Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = monopile wind turbine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4183 KiB  
Article
Centrifuge and Numerical Investigations on Responses of Monopile-Supported Offshore Wind Turbines with Riprap Scour Protection Under Earthquakes
by Hao Zhang, Xiaojing Jia, Fayun Liang and Zhouchi Yuan
J. Mar. Sci. Eng. 2025, 13(8), 1532; https://doi.org/10.3390/jmse13081532 - 10 Aug 2025
Viewed by 276
Abstract
Riprap scour protection is commonly employed to protect against local scour around large-diameter monopile foundations for offshore wind turbines (OWTs), and considering its influence on the static and dynamic behavior of monopiles may also provide the opportunity for further optimization of monopile design. [...] Read more.
Riprap scour protection is commonly employed to protect against local scour around large-diameter monopile foundations for offshore wind turbines (OWTs), and considering its influence on the static and dynamic behavior of monopiles may also provide the opportunity for further optimization of monopile design. However, only limited studies have gradually begun to investigate the contribution of scour protection to monopile bearing capacity, while its effects on the seismic responses of monopile-supported OWTs deployed in seismic zones have attracted even less attention. In this study, a series of centrifuge shaking table tests were conducted on large-diameter monopile foundations under both initial and scour protection conditions. Then, to further investigate the effects of scour protection parameters on the seismic response of offshore wind turbines, a three-dimensional finite element model was developed and validated based on experimental results. The results demonstrate that the presence of scour protection not only slightly increases the first natural frequency but also alters seismic responses of the OWT. Lower peak responses at the lumped mass are observed under Chi-Chi excitation, while lower peak bending moments of the pile occur under Kobe excitation. Additionally, seismic responses are more sensitive to variations in the scour protection length than its elastic modulus. Therefore, compared to material selection, greater emphasis should be placed on optimizing the scour protection length by comprehensively considering environmental loads, site conditions, and turbine dynamic characteristics. This study quantifies the effects of scour protection on the seismic responses of monopile-supported offshore wind turbines, which can provide new insights into seismic design optimization of offshore wind turbines with riprap scour protection. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 4008 KiB  
Article
Numerical Study of the Negative Skin Friction (NSF) of Large-Diameter Rock-Socketed Monopiles for Offshore Wind Turbines Incorporating Lateral Loading Effects
by Yuanyuan Ren, Zhiwei Chen and Wenbo Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1530; https://doi.org/10.3390/jmse13081530 - 9 Aug 2025
Viewed by 303
Abstract
Large-diameter rock-socketed monopiles supporting offshore wind turbines in soft clay strata face significant geotechnical risks from negative skin friction (NFS) induced by construction surcharges. While the effects of NFS on axial drag loads are documented, the critical interaction between horizontal pile loading and [...] Read more.
Large-diameter rock-socketed monopiles supporting offshore wind turbines in soft clay strata face significant geotechnical risks from negative skin friction (NFS) induced by construction surcharges. While the effects of NFS on axial drag loads are documented, the critical interaction between horizontal pile loading and NFS development remains poorly understood. This research bridges this gap using a rigorously validated 3D finite element model that simulates the complex coupling of vertical substructure loads (5 MN), horizontal loading, and surcharge-induced consolidation. The model’s accuracy was confirmed through comprehensive verification against field data for both NFS evolution under surcharge and horizontal load–displacement behavior. The initial analysis under representative conditions (10 MN horizontal load, 100 kPa surcharge, 3600 days consolidation) revealed that horizontal loading fundamentally distorts NFS distribution in the upper pile segment (0 to −24 m), transforming smooth profiles into distinct dual-peak morphologies while increasing the maximum NFS magnitude by 57% (from −45.4 kPa to −71.5 kPa) and relocating its position 21 m upward. This redistribution was mechanistically linked to horizontal soil displacement patterns. Crucially, the NFS neutral plane remained invariant at the clay–rock interface (−39 m), demonstrating complete independence from horizontal loading effects. A systematic parametric study evaluated key operational factors: (1) consolidation time progressively increased NFS magnitude throughout the clay layer, evolving from near-linear to dual-peaked distributions in the upper clay (0 to −18 m); NFS stabilized in the upper clay after 720 days while continuing to increase in the lower clay (−18 to −39 m) due to downward surcharge transfer, accompanied by neutral plane deepening (from −36.5 m to −39.5 m) and 84% maximum axial force escalation (12.5 MN to 23 MN); (2) horizontal load magnitude amplified upper clay NFS peaks at −3.2 m and −9.3 m, with the shallow peak magnitude increasing linearly with load intensity, though it neither altered lower clay NFS nor neutral plane position; (3) surcharge magnitude increased overall NFS, but upper clay NFS (0 to −18 m) stabilized beyond 100 kPa, while lower clay NFS continued rising with higher surcharges, and the neutral plane descended progressively (from −38 m to −39.5 m). These findings demonstrate that horizontal loading critically exacerbates peak NFS values and redistributes friction in upper pile segments without influencing the neutral plane, whereas surcharge magnitude and consolidation time govern neutral plane depth, total NFS magnitude, and maximum drag load. This research delivers essential theoretical insights and practical guidelines for predicting NFS-induced drag loads and ensuring the long-term safety of offshore wind foundations in soft clays under complex multi-directional loading scenarios. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4851 KiB  
Article
Natural Frequency of Monopile Supported Offshore Wind Turbine Structures Under Long-Term Cyclic Loading
by Rong Chen, Haitao Yang, Yilong Sun, Jinglong Zou, Boyan Sun and Jialin Xu
Appl. Sci. 2025, 15(15), 8143; https://doi.org/10.3390/app15158143 - 22 Jul 2025
Viewed by 412
Abstract
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or [...] Read more.
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or resonant conditions. In this study, a numerical model considering soil–pile interaction was developed on the FLAC3D platform to analyze the natural frequency of OWTs under long-term cyclic loading. The study first validated the numerical model’s effectiveness through comparison with measured data; a degradation stiffness model (DSM) was then embedded to assess how prolonged cyclic loading affects the degradation of foundation stiffness. A series of parametric studies were conducted in medium-dense and dense sand layers to investigate natural frequency alterations induced by prolonged cyclic loading. Finally, a simplified method for evaluating long-term natural frequency changes was established, and a 3.6 MW offshore wind turbine case was used to reveal the evolution characteristics of its natural frequency under long-term cyclic loads. The data reveal that the natural frequency of the structure undergoes a downward tendency as cyclic loading and frequency increase. To ensure long-term safe operation, the designed natural frequency should preferably shift toward 3P (where P is the blade rotation frequency). Full article
Show Figures

Figure 1

32 pages, 10923 KiB  
Article
Numerical Simulation of Hydrodynamic Characteristics for Monopile Foundations of Wind Turbines Under Wave Action
by Bin Wang, Mingfu Tang, Zhenqiang Jiang and Guohai Dong
Water 2025, 17(14), 2068; https://doi.org/10.3390/w17142068 - 10 Jul 2025
Viewed by 315
Abstract
The calculation and evaluation of wave loads represent a critical component in the design process of offshore wind turbines, which is of significant value for ensuring the safety and stability of offshore wind turbines during operation. In recent years, as the offshore wind [...] Read more.
The calculation and evaluation of wave loads represent a critical component in the design process of offshore wind turbines, which is of significant value for ensuring the safety and stability of offshore wind turbines during operation. In recent years, as the offshore wind power industry has extended into deep-sea areas, wind turbines and their foundation structures have gradually increased in scale. Due to the continuously growing diameter of fixed foundation structures, the wave loads they endure can no longer be evaluated solely by traditional methods. This study simplifies the monopile foundation structure of wind turbines into an upright circular cylinder. The open-source CFD platform OpenFOAM is employed to establish a numerical wave tank, and large eddy simulation (LES) models are used to conduct numerical simulations of its force-bearing process in wave fields. Through this approach, the hydrodynamic loads experienced by the single-cylinder structure in wave fields and the surrounding wave field data are obtained, with further investigation into its hydrodynamic characteristics under different wave environments. By analyzing the wave run-up distribution around cylinders of varying diameters and their effects on incident waves, a more suitable value range for traditional theories in engineering design applications is determined. Additionally, the variation laws of horizontal wave loads on single-cylinder structures under different parameter conditions (such as cylinder diameter, wave steepness, water depth, etc.) are thoroughly studied. Corresponding hydrodynamic load coefficients are derived, and appropriate wave force calculation methods are established to address the impact of value errors in hydrodynamic load coefficients within the transition range from large-diameter to small-diameter cylinders in traditional theories on wave force evaluation. This contributes to enhancing the accuracy and practicality of engineering designs. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

20 pages, 13331 KiB  
Article
Numerical Simulation of Seabed Response Around Monopile Under Wave–Vibration
by Hongyi Du, Dunge Wang, Jiankang Hou, Ziqin Yu, Ze Liu and Yongzhou Cheng
J. Mar. Sci. Eng. 2025, 13(7), 1309; https://doi.org/10.3390/jmse13071309 - 6 Jul 2025
Viewed by 337
Abstract
Monopile foundation is an important foundation form for offshore wind turbines, and the stability of the seabed around it is affected by the combined effects of wave and pile vibration. Based on the Biot consolidation theory and elastoplastic constitutive model, a multi-physical field [...] Read more.
Monopile foundation is an important foundation form for offshore wind turbines, and the stability of the seabed around it is affected by the combined effects of wave and pile vibration. Based on the Biot consolidation theory and elastoplastic constitutive model, a multi-physical field coupling model of wave–vibration–seabed–monopile is constructed, and the dynamic characteristics of seabed pore pressure around the monopile under the joint action of wave–vibration are systematically investigated, and the influences of waves, vibrations, and seabed parameters on the distribution of pore pressure amplitude are analysed in depth. The results show that the increase in wave incident energy will increase the seabed wave pressure, and the suction and pressure generated by pile vibration will change the soil force state; the coupling of waves and vibrations results in pile displacement difference, causing the seabed pore pressure dissipation depth dissimilarity, and the peak relative amplitude of pore pressure and the peak of vibration displacement are in a linear relationship; the wave parameters and seabed characteristics have a significant effect on the change in pore pressure amplitude distribution. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 4718 KiB  
Article
Wind Energy Development on Lake Huron: An Offshore Foundation Design Perspective
by Clare Burnley and Shunde Yin
Processes 2025, 13(7), 2118; https://doi.org/10.3390/pr13072118 - 3 Jul 2025
Viewed by 427
Abstract
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high [...] Read more.
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high shear forces from waves. Extensive site characterization is necessary to effectively design detailed offshore wind turbine structures. High cost and time commitments, along with policy and societal considerations, have limited present research on offshore wind feasibility in the Great Lakes. This study focuses on wave impacts, assessing popular offshore wind farms and identifying monopile foundations as the optimal design for a hypothetical offshore wind farm in the lime bedrock of Lake Huron. RSPile is used to assess the stability of the proposed foundation design against deflection, bending, and rotation under average wave forces and extreme storm events. Ultimately, preliminary analysis recommends an 8 m diameter pipe embedded 30 m into the seabed to satisfy industry standards for offshore wind turbine foundation design. Full article
Show Figures

Figure 1

20 pages, 8370 KiB  
Article
Lateral Performance of Monopile Foundations for Offshore Wind Turbines in Clay Soils: A Finite Element Investigation
by Yazeed A. Alsharedah
J. Mar. Sci. Eng. 2025, 13(7), 1222; https://doi.org/10.3390/jmse13071222 - 25 Jun 2025
Viewed by 512
Abstract
The continued upscaling of offshore wind turbines (OWTs) necessitates the development of foundation systems capable of sustaining increased lateral loads. As monopiles remain the most widely used foundation type for OWTs, a detailed investigation into their lateral behavior and soil flow under operational [...] Read more.
The continued upscaling of offshore wind turbines (OWTs) necessitates the development of foundation systems capable of sustaining increased lateral loads. As monopiles remain the most widely used foundation type for OWTs, a detailed investigation into their lateral behavior and soil flow under operational loading is warranted. This study utilized a nonlinear three-dimensional finite element model (FEM) to assess the lateral performance of monopiles supporting a 5 MW turbine in clayey soils. The results revealed that the lateral capacity and deformation behavior are governed primarily by soil shear strength and the monopile’s length-to-diameter ratio (L/D). In softer soils, increasing the L/D ratio led to notable enhancements in lateral resistance, up to fivefold, as well as significant reductions in pile head displacement and rotation. In contrasts, monopiles in stiff clay exhibited distinct failure patterns and less sensitivity to L/D variations. Soil deformation patterns at the ultimate state varied depending on stiffness, indicating distinct failure mechanisms in soft and stiff clays. These findings highlight the importance of incorporating realistic soil behavior and geometric influences in monopile foundation design for large OWTs. Full article
(This article belongs to the Special Issue Offshore Renewable Energy, Second Edition)
Show Figures

Figure 1

19 pages, 7600 KiB  
Article
Experimental Study on a Laterally Loaded Pile Under Scour Condition Using Particle Image Velocimetry Technology
by Feng Yu, Xiaofeng Yang, Zhaoming Yao and Yaoyao Meng
J. Mar. Sci. Eng. 2025, 13(6), 1125; https://doi.org/10.3390/jmse13061125 - 4 Jun 2025
Viewed by 449
Abstract
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity [...] Read more.
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity and impacting the normal operation of offshore wind turbines. A series of 1 g model tests is conducted to investigate the lateral load response and scouring response of the monopile in sand. Based on the experimental results, the characteristics of the pile’s load-displacement curves, bending moments, and p-y curves under the effects of scour were analyzed. Particle Image Velocimetry technology was adopted to analyze the deformation development rules of soil particles around the pile. It is found that under the same lateral load, the maximum bending moment of the pile increases and the bearing capacity is reduced as the scour depth increases, the scour width increases, or the scour slope decreases. The effects of scour depth, slope, and width on pile bearing stability decrease successively. Soil displacements and strains in the passive zone in front of the pile develop gradually in both radial and vertical directions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 2286 KiB  
Article
Numerical Analysis of Nonlinear Hydrodynamic Performance in an Innovative Composite Monopile Foundation for Offshore Wind Turbines Using a Fully Nonlinear Potential Flow Model
by Shuang Liang, Lin Lin, Fayun Liang, Panpan Shen and Shilun Zhao
Sustainability 2025, 17(11), 4769; https://doi.org/10.3390/su17114769 - 22 May 2025
Viewed by 499
Abstract
Offshore wind turbines serve as critical infrastructure components in marine renewable energy systems, enabling sustainable energy extraction within offshore engineering frameworks. Monopile foundations for offshore wind turbines in deep-water environments are subjected to strong nonlinear wave actions. This study introduces a novel composite [...] Read more.
Offshore wind turbines serve as critical infrastructure components in marine renewable energy systems, enabling sustainable energy extraction within offshore engineering frameworks. Monopile foundations for offshore wind turbines in deep-water environments are subjected to strong nonlinear wave actions. This study introduces a novel composite monopile foundation specifically designed for deep-sea applications, with its fully nonlinear hydrodynamic performance systematically investigated using potential flow theory. The novel hybrid monopile incorporates a concrete-filled double-skin steel tubular (CFDST) configuration to reduce pile diameter at water level. In the numerical model, the higher-order boundary element method (HOBEM) is implemented to resolve boundary value problems at each temporal iteration. Following numerical validation, nonlinear wave loading and run-up characteristics for the CFDST hybrid structure are quantified, while the limitations of Morison’s equation for large-scale structures under strongly nonlinear wave conditions are concurrently assessed. Results indicate that CFDST implementation effectively attenuates both nonlinear hydrodynamic forces and wave run-up amplitudes, enabling safer and more economical design approaches for deep-water offshore wind turbine foundations. Full article
Show Figures

Figure 1

17 pages, 6958 KiB  
Article
Effect of Combined Wave and Current Loading on the Hydrodynamic Characteristics of Double-Pile Structures in Offshore Wind Turbine Foundations
by Yongqing Lai, Li Cai, Xinyun Wu, Bin Wang, Yiyang Hu, Yuwei Liang, Haisheng Zhao and Wei Shi
Energies 2025, 18(10), 2573; https://doi.org/10.3390/en18102573 - 15 May 2025
Viewed by 508
Abstract
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles [...] Read more.
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles affected by combined wave and current loadings are seldom revealed. In this study, a generation module for wave–current combined loading is developed in waves2Foam by considering the wave theory coupled current effect. Subsequently, a numerical flume model of the double-pile structure is established in OpenFOAM based on computational fluid dynamics (CFD) and SST k-ω turbulence theory, and the hydrodynamic characteristics of the double-pile structure are investigated. It can be found that, under the combined wave–current loading, the maximum wave run-up at the leeward side of the upstream monopile is significantly reduced by about 24% on average compared with that of the individual monopile when the spacing is 1.25 and 1.75 times the wave length. At the free water surface height, the maximum discrepancy between the maximum surface pressure on the downstream monopile and the corresponding result of the individual monopile is significantly reduced from 37% to 19%. Compared to the case applying the wave loading condition, the wave–current loading reduces the influence of spacing on the wave run-up along the downstream monopile surface, the maximum surface pressure at specific positions on both upstream and downstream monopile, and the overall maximum horizontal force acting on the double-pile structure. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

24 pages, 3817 KiB  
Article
Wavy Wind-Water Flow Impacts on Offshore Wind Turbine Foundations
by Rehil Thomas, Odeh Dababneh and Mustapha Gourma
J. Mar. Sci. Eng. 2025, 13(5), 941; https://doi.org/10.3390/jmse13050941 - 12 May 2025
Viewed by 621
Abstract
The present study investigates the flow dynamics surrounding offshore wind turbine OWT foundations, focusing on the interaction of wind and water flows with two prevalent foundation types: mono-pile and tripod designs. Computational simulations and analyses were conducted on the substructures of these OWTs [...] Read more.
The present study investigates the flow dynamics surrounding offshore wind turbine OWT foundations, focusing on the interaction of wind and water flows with two prevalent foundation types: mono-pile and tripod designs. Computational simulations and analyses were conducted on the substructures of these OWTs using the ANSYS-Fluent v16.5 software package. The primary objective was to predict critical parameters, including directional drag force coefficients, interface velocities, and pressure distributions. To model realistic oceanic conditions, pseudo-periodic wave patterns were implemented at the inlet boundary. The flow regime was characterized by logarithmic vertical velocity profiles at low interfacial velocities, ranging from 2.23 m/s to 3.01 m/s. This computational approach revealed anisotropic constraints imposed on the foundations under unidirectional flow conditions. The drag coefficients obtained from the simulations highlighted significant vertical flux exchanges in proximity to the OWT structures, with a particularly pronounced downward flow near the tripod foundation design. Additionally, the study demonstrated that variations in wind speed within the specified range did not substantially impact pressure distributions or strain rates. However, these changes were found to influence skin friction coefficients, indicating a sensitivity of these hydrodynamic parameters to wind speed variations. The analysis of flow streamlines around the mono-pile foundation showed a smooth and well-defined pattern, whereas the flow around the tripod foundation exhibited more complex, interleaved, and turbulent streamlines. This distinction in flow behavior is believed to contribute to the observed downward vertical flux exchanges near the tripod. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 5733 KiB  
Article
Characteristics of the Damping Ratio of Undisturbed Offshore Silty Clay in Eastern Guangdong, China
by Peng Guo, Youhu Zhang and Qian Bi
Appl. Sci. 2025, 15(9), 4954; https://doi.org/10.3390/app15094954 - 29 Apr 2025
Viewed by 421
Abstract
Soil–pile interaction damping plays a crucial role in reducing wind turbine loads and fatigue damage in monopile foundations, thus aiding in the optimized design of offshore wind structures and lowering construction and installation costs. Investigating the damping properties at the element level is [...] Read more.
Soil–pile interaction damping plays a crucial role in reducing wind turbine loads and fatigue damage in monopile foundations, thus aiding in the optimized design of offshore wind structures and lowering construction and installation costs. Investigating the damping properties at the element level is essential for studying monopole–soil damping. Given the widespread distribution of silty clay in China’s seas, it is vital to conduct targeted studies on its damping characteristics. The damping ratio across the entire strain range is measured using a combination of resonant column and cyclic simple shear tests, with the results compared to predictions from widely used empirical models. The results indicate that the damping ratio–strain curve for silty clay remains “S”-shaped, with similar properties observed between overconsolidated and normally consolidated silty clay. While empirical models accurately predict the damping ratio at low strain levels, they tend to overestimate it at medium-to-high strain levels. This discrepancy should be considered when using empirical models in the absence of experimental data for engineering applications. The results in this study are significant for offshore wind earthquake engineering and structural optimization. Full article
(This article belongs to the Special Issue Seepage Problems in Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 3658 KiB  
Article
Hydrodynamic Analysis of a NREL 5 MW Monopile Wind Turbine Under the Effect of the 30 October 2020 İzmir-Samos Tsunami
by Barış Namlı, Cihan Bayındır and Fatih Ozaydin
J. Mar. Sci. Eng. 2025, 13(5), 857; https://doi.org/10.3390/jmse13050857 - 25 Apr 2025
Viewed by 618
Abstract
Although offshore wind turbines are essential for renewable energy, their construction and design are quite complex when environmental factors are taken into account. It is quite difficult to examine their behavior under rare but dangerous natural events such as tsunamis, which bring great [...] Read more.
Although offshore wind turbines are essential for renewable energy, their construction and design are quite complex when environmental factors are taken into account. It is quite difficult to examine their behavior under rare but dangerous natural events such as tsunamis, which bring great danger to their structural safety and serviceability. With this motivation, this study investigates the effects of tsunami and wind on an offshore National Renewable Energy Laboratory (NREL) 5 MW wind turbine both hydrodynamically and aerodynamically. First, the NREL 5 MW monopile offshore wind turbine model was parameterized and the aerodynamic properties of the rotor region at different wind speeds were investigated using the blade element momentum (BEM) approach. The tsunami data of the İzmir-Samos (Aegean) tsunami on 30 October 2020 were reconstructed using the data acquired from the UNESCO data portal at Bodrum station. The obtained tsunami wave elevation dataset was imported to the QBlade software to investigate the hydrodynamic and aerodynamic characteristics of the NREL 5 MW monopile offshore under the tsunami effect. It was observed that the hydrodynamics significantly changed as a result of the tsunami effect. The total Morison wave force and the hydrodynamic inertia forces significantly changed due to the tsunami–monopile interaction, showing similar cyclic behavior with amplified forces. An increase in the horizontal force levels to values greater than twofold of the pre-event can be observed due to the İzmir-Samos tsunami with a waveheight of 7 cm at the Bodrum station. However, no significant change was observed on the rated power time series, aerodynamics, and bending moments on the NREL 5 MW monopile offshore wind turbine due to this tsunami. Full article
Show Figures

Figure 1

17 pages, 2773 KiB  
Article
Experimental Study on Nonlinear Vibrations of Flexible Monopile-Foundation Offshore Wind Turbines in Regular Waves
by Songxiong Wu, Hao Zhang, Ziwen Chen, Xiaoting Liu, Long Zheng, Mengjiao Du, Rongfu Li and Donghai Li
Water 2025, 17(8), 1176; https://doi.org/10.3390/w17081176 - 15 Apr 2025
Cited by 2 | Viewed by 2464
Abstract
The offshore wind industry is increasingly moving towards larger turbines. The growth in rotor size and aerodynamic loads necessitates larger monopile foundations. This increased foundation height results in a monopile that exhibits pronounced slenderness and flexibility. Consequently, the fixed-bottom monopile becomes more susceptible [...] Read more.
The offshore wind industry is increasingly moving towards larger turbines. The growth in rotor size and aerodynamic loads necessitates larger monopile foundations. This increased foundation height results in a monopile that exhibits pronounced slenderness and flexibility. Consequently, the fixed-bottom monopile becomes more susceptible to wave loads, which can induce nonlinear vibrations in complex wave environments. Extensive physical model experiments have been conducted in a wave tank to study the nonlinear vibration characteristics of a fixed-bottom monopile under regular wave action. The experimental results demonstrate that when the wave period is close to twice the resonant period of the model, the vibration response of the monopile increases significantly. Under these conditions, a second harmonic resonance occurs, with the amplitude of the second harmonic component being more than twice that of the fundamental (wave frequency) component. Additionally, the maximum run-up around the model exhibits a W-shaped distribution in the circumferential direction, with the highest run-up observed on the incident wave side. The wave pressure at the water surface is the greatest and increases with wave height, while the pressure below the water surface gradually increases with the measurement height. Full article
(This article belongs to the Special Issue Recent Advances in Offshore Hydrodynamics)
Show Figures

Figure 1

36 pages, 8652 KiB  
Article
Investigation of Directionality Effect for 10 MW Monopile Offshore Wind Turbine Excited by Wind, Wave, and Earthquakes
by Renqiang Xi, Qingxuan Zhou, Yongqing Lai and Wanli Yu
J. Mar. Sci. Eng. 2025, 13(4), 727; https://doi.org/10.3390/jmse13040727 - 5 Apr 2025
Viewed by 583
Abstract
Offshore wind turbines (OWTs) exhibit inherent directional variations in inertia, stiffness, and damping properties. This study examines the directionality effect of a 10 MW monopile-supported OWT using an integrated rotor-nacelle assembly (RNA) and support structure model. Through combined theoretical analysis and numerical simulations, [...] Read more.
Offshore wind turbines (OWTs) exhibit inherent directional variations in inertia, stiffness, and damping properties. This study examines the directionality effect of a 10 MW monopile-supported OWT using an integrated rotor-nacelle assembly (RNA) and support structure model. Through combined theoretical analysis and numerical simulations, this paper systematically investigates the following: (1) the anisotropic characteristics of RNA rotational inertia and blade stiffness, (2) the natural frequency and aerodynamic damping properties of the system, and (3) the directional mechanisms governing seismic responses of MOWTs during parked and running states. The key findings reveal substantial structural anisotropies. The second-order natural frequencies display a 15% disparity between fore–aft (1.43 Hz) and side–side (1.24 Hz) tower modes. The blade frequencies show over 50% differences between flap-wise (0.60 Hz/1.69 Hz) and edge-wise (0.91 Hz/2.71 Hz) modes in first-/second-order vibrations. Moreover, the aerodynamic damping ratios show marked directional contrast, with first-mode fore–aft damping (8%) exceeding side–side values (1.11%) by a factor of 7.2. Consequently, the seismic input directionality induces peak yaw-bearing bending moment variations of 38% (running condition) and 73% (parked condition). The directional effects in parked OWTs are attributed to RNA inertia anisotropy and blade stiffness disparities, while the running condition demonstrates combined influences from inherent system parameters (inertia, stiffness, aerodynamic damping) and wind–wave environmental loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop