenite Re–Os Isotopic Dating, Trace Elements, and Isotopic Compositions of Sulfides
by Gan Liu, Yunsheng Ren, Jingmou Li and Wentan Xu
Minerals 2025, 15(5), 441; https://doi.org/10.3390/min15050441 - 25 Apr 2025
Viewed by 397
Abstract
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan [...] Read more.
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan Formation. Orebodies exhibit typical skarn characteristics and are structurally controlled by NE trending faults. To constrain the metallogenic age, ore-forming processes, and sources of ore-forming materials, we conducted integrated geochemical analyses, Re–Os isotope dating, in situ sulfur isotope analysis, and trace element analysis. Five molybdenite samples provided a Re–Os isochron age of 184.6 ± 3.0 Ma, indicating Early Jurassic mineralization. In situ δ34S values from 20 sphalerite and 9 galena samples ranged from 5.31‰ to 5.83‰, suggesting derivation of sulfur from a deep magmatic source. Trace element analysis of 42 spots from three sphalerite samples revealed formation temperatures of 248–262 °C, which are consistent with mesothermal conditions. Integrated with regional tectonic evolution, the Xulaojiugou deposit is genetically linked to medium-grained monzogranite emplacement and represents a typical skarn polymetallic deposit, which is genetically associated with the regional porphyry–skarn metallogenic system that developed during the Early Yanshanian (Jurassic) tectonic–magmatic event and was driven by the subduction of the Paleo-Pacific plate. Full article
Show Figures

Figure 1

24 pages, 12852 KiB  
Article
Zircon U-Pb Geochronology and Geochemical Constraints of Tiancang Granites, Southern Beishan Orogenic Belt: Implications for Early Permian Magmatism and Tectonic Evolution
by Chao Teng, Meiling Dong, Xinjie Yang, Deng Xiao, Jie Shao, Jun Cao, Yalatu Su and Wendong Lu
Minerals 2025, 15(4), 426; https://doi.org/10.3390/min15040426 - 19 Apr 2025
Cited by 1 | Viewed by 399
Abstract
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most [...] Read more.
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most extensive spatial-temporal distribution in this belt, remains controversial in its geodynamic context: whether it formed in a persistent subduction regime or was associated with mantle plume activity or post-collisional extension within a rift setting. This study presents an integrated analysis of petrology, zircon U-Pb geochronology, in situ Hf isotopes, and whole-rock geochemistry of Early Permian granites from the Tiancang area in the southern Beishan Orogenic Belt, complemented by regional comparative studies. Tiancang granites comprise biotite monzogranite, monzogranite, and syenogranite. Zircon U-Pb dating of four samples yields crystallization ages of 279.3–274.1 Ma. These granites are classified as high-K calc-alkaline to calc-alkaline, metaluminous to weakly peraluminous I-type granites. Geochemical signatures reveal the following: (1) low total rare earth element (REE) concentrations with light REE enrichment ((La/Yb)N = 3.26–11.39); (2) pronounced negative Eu anomalies (Eu/Eu* = 0.47–0.71) and subordinate Ce anomalies; (3) enrichment in large-ion lithophile elements (LILEs: Rb, Th, U, K) coupled with depletion in high-field-strength elements (HFSEs: Nb, Ta, P, Zr, Ti); (4) zircon εHf(t) values ranging from −10.5 to −0.1, corresponding to Hf crustal model ages (TDMC) of 1.96–1.30 Ga. These features collectively indicate that the Tiancang granites originated predominantly from partial melting of Paleoproterozoic–Mesoproterozoic crustal sources with variable mantle contributions, followed by extensive fractional crystallization. Regional correlations demonstrate near-synchronous magmatic activity across the southern/northern Beishan and eastern Tianshan Orogenic belts. The widespread Permian granitoids, combined with post-collisional magmatic suites and rift-related stratigraphic sequences, provide compelling evidence for a continental rift setting in the southern Beishan during the Early Permian. This tectonic regime transition likely began with lithospheric delamination after the Late Carboniferous–Early Permian collisional orogeny, which triggered asthenospheric upwelling and crustal thinning. These processes ultimately led to the terminal closure of the Paleo-Asian Ocean’s southern branch, followed by intracontinental evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

26 pages, 14766 KiB  
Article
Genesis and Magmatic Evolution of the Gejiu Complex in Southeastern Yunnan, China
by Chuntian Wang, Jiasheng Wang, Xiaojun Zheng, Rong Wang and Bin Ye
Appl. Sci. 2025, 15(8), 4242; https://doi.org/10.3390/app15084242 - 11 Apr 2025
Viewed by 480
Abstract
Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex [...] Read more.
Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex types, aiming to elucidate their implications for tin–polymetallic mineralization. The results indicate that gabbro, monzonite, diorite, and syenite are derived from enriched mantle-derived magmas and have undergone limited crustal contamination. Granites are formed by the mixing of mantle- and crust-derived magmas, involving both physical mixing and chemical diffusion. Major and trace element characteristics suggest that the Gejiu granites predominantly exhibit features of both A-type and I-type granites. Harker diagrams and whole-rock indicators, such as Nb/Ta and Zr/Hf, suggest that granites experienced a two-stage fractional crystallization process, ultimately forming highly evolved biotite monzogranite. Fractional crystallization is the dominant mechanism controlling magmatic evolution, while high-temperature melting and biotite decomposition reactions are critical for the formation of the world-class Gejiu tin deposit. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

28 pages, 9297 KiB  
Article
Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes
by Chao Hui, Fengyue Sun, Tao Wang, Yanqian Yang, Yun Chai, Jiaming Yan, Bakht Shahzad, Bile Li, Yajing Zhang, Tao Yu, Xingsen Chen, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Zhengsong Wang, Haoran Li, Renyi Song and Desheng Dou
Minerals 2025, 15(4), 381; https://doi.org/10.3390/min15040381 - 4 Apr 2025
Cited by 1 | Viewed by 376
Abstract
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates [...] Read more.
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates through petrological analyses, whole-rock geochemistry and zircon U-Pb-Lu-Hf isotopic investigations of newly identified granitoids in the EKOB. Monzogranite (MG) and quartz porphyry (QP) yield weighted mean ages of 254.7 ± 1.1 Ma and 254.3 ± 1.1 Ma, respectively. Geochemically, the MG shows metaluminous to weakly peraluminous low-K calc-alkaline I-type affinity, characterized by high SiO2 and low K2O, MgO and FeOT contents, as well as marked enrichment in light rare earth elements (LREEs), but depletion in Eu, Ba, Sr, P and Ti anomalies. In contrast, the QP exhibits a peraluminous high-K calc-alkaline I-type affinity, displaying high SiO2 but low Na2O and P2O5 contents. It is enriched in LREEs and Rb but displays negative Nb, Sr, P and Ti anomalies. Zircon εHf(t) values range from −1.6 to 2.6 for MG and −4.4 to 1.5 for QP. We suggest that both MG and QP were derived from the partial melting of juvenile mafic lower crust, and that MG underwent a high degree of fractional crystallization. A synthesis of multiscale geological evidence allows us to propose a five-stage tectonic evolution for the BAO in the EKOB: (1) oceanic basin initiation before ca. 345 Ma; (2) incipient northward subduction commencing at ca. 278 Ma; (3) slab rollback stage (263–240 Ma); (4) syn-collisional compression (240–230 Ma); (5) post-collisional extension (230–195 Ma). Full article
Show Figures

Graphical abstract

22 pages, 29178 KiB  
Article
Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
by Mingchao Wu, Zhongliang Wang and Pengyu Liu
Appl. Sci. 2025, 15(3), 1199; https://doi.org/10.3390/app15031199 - 24 Jan 2025
Viewed by 737
Abstract
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so [...] Read more.
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so as to illustrate the genesis of gold mineralization and its implication for exploration. Four molybdenite samples yield a well-defined Re–Os isochron age of 118.4 ± 2.5 Ma (2σ), which is identical to the weighted average Re–Os model age of 118 ± 1.7 Ma (2σ). Integration of the new geochronologic data with those reported recently from the other gold mines in the Muping–Rushan gold metallogenic belt suggests that a discrete gold event occurred in Xiawolong ca. 4 m.y. older than that for the other gold mineralization at ca. 114 Ma in eastern Jiaodong. In addition, two fine-grained granite samples, measured using the LA-ICP-MS zircon U–Pb method, produce the first precise ages of 118 ± 2 to 117 ± 2 Ma (2σ), identical to the molybdenite Re–Os ages, within the margin of error and obtained in this study. The fine-grained granite has a similar lithology and emplacement age as those of the medium-grained monzogranite consisting of the marginal facies of the Sanfoshan batholith, and is considered to be the crystallization products of Sanfoshan granitic magma in the late stage. Combined with the previous S-Pb-D-O isotope, fluid inclusion and geological studies, which suggest that the ore-forming fluid of Xiawolong gold mineralization is from magmatic water, and the identification that the magnetite coexists with the gold-bearing pyrite and molybdenite in the gold ores, which indicates a high oxygen fugacity (fO2) of both the magma and resultant hydrothermal fluids, it is logical to infer that the Xiawolong gold deposit is genetically in relation to the Sanfoshan granitic magmatism, which is high in fO2 and rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 mostly likely makes a significant contribution to the precipitation of Au. This result reveals that the late-stage granitic magma with high fO2, which is crystallized into the fine-grained granite, probably is also rich in Au, except the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements. Therefore, based on the extensional tectonic regime for the early Cretaceous Jiaodong gold deposits, we propose that gold exploration in the Jiaodong should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the late Early Cretaceous small-granitic intrusions with high fO2. This model could also be important for prospecting in other gold ore districts, which have a similar tectonic setting. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

