Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (169)

Search Parameters:
Keywords = monocyte chemoattractant protein 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1358 KB  
Review
Beyond Viral Assembly: The Emerging Role of HIV-1 p17 in Vascular Inflammation and Endothelial Dysfunction
by Ylenia Pastorello, Nicoleta Arnaut, Mihaela Straistă, Francesca Caccuri, Arnaldo Caruso and Mark Slevin
Int. J. Mol. Sci. 2025, 26(24), 11949; https://doi.org/10.3390/ijms262411949 - 11 Dec 2025
Viewed by 291
Abstract
p17, the human immunodeficiency virus type 1 (HIV-1) matrix protein traditionally associated with viral assembly, has been recently investigated for its extracellular functions linked to vascular damage. This review examines the molecular and pathogenic signatures by which p17 and its variants (vp17s) contribute [...] Read more.
p17, the human immunodeficiency virus type 1 (HIV-1) matrix protein traditionally associated with viral assembly, has been recently investigated for its extracellular functions linked to vascular damage. This review examines the molecular and pathogenic signatures by which p17 and its variants (vp17s) contribute to endothelial activation, aberrant angiogenesis, and vascular inflammation, highlighting their relevance even under effective antiretroviral therapy (ART). Specifically, p17 exerts chemokine-like activities by binding to chemokine (C-X-C motif) receptor-1 and 2 (CXCR-1/2) on endothelial cells (ECs). This interaction triggers key signaling cascades, including the protein kinase B (Akt)-dependent extracellular signal-regulated kinase (ERK) pathway and endothelin-1/endothelin receptor B axis, driving EC motility, capillary formation, and lymphangiogenesis. Variants such as S75X demonstrate enhanced lymphangiogenic potency, associating them with tumorigenic processes involved in non-Hodgkin lymphoma (NHL) pathogenesis. Importantly, p17 promotes endothelial von Willebrand factor (vWF) storage and secretion, implicating a pro-coagulant state that may trigger the increased thromboembolic risks observed in HIV-positive patients. Furthermore, p17 crosses the blood–brain barrier (BBB) via CXCR-2-mediated pathways, contributing to neuroinflammation by activating microglia and astrocytes and amplifying monocyte chemoattractant protein-1 (MCP-1) levels, therefore playing a critical role in the development of HIV-associated neurocognitive disorders. Hence, the elaboration of potential therapeutