Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = monogenism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3734 KiB  
Article
FMR1 Methylation Pattern and Repeat Expansion Screening in a Cohort of Boys with Autism Spectrum Disorders: Correlation of Genetic Findings with Clinical Presentations
by Maria Dobre, Gisela Gaina, Alina Erbescu, Adelina Glangher, Florentina Ionela Linca, Doina Ioana, Emilia Maria Severin, Florina Rad, Mihaela Catrinel Iliescu, Sorina Mihaela Papuc, Mihail Eugen Hinescu, Aurora Arghir and Magdalena Budișteanu
Genes 2025, 16(8), 903; https://doi.org/10.3390/genes16080903 - 29 Jul 2025
Viewed by 176
Abstract
Background/Objectives: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with early onset of clinical manifestations. ASD etiology is highly heterogeneous, with genetic factors being strong determinants of the behavioral problems and neurodevelopmental deficits. Fragile X syndrome (FXS) (OMIM #300624), caused by the transcriptional silencing [...] Read more.
Background/Objectives: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with early onset of clinical manifestations. ASD etiology is highly heterogeneous, with genetic factors being strong determinants of the behavioral problems and neurodevelopmental deficits. Fragile X syndrome (FXS) (OMIM #300624), caused by the transcriptional silencing of the FMR1 gene, represents the most common monogenic cause of autism. Our study included 226 boys with a diagnosis of ASD, for a systematic screening of genetic and epigenetic defects in the FMR1 gene promoter in a Romanian pediatric cohort. Methods: The methods, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and triplet-primed PCR (TP-PCR)/melt curve analysis (MCA), were chosen for their ability to detect the methylation anomalies (the former) as well as repeat expansions in the FMR1 promoter (the latter). Results: Both methods used in our screening generated concordant results, detecting FMR1 full mutation in 4 out of 226 patients (~1.8%). This yield is similar to data obtained in larger studies. Three out of four boys presented the typical clinical features, in correlation with genetic findings. Conclusions: The combined use of MS-MLPA and TP-PCR/MCA-based assay was, in our experience, useful to fully describe the genetic defects responsible for FXS. A significant variability of clinical presentations was observed in our small group of children with FXS, from mild to severe intellectual disability and from atypical to characteristic dysmorphic features, as well as various behavioral problems. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 866 KiB  
Article
Integrating Polygenic Scores into Multifactorial Breast Cancer Risk Assessment: Insights from the First Year of Clinical Implementation in Western Austria
by Lukas Forer, Gunda Schwaninger, Kathrin Taxer, Florian Schnitzer, Daniel Egle, Johannes Zschocke and Simon Schnaiter
Cancers 2025, 17(15), 2472; https://doi.org/10.3390/cancers17152472 - 26 Jul 2025
Viewed by 289
Abstract
Background/Objectives: The implementation of polygenic scores (PGSs) and multifactorial risk assessments (MFRAs) has the potential to enhance breast cancer risk stratification, particularly in carriers of moderate-penetrance pathogenic variants (PVs), whose risk profiles often remain unclear if testing is limited to monogenic risk factors. [...] Read more.
Background/Objectives: The implementation of polygenic scores (PGSs) and multifactorial risk assessments (MFRAs) has the potential to enhance breast cancer risk stratification, particularly in carriers of moderate-penetrance pathogenic variants (PVs), whose risk profiles often remain unclear if testing is limited to monogenic risk factors. Methods: To enhance breast cancer risk stratification, we included the BCAC313 polygenic score, together with MFRA, for carriers of moderate-penetrance pathogenic variants (PVs) during routine diagnostics and assessed its effect on the classification of patients’ risk categories in a real-world cohort at our center in its first year of implementation. Seventeen carriers with PVs in moderate-risk breast cancer genes were included in this study. Thirteen of them qualified for analysis for a full MFRA, including PGS, according to ancestry estimation and clinical criteria. The MFRA was performed using the CanRisk tool, which incorporates clinical, lifestyle, familial, and genetic data, including the BCAC313 score. Results: PGS z-scores were significantly higher in breast cancer patients compared to the unaffected control cohort (p = 0.016). The MFRA, including PGS, increased risk estimates for contralateral breast cancer in seven of eight patients with breast cancer and for primary breast cancer in three of five healthy carriers, compared to the risk conferred by the MFRA and moderate-penetrance pathogenic variant alone. Risk estimates varied widely, demonstrating the value of MFRA in personalized care. In five cases, one with a CHEK2-PV and four with an ATM-PV, the modified risk assessment contributed to the surgical decision for a prophylactic mastectomy. Conclusions: The MFRA, including PGS, provides the clinically meaningful refinement of breast cancer risk estimates in individuals with moderate-risk PVs. Personalized risk predictions can inform clinical management and support decision-making, which highlights the utility of this approach in clinical practice. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Austria)
Show Figures

Figure 1

24 pages, 7845 KiB  
Article
Metabolomics and Lipidomics Explore Phenotype-Specific Molecular Signatures for Phenylketonuria
by Buket Yurteri Şahiner, Ali Dursun and Basri Gülbakan
Int. J. Mol. Sci. 2025, 26(15), 7171; https://doi.org/10.3390/ijms26157171 - 25 Jul 2025
Viewed by 259
Abstract
Phenylketonuria (PKU) is a monogenic disorder caused by pathogenic variants in the gene encoding phenylalanine hydroxylase (PAH), an enzyme essential for phenylalanine (Phe) metabolism. It is characterized by elevated Phe levels, leading to a wide spectrum of clinical phenotypes. These phenotypes are characterized [...] Read more.
Phenylketonuria (PKU) is a monogenic disorder caused by pathogenic variants in the gene encoding phenylalanine hydroxylase (PAH), an enzyme essential for phenylalanine (Phe) metabolism. It is characterized by elevated Phe levels, leading to a wide spectrum of clinical phenotypes. These phenotypes are characterized by varying Phe accumulation, dietary tolerance, and heterogeneous cognitive and neurological outcomes, but current monitoring methods, focused primarily on blood Phe levels, are limited in capturing this variability. In this study, we applied mass spectrometry-based advanced quantitative amino acid analyses, untargeted metabolomics, and lipidomics analyses. We examined the plasma metabolite and lipid profiles in a total of 73 individuals with various PKU phenotypes against healthy controls to see how the metabolome and lipidome of the patients change in different phenotypes. We investigated whether novel markers could be associated with metabolic control status. By elucidating the metabolic and lipid fingerprints of PKU’s phenotypic variability, our findings may provide novel insights that could inform the refinement of dietary and pharmacological interventions, thereby supporting the development of more personalized treatment strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 2436 KiB  
Review
An Update and Perspectives on Mitochondrial Membrane Protein-Associated Neurodegeneration and C19orf12 Research
by Barbara Gnutti, Arcangela Iuso, Chloé Angelini and Dario Finazzi
Brain Sci. 2025, 15(8), 777; https://doi.org/10.3390/brainsci15080777 - 22 Jul 2025
Viewed by 389
Abstract
Mitochondrial Membrane Protein-Associated Neurodegeneration is a rare monogenic form of neurodegeneration characterized by iron accumulation in the brain. It is due to variants in the orphan gene C19orf12. Since its definition in 2011, many scientific groups have investigated the clinical features and [...] Read more.
Mitochondrial Membrane Protein-Associated Neurodegeneration is a rare monogenic form of neurodegeneration characterized by iron accumulation in the brain. It is due to variants in the orphan gene C19orf12. Since its definition in 2011, many scientific groups have investigated the clinical features and molecular underpinnings of the disorder. In this review, we summarize the main points of progress in this field, trying to highlight the issues that need further attention and efforts to speed up the diagnostic path, improve the existing treatment options, and define targeted therapies. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 704 KiB  
Review
From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies
by Ana Belen Garcia-Ruano, Elena Sola-Garcia, Maria Martin-Istillarty and Jose Angel Urbano-Moral
J. Cardiovasc. Dev. Dis. 2025, 12(7), 274; https://doi.org/10.3390/jcdd12070274 - 17 Jul 2025
Viewed by 1422
Abstract
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests [...] Read more.
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests that this model does not fully capture the full spectrum and complexity of disease expression. Many patients do not harbor identifiable pathogenic variants, while others carrying well-known disease-causing variants remain unaffected. This highlights the role of incomplete penetrance, likely modulated by additional genetic modifiers. Recent advances in genomics have revealed a broader view of the genetic basis of cardiomyopathies, introducing new players such as common genetic variants identified as risk alleles, as well as intermediate-effect variants. This continuum of genetic risk, reflecting an overall genetic influence, interacts further with environmental and lifestyle factors, likely contributing together to the observed variability in clinical presentation. This model offers a more realistic framework for understanding genetic inheritance and helps provide a clearer picture of disease expression and penetrance. This review explores the evolving genetic architecture of cardiomyopathies, spanning from a monogenic foundation to intermediate-risk variants and complex polygenic contribution. Recognizing this continuum is essential for enhancing diagnostic accuracy, guiding family screening strategies, and enabling personalized patient management. Full article
(This article belongs to the Section Genetics)
Show Figures

Figure 1

17 pages, 629 KiB  
Review
Epidemiological Surveillance of Genetically Determined Microcephaly in Latin America: A Narrative Review
by Melissa Daniella Gonzalez-Fernandez, Karina Jiménez-Gil, Linda Garcés-Ramírez, Alejandro Martínez-Juárez, Elsa Romelia Moreno-Verduzco, Juan Mario Solís-Paredes, Javier Pérez-Durán, Johnatan Torres-Torres and Irma Eloisa Monroy-Muñoz
Epidemiologia 2025, 6(3), 37; https://doi.org/10.3390/epidemiologia6030037 - 14 Jul 2025
Viewed by 385
Abstract
Background/Objectives: Congenital microcephaly is a clinical manifestation with a heterogeneous etiology, and its epidemiological surveillance relies on the systematic identification of cases and investigation of their underlying causes to inform preventive strategies and improve prognostic assessments. In Latin America, despite the existence of [...] Read more.
Background/Objectives: Congenital microcephaly is a clinical manifestation with a heterogeneous etiology, and its epidemiological surveillance relies on the systematic identification of cases and investigation of their underlying causes to inform preventive strategies and improve prognostic assessments. In Latin America, despite the existence of congenital anomaly reporting programs since 1967, the surveillance of microcephaly only gained substantial attention following the Zika virus (ZIKV) epidemic in 2015. Since then, efforts have predominantly concentrated on cases of infectious origin, often at the expense of recognizing endogenous etiologies, particularly those of genetic nature. This review aims to examine the role of genetic alterations in microcephaly pathogenesis and evaluates the limitations of current surveillance systems. Methods: A literature review centered on syndromic and non-syndromic genetic etiologies, alongside an analysis of Latin American surveillance frameworks (ECLAMC, RyVEMCE, ICBDSR, ReLAMC) was performed. Results: The findings reveal improved case detection and increased reported prevalence; however, the proportion of genetically attributed cases has remained stable. No systematic studies were found identifying the most common genetic causes; instead, genetic investigations were limited to isolated cases with a family history. Conclusions: While epidemiological surveillance systems in Latin America have advanced in the reporting of congenital microcephaly cases, substantial gaps remain in case ascertainment and etiological investigation, particularly concerning genetic contributions Full article
(This article belongs to the Section Molecular Epidemiology)
Show Figures

Figure 1

12 pages, 975 KiB  
Review
Major Genes for Powdery Mildew Resistance in Research and Breeding of Barley: A Few Brief Narratives and Recommendations
by Antonín Dreiseitl
Plants 2025, 14(14), 2091; https://doi.org/10.3390/plants14142091 - 8 Jul 2025
Viewed by 378
Abstract
Genetic resistance is a sustainable way to protect crops from diseases, and breeding resistant varieties is a key objective. However, diseases are caused by pathogens with different life cycles, and the importance of individual evolutionary forces plays a key role in the adaptation [...] Read more.
Genetic resistance is a sustainable way to protect crops from diseases, and breeding resistant varieties is a key objective. However, diseases are caused by pathogens with different life cycles, and the importance of individual evolutionary forces plays a key role in the adaptation of their populations. Therefore, strategies for the use of genetic resistance resources can vary depending on the plant pathosystem. Numerous major genes confer hypersensitive resistance to powdery mildew—one of the most common diseases in barley—but these genes conform to the gene-for-gene system of an extremely diverse and adaptable pathogen. When such resistance genes are transferred into commercial varieties, their efficiency in the field is soon overcome and replacement with newly developed resistant varieties can be slow. Hence, specific resistance genes should not be used in barley breeding programs. Only one monogenic, non-hypersensitive, non-specific and durable major resistance Mlo is known. This predominates in Central and Western European spring varieties and should be widely adopted by barley breeders elsewhere and in other crops where such type of resistance is found. In this paper, the relevant aspects involved in breeding barley resistant to powdery mildew are discussed, with conclusions supported by practical examples. Additionally, future directions for barley improvement are proposed. Full article
(This article belongs to the Special Issue The Genetic Improvement of Barley)
Show Figures

Figure 1

23 pages, 2352 KiB  
Review
Mesenchymal Stem Cell-Derived Extracellular Vesicles: Seeking into Cell-Free Therapies for Bone-Affected Lysosomal Storage Disorders
by Andrés Felipe Leal, Harry Pachajoa and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(13), 6448; https://doi.org/10.3390/ijms26136448 - 4 Jul 2025
Viewed by 397
Abstract
Lysosomal storage disorders (LSDs) constitute a group of monogenic systemic diseases resulting from deficiencies in specific lysosomal enzymes that cause the intralysosomal accumulation of non- or partially degraded substrates, leading to lysosomal dysfunction. In some cases of LSDs, the bone is more severely [...] Read more.
Lysosomal storage disorders (LSDs) constitute a group of monogenic systemic diseases resulting from deficiencies in specific lysosomal enzymes that cause the intralysosomal accumulation of non- or partially degraded substrates, leading to lysosomal dysfunction. In some cases of LSDs, the bone is more severely affected, thus producing skeletal manifestations in patients. Current therapies, such as enzyme replacement therapy (ERT) and gene therapy (GT), show limited efficacy in correcting skeletal abnormalities. Increasing evidence suggests that microenvironmental disturbances also contribute significantly to disease pathogenesis. Therefore, therapeutic strategies targeting lysosomal dysfunction and microenvironmental dysregulation are needed. Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are emerging as promising candidates in regenerative medicine due to their immunomodulatory, pro-regenerative, and paracrine properties. MSC-EVs have shown potential to modulate the microenvironment and favor tissue repair in bone-related disorders such as osteoarthritis and osteoporosis. Interestingly, MSC-EVs can be engineered to reach the bone and carry therapeutics, including ERT- and GT-related molecules, enabling targeted delivery to hard-to-reach bone regions. This review describes the main features of MSC-EVs and discusses the therapeutic potential of MSC-EVs as a potential cell-free strategy for bone-affected LSDs. Full article
Show Figures

Figure 1

16 pages, 560 KiB  
Review
Comprehensive Review: Mavacamten and Aficamten in Hypertrophic Cardiomyopathy
by Helin Savsin and Tomasz Tokarek
Biomedicines 2025, 13(7), 1619; https://doi.org/10.3390/biomedicines13071619 - 1 Jul 2025
Viewed by 845
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease, with an estimated prevalence of 1:600 in the general population, and is associated with significant morbidity. HCM is characterized by left ventricular hypertrophy and interventricular septal thickening due to sarcomere protein gene mutations. [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease, with an estimated prevalence of 1:600 in the general population, and is associated with significant morbidity. HCM is characterized by left ventricular hypertrophy and interventricular septal thickening due to sarcomere protein gene mutations. The recent emergence of cardiac myosin inhibitors (CMIs), specifically mavacamten and aficamten, has introduced a paradigm shift in HCM management by directly targeting the hypercontractile state of the disease. This review comprehensively discusses the molecular mechanisms of mavacamten and aficamten, highlighting their biochemical similarities and differences from available data. It evaluates their reported efficacy in completed clinical trials, such as reducing left ventricular outflow tract (LVOT) obstruction, improving functional capacity, and enhancing quality of life in HCM. It further provides insight and updates to ongoing trials of both CMIs. Finally, it compares and elaborates on the safety profiles of mavacamten and aficamten, discussing their favorable safety profiles shown in completed studies. In current clinical practice, only mavacamten is approved for use, and clinical insights concerning both CMIs are limited, but encouraging. In summary, cardiac myosin inhibitors are a promising class of disease-modifying drugs for HCM with proven short-term safety and efficacy, but limited data are available to fully determine their long-term effects and efficacy in diverse patient populations. Ongoing research is necessary to further explore and define their role in HCM management. Full article
(This article belongs to the Special Issue Progress in Cardiovascular Pharmacology)
Show Figures

Figure 1

13 pages, 472 KiB  
Article
Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity
by Ji Yoon Han
Genes 2025, 16(7), 767; https://doi.org/10.3390/genes16070767 - 29 Jun 2025
Viewed by 323
Abstract
Background: Developmental delay and intellectual disability (DD/ID) are frequently accompanied by epilepsy, and growing evidence implicates variants in voltage-gated calcium channel genes in their pathogenesis. This study aimed to investigate the association of polymorphisms in CACNA1A, CACNA1C, and CACNA1H with DD/ID [...] Read more.
Background: Developmental delay and intellectual disability (DD/ID) are frequently accompanied by epilepsy, and growing evidence implicates variants in voltage-gated calcium channel genes in their pathogenesis. This study aimed to investigate the association of polymorphisms in CACNA1A, CACNA1C, and CACNA1H with DD/ID and epilepsy comorbidity in Korean children. Methods: We retrospectively analyzed 141 pediatric patients diagnosed with DD/ID who underwent whole-exome sequencing (WES) and were not found to have pathogenic monogenic variants. Nine single-nucleotide polymorphisms (SNPs) across CACNA1A, CACNA1C, and CACNA1H were selected based on functional annotation scores and prior literature. Genotype data were extracted from WES variant files, and allele and genotype frequencies were compared with control data from the gnomAD East Asian population and the Korean Reference Genome Database (KRGDB). Subgroup analyses were performed according to epilepsy comorbidity. Results: The CACNA1A rs16023 variant showed a significantly higher B allele frequency in DD/ID patients than in both control datasets and was also associated with epilepsy comorbidity. Genotype distribution analysis revealed that the BB genotype of rs16023 was more frequent in patients with epilepsy. Conclusions: The CACNA1A rs16023 variant may contribute to genetic susceptibility to DD/ID and epilepsy in Korean children, potentially through regulatory mechanisms. These findings support the relevance of calcium channel genes in neurodevelopmental disorders and highlight the importance of integrating functional annotation in variant prioritization. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 721 KiB  
Article
Identification of Monogenic Causes of Arterial Ischemic Stroke in Children with Arteriopathies by Next-Generation Sequencing
by Anna Balcerzyk-Matić, Ilona Kopyta, Celina Kruszniewska-Rajs, Paweł Niemiec and Joanna Gola
Int. J. Mol. Sci. 2025, 26(13), 6228; https://doi.org/10.3390/ijms26136228 - 27 Jun 2025
Viewed by 324
Abstract
The leading causes of pediatric arterial ischemic stroke (PAIS) are arteriopathies, which refer to pathologies of the arterial walls in the brain. Since traditional risk factors for cardiovascular diseases in children play a smaller role than in adults, it can be supposed that [...] Read more.
The leading causes of pediatric arterial ischemic stroke (PAIS) are arteriopathies, which refer to pathologies of the arterial walls in the brain. Since traditional risk factors for cardiovascular diseases in children play a smaller role than in adults, it can be supposed that genetic factors may be of particular importance in this age group. Therefore, this study aimed to identify mutations affecting the formation of vascular wall pathologies, which can subsequently lead to ischemic stroke. The study used a database of 92 Caucasian children diagnosed with ischemic stroke. From this group, 25 children with arteriopathies were selected. The study had an exploratory and descriptive design, with the aim of characterizing rare genetic variants in a selected cohort, without attempting formal statistical association testing. The sequencing was performed using the Illumina NextSeq 550 platform. A panel of 161 genes known to be associated with stroke or arteriopathies was selected for further analysis. We identified 10 pathogenic or likely pathogenic mutations in 15 patients. Among these, three are likely monogenic causes of stroke (ELN, SCN5A, and VHL genes), two are considered risk factors (FV and ADAMTS13), two have conflicting interpretations (ACAD9 and ENG), and three are most likely benign (CBS, PMM2, and PKD1). The frequency of genetic variants underlying ischemic stroke or acting as risk factors for the disease in the studied group is significantly higher than the estimated frequency of monogenic forms of stroke in young adults and higher than in the general population. NGS testing is worth considering, especially in patients who exhibit certain symptoms that may suggest the presence of mutations. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 549 KiB  
Review
Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights
by Roberto Paparella, Arianna Bei, Irene Bernabei, Francesca Tarani, Marcello Niceta, Ida Pucarelli and Luigi Tarani
Children 2025, 12(7), 855; https://doi.org/10.3390/children12070855 - 27 Jun 2025
Viewed by 487
Abstract
Idiopathic short stature (ISS) represents one of the most frequent yet enigmatic conditions in pediatric endocrinology. Traditionally defined by auxological parameters in the absence of identifiable causes, ISS has long served as a diagnosis of exclusion. However, with the advent of next-generation sequencing, [...] Read more.
Idiopathic short stature (ISS) represents one of the most frequent yet enigmatic conditions in pediatric endocrinology. Traditionally defined by auxological parameters in the absence of identifiable causes, ISS has long served as a diagnosis of exclusion. However, with the advent of next-generation sequencing, our understanding of the etiological landscape has significantly evolved. Recent studies have revealed that many children previously labeled as idiopathic actually harbor monogenic variants in genes related to the growth hormone–insulin-like growth factor axis, extracellular matrix components, or growth plate signaling pathways. This review integrates auxological assessment with current knowledge on molecular diagnostics to propose a more accurate and individualized approach to short stature. We examine emerging genotype–phenotype correlations, criteria for selecting candidates for genetic testing, and implications for recombinant human growth hormone therapy. Additionally, we advocate for a shift in clinical mindset: from a descriptive to a biologically grounded framework. ISS should be regarded as a transitional label pending further endocrine and genetic clarification. Recognizing this paradigm shift will improve diagnostic accuracy, personalize treatment strategies, and ultimately enhance care for children with growth failure in the genomic era. Full article
(This article belongs to the Special Issue Pediatric Growth and Skeletal Disorders)
Show Figures

Figure 1

15 pages, 1498 KiB  
Article
Decoding Non-Coding RNA Regulators in DITRA: From Genomic Insights to Potential Biomarkers and Therapeutic Targets
by Sofia Spanou, Athena Andreou, Katerina Gioti, Dimitrios Chaniotis, Apostolos Beloukas, Louis Papageorgiou and Trias Thireou
Genes 2025, 16(7), 753; https://doi.org/10.3390/genes16070753 - 27 Jun 2025
Viewed by 548
Abstract
Background: Deficiency of IL-36 Receptor Antagonist (DITRA) is a rare monogenic autoinflammatory disease, characterized by dysregulation of IL-36 signaling and phenotypically classified as a subtype of generalized pustular psoriasis. Objectives: This study aimed to explore the role of potentially coding and non-coding RNAs [...] Read more.
Background: Deficiency of IL-36 Receptor Antagonist (DITRA) is a rare monogenic autoinflammatory disease, characterized by dysregulation of IL-36 signaling and phenotypically classified as a subtype of generalized pustular psoriasis. Objectives: This study aimed to explore the role of potentially coding and non-coding RNAs (ncRNAs) in the IL36RN interactome to identify putative pathogenic mechanisms, biomarkers, and therapeutic targets for DITRA. Methods: A systems biology approach was applied using the STRING database to construct the IL36RN protein–protein interaction network. Key ncRNA interactions were identified using RNAInter. The networks were visualized and analyzed with Cytoscape v3 and the CytoHubba plugin to identify central nodes and interaction hubs. Pathway enrichment analysis was then performed to determine the biological relevance of candidate ncRNAs and genes. Results: Analysis identified thirty-eight ncRNAs interacting with the IL36RN network, including six lncRNAs and thirty-two miRNAs. Of these, thirty-three were associated with key DITRA-related signaling pathways, while five remain to be validated. Additionally, seven protein-coding genes were highlighted, with three (TINCR, PLEKHA1, and HNF4A) directly implicated in biological pathways related to DITRA. Many of the identified ncRNAs have prior associations with immune-mediated diseases, including psoriasis, supporting their potential relevance in DITRA pathogenesis. Conclusions: This study provides novel insights into the ncRNA-mediated regulation of IL36RN and its network in the context of DITRA. The findings support the potential utility of specific ncRNAs and genes, such as TINCR, PLEKHA1, and HNF4A, as key genomic elements warrant further functional characterization to confirm their mechanistic roles and may inform biomarker discovery and targeted therapeutic development in DITRA. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

20 pages, 2524 KiB  
Review
Skin Signals: Exploring the Intersection of Cancer Predisposition Syndromes and Dermatological Manifestations
by Ilse Gabriela Ochoa-Mellado, Alejandra Padua-Bracho, Paula Cabrera-Galeana and Rosa María Alvarez-Gómez
Int. J. Mol. Sci. 2025, 26(13), 6140; https://doi.org/10.3390/ijms26136140 - 26 Jun 2025
Viewed by 487
Abstract
Cutaneous manifestations can serve as early and sometimes the first clinical indicators in various hereditary cancer predisposition syndromes. This review provides a comprehensive overview of the dermatological signs associated with these syndromes, aiming to facilitate their recognition in clinical practice. Hereditary Breast and [...] Read more.
Cutaneous manifestations can serve as early and sometimes the first clinical indicators in various hereditary cancer predisposition syndromes. This review provides a comprehensive overview of the dermatological signs associated with these syndromes, aiming to facilitate their recognition in clinical practice. Hereditary Breast and Ovarian Cancer syndrome is notably linked to an increased risk of melanoma. BAP1 tumor predisposition syndrome is characterized by BAP1-inactivated melanocytic tumors. Muir–Torre syndrome, a variant of Lynch syndrome, presents with distinctive cutaneous neoplasms such as sebaceous carcinomas, sebaceous adenomas, and keratoacanthomas. PTEN hamartoma tumor syndrome commonly features hamartomatous growths, trichilemmomas, acral keratoses, oral papillomas, and genital lentiginosis. Gorlin syndrome is marked by basal cell carcinomas and palmoplantar pits, while Peutz–Jeghers syndrome is identified by mucocutaneous pigmentation. In familial adenomatous polyposis, the cutaneous findings include epidermoid cysts, fibromas, desmoid tumors, and lipomas. Additionally, we examined monogenic disorders associated with cancer risk and skin involvement, such as xeroderma pigmentosum, neurofibromatosis type 1, familial atypical multiple-mole melanoma syndrome, and Fanconi anemia. The early recognition of these dermatologic features is essential for a timely diagnosis and the implementation of appropriate surveillance strategies in individuals with hereditary cancer syndromes. Full article
Show Figures

Figure 1

26 pages, 2323 KiB  
Review
Advances in Understanding Intestinal Homeostasis: Lessons from Inflammatory Bowel Disease and Monogenic Intestinal Disorder Pathogenesis
by Céline Petit, Aurore Rozières, Gilles Boschetti, Christophe Viret, Mathias Faure, Stéphane Nancey and Rémi Duclaux-Loras
Int. J. Mol. Sci. 2025, 26(13), 6133; https://doi.org/10.3390/ijms26136133 - 26 Jun 2025
Viewed by 449
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions of the gastrointestinal tract that are multifactorial in nature. The pathophysiology involves interactions between the host immune system and environmental factors, including the gut microbiota, in genetically predisposed individuals. Advances in understanding these interactions have [...] Read more.
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions of the gastrointestinal tract that are multifactorial in nature. The pathophysiology involves interactions between the host immune system and environmental factors, including the gut microbiota, in genetically predisposed individuals. Advances in understanding these interactions have led to the development of novel therapeutic targets, ranging from anti-TNFα to more recent anti-interleukin 23 treatments. However, some patients still experience resistance to these therapies. Monogenic intestinal diseases (MIDs), which present with more severe symptoms than IBD and typically begin early in life, result from significant disruptions of intestinal homeostasis. MIDs are driven by mutations in a single gene, offering a unique opportunity to explore the mechanisms underlying intestinal homeostasis in health. In this review, we provide a comprehensive overview of the mechanisms of intestinal homeostasis by examining the cellular and molecular features of IBD and MID pathophysiologies. Full article
Show Figures

Figure 1

Back to TopTop