30 pages, 7272 KiB  
Article
A Genetic Model for the Biggenden Gold-Bearing Fe Skarn Deposit, Queensland, Australia: Geology, Mineralogy, Isotope Geochemistry, and Fluid Inclusion Studies
by Mansour Edraki, Alireza K. Somarin and Paul M. Ashley
Minerals 2025, 15(1), 95; https://doi.org/10.3390/min15010095 - 20 Jan 2025
Cited by 1 | Viewed by 1552
Abstract
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, [...] Read more.
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, which formed in different tectonic settings, including island arc, back arc, and mid-ocean ridge. This group has experienced a hornblende-hornfels grade of contact metamorphism due to the intrusion of the Late Triassic Degilbo Granite. The intrusion is a mildly oxidized I-type monzogranite that has geochemical characteristics intermediate between those of granitoids typically associated with Fe-Cu-Au and Sn-W-Mo skarn deposits. The skarn mineralogy indicates that there was an evolution from prograde to various retrograde assemblages. Prograde garnet (Adr11-99Grs1-78Alm0-8Sps0-11), clinopyroxene (Di30-92Hd7-65Jo0-9), magnetite, and scapolite formed initially. Epidote and Cl-bearing amphibole (mainly ferropargasite) were the early retrograde minerals, followed by chlorite, calcite, actinolite, quartz, and sulfides. Late-stage retrograde reactions are indicated by the development of nontronite, calcite, and quartz. Gold is mainly associated with sulfide minerals in the retrograde sulfide stage. The fluids in equilibrium with the ore-stage calcites had δ13C and δ18O values that indicate deposition from magmatically derived fluids. The calculated δ18O values of the fluids in equilibrium with the skarn magnetite also suggest a magmatic origin. However, the fluids in equilibrium with epidote were a mixture of magmatic and meteoric water, and the fluids that deposited chlorite were at least partly meteoric. δD values for the retrograde amphibole and epidote fall within the common range for magmatic water. Late-stage chlorite was deposited from metasomatic fluids depleted in deuterium (D), implying a meteoric water origin. Sulfur isotopic compositions of the Biggenden sulfides are similar to other skarn deposits worldwide and indicate that sulfur was most probably derived from a magmatic source. Based on the strontium (87Sr/86Sr) and lead (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) isotope ratios, the volcanic and sedimentary rocks of the Gympie Group may have contributed part of the metals to the hydrothermal fluids. Lead isotope data are also consistent with a close age relationship between the mineralization at Biggenden and the crystallization of the Degilbo Granite. Microthermometric analysis indicates that there is an overall decrease in fluid temperature and salinity from the prograde skarn to retrograde alterations. Fluid inclusions in prograde skarn calcite and garnet yield homogenization temperatures of 500 to 600 °C and have salinities up to 45 equivalent wt % NaCl. Fluid inclusions in quartz and calcite from the retrograde sulfide-stage homogenized between 280 and 360 °C and have lower salinities (5–15 equivalent wt % NaCl). In a favored genetic model, hydrothermal fluids originated from the Degilbo Granite at depth and migrated through the shear zone, intrusive contact, and permeable Gympie Group rocks and leached extra Fe and Ca and deposited magnetite upon reaction with the adjacent marble and basalt. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

31 pages, 15084 KiB  
Article
Tempo-Spatial Tungsten Metallogeny in the Xing’an–Mongolia Orogenic Belt: Insights from the Early Cretaceous Shamai Tungsten Deposit Case Study in Northeastern China
by Zhenjiang Liu, Jianping Wang, Shaobo Cheng and Jiajun Liu
Minerals 2025, 15(1), 80; https://doi.org/10.3390/min15010080 - 16 Jan 2025
Viewed by 967
Abstract
The Xing’an–Mongolia Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB). The region’s notable tectonic complexity and extensive tungsten mineralization offer a unique opportunity to explore metallogeny mechanisms in orogenic areas. This study focuses on the [...] Read more.
The Xing’an–Mongolia Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB). The region’s notable tectonic complexity and extensive tungsten mineralization offer a unique opportunity to explore metallogeny mechanisms in orogenic areas. This study focuses on the Shamai tungsten deposit as a case study, presenting results from LA–ICP–MS U–Pb dating of fine-grained, medium-grained, and porphyritic biotite monzogranite samples from the deposit, along with in situ zircon Hf isotopic and plagioclase Pb isotopic analyses. The fine-grained, medium-grained, and porphyritic biotite monzogranite were emplaced at 142.5, 141.9, and 140.2 Ma, respectively. These samples contain zircons with εHf(t) values ranging from 3.2 to 7.9 and 4.2 to 7.6, respectively, yielding TDM2 model ages from 996 to 692 Ma and 923 to 708 Ma. These findings suggest that the magmas in the Shamai deposit were produced by partial melting of juvenile crustal material mixed with mantle-derived components. The tungsten mineralization periods in the Eastern XMOB region can be divided into three stages: Early Paleozoic (ca. 520–475 Ma), Triassic (ca. 250–200 Ma), and Jurassic to Early Cretaceous (ca. 190–130 Ma). The highest concentration of tungsten mineralization in the XMOB occurs within the Xing’an Block during the Jurassic to Early Cretaceous period. Yanshanian magmatism and the most significant tungsten metallogenic events are likely influenced by an extensional setting and oceanic slab rollback, shaped by the tectonic evolution of the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

19 pages, 10062 KiB  
Article
Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes
by Zhenjiang Liu, Shaobo Cheng, Changrong Liu, Benjie Gu and Yushan Xue
Minerals 2025, 15(1), 14; https://doi.org/10.3390/min15010014 - 26 Dec 2024
Cited by 2 | Viewed by 802
Abstract
The Jiaodong Peninsula is renowned for its significant gold reserves, which exceed 4500 tons. In this study, we conducted zircon SHRIMP U-Pb dating, 40Ar/39Ar geochronology, electron probe microanalysis (EPMA) analysis, and He-Ar isotope analysis on samples from the Shuigou gold [...] Read more.
The Jiaodong Peninsula is renowned for its significant gold reserves, which exceed 4500 tons. In this study, we conducted zircon SHRIMP U-Pb dating, 40Ar/39Ar geochronology, electron probe microanalysis (EPMA) analysis, and He-Ar isotope analysis on samples from the Shuigou gold deposit located in the Qixia-Penglai-Fushan metallogenic area of central Jiaodong. This quartz vein-type gold deposit is characterized by three mineralization stages: (I) the quartz-pyrite stage, (II) the quartz-polymetallic sulfide stage, and (III) the calcite stage. In stages I and II, gold primarily exists as native gold or electrum. Preliminary analysis suggests that the deposit contains rare critical metals, including bismuth (Bi), tellurium (Te), and antimony (Sb). The Sb is found as pyrargyrite in stage III, while the other critical elements occur as isomorphisms or nanoparticles within host minerals such as pyrite, native gold, and electrum. Geochronology data indicate that the pre-mineralization Guojialing monzogranite formed around 126 ± 1.6 Ma, the syn-mineralization muscovite formed at approximately 125 Ma, and the post-mineralization diorite porphyrite formed at 120.4 ± 1.8 Ma. The 3He/4He ratios of fluid inclusions in the main-stage pyrite range from 0.26 to 1.26 Ra, and the 40Ar/36Ar ratios vary from 383 to 426.6. These findings suggest that the Shuigou gold deposit formed during the destruction of the North China Craton (NCC), similar to other super-large gold deposits in the Jiaodong Mesozoic gold metallogenic province. Gold mineralization has been influenced by mantle, crustal, and meteoric fluids. Full article
Show Figures

Figure 1

20 pages, 21100 KiB  
Article
Petrogenesis and Metallogenic Significance of the Demingding Mo-Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U-Pb and Re-Os Geochronology and Geochemistry
by Sudong Shi, Shuyuan Chen, Sangjiancuo Luo, Huan Ren and Xiaojia Jiang
Minerals 2024, 14(12), 1232; https://doi.org/10.3390/min14121232 - 3 Dec 2024
Viewed by 1126
Abstract
The 1500 km-long Gangdese magmatic belt is a crucial region for copper polymetallic mineralization, offering valuable insights into collisional porphyry copper systems. This study focuses on the Demingding deposit, a newly identified occurrence of molybdenum–copper (Mo-Cu) mineralization within the eastern segment of the [...] Read more.
The 1500 km-long Gangdese magmatic belt is a crucial region for copper polymetallic mineralization, offering valuable insights into collisional porphyry copper systems. This study focuses on the Demingding deposit, a newly identified occurrence of molybdenum–copper (Mo-Cu) mineralization within the eastern segment of the belt. While the mineralization age, magmatic characteristics, and tectonic context are still under investigation, we examine the deposit’s petrology, zircon U-Pb geochronology, whole-rock chemistry, and Re-Os isotopic data. The Demingding deposit exhibits a typical alteration zoning, transitioning from an inner potassic zone to an outer propylitic zone, which is significantly overprinted by phyllic alteration closely associated with Mo and Cu mineralization. Zircon U-Pb dating of the ore-forming monzogranite porphyries reveals crystallization ages ranging from 21 to 19 Ma, which is indistinguishable within error from the mean Re-Os age of 21.3 ± 0.4 Ma for Mo veins and veinlets hosted by these porphyries. This alignment suggests a late Miocene magmatic event characterized by Mo-dominated mineralization, coinciding with the continuous thickening of the continental crust during the collision of the Indian and Asian continents. The ore-forming porphyries range in composition from granodiorite to monzogranite and are classified as high-K calc-alkaline with adakite-like features, primarily resulting from the partial melting of subduction-modified thickened mafic lower crust. Notably, the ore-forming porphyries exhibit higher fO2 and H2O levels than barren porphyries in this area during crustal thickening, highlighting the significant contributions of hydrous and oxidized fluids from their source to the Mo-Cu mineralization process. Regional data indicate that the Gangdese porphyry metallogenic belt experienced concentrated Cu-Mo mineralization between 17 and 13 Ma. The formation of Mo-dominated deposits such as Demingding and Tangbula in the eastern segment of the belt, with slightly older ages around 20 Ma, underscores the presence of a significant porphyry Mo metallogenic event during this critical post-collision mineralization period. Full article
Show Figures

Graphical abstract

16 pages, 11454 KiB  
Article
Discovery and Geological Significance of Neoproterozoic Bimodal Intrusive Rocks in the Dabie Orogen, China
by Linjing Li, Mingyi Hu, Lingyao Kong, Lin Wang and Qiqi Lyu
Minerals 2024, 14(12), 1199; https://doi.org/10.3390/min14121199 - 25 Nov 2024
Viewed by 806
Abstract
The Mingshan reservoir of the Dabie Orogen has a number of Neoproterozoic bimodal intrusive rocks. We focused on the zircon U-Pb chronology, Hf isotopes, and bulk-rock geochemistry of these rocks. The results showed the following: (1) The bimodal intrusive rocks mainly consist of [...] Read more.
The Mingshan reservoir of the Dabie Orogen has a number of Neoproterozoic bimodal intrusive rocks. We focused on the zircon U-Pb chronology, Hf isotopes, and bulk-rock geochemistry of these rocks. The results showed the following: (1) The bimodal intrusive rocks mainly consist of monzogranitic gneiss and plagioamphibolite, with zircon U-Pb ages of 785.0 ± 7.1 Ma and 787.3 ± 6.1 Ma, respectively. These ages indicate that they were formed in the late Qingbaikou epoch of the Neoproterozoic era. (2) The monzogranitic gneiss was dominated by peraluminous features and displayed a strong right deviation of REE (rare-earth element) patterns and a negative δEu anomaly. It is enriched in the LILEs (large-ion lithophile elements) Rb, Ba, and K, but slightly depleted in Nb, Sr, P, and Ti, with low 10,000* Ga/Al values, indicating that it is similar to Al-type granite. The plagioamphibolite belongs to the metaluminous, peraluminous series. It has a Mg# (molar ratio of Mg to Mg + Fe) of 36.1~55.9 and is enriched in the LILEs Rb, Ba, and K, with a slight positive anomaly of Ba, and is depleted in Nb and Sr. (3) The monzogranite shows negative zircon εHf(t) values ranging from −13.4 to −7.2 and a Paleoproterozoic TDM2(Hf) (two-stage depleted mantle model age) of 1969–2298 Ma. The zircon εHf(t) values and TDM2(Hf) of the plagioamphibolite were concentrated around 2.9–5.7 and 1257–1410 Ma, respectively. The geochemistry and Hf isotopes show that the monzogranitic gneiss and plagioamphibolite have distinct magmatic sources. The plagioamphibolite formed from mantle and partial continental crustal materials. The monzogranitic gneiss, on the other hand, was formed as a result of the partial melting of the shallow ancient felsic crust caused by mafic rock heating or upwelling. Taking into account regional correlation, the middle Neoproterozoic bimodal intrusive rocks originated in the structural framework of an extensional setting. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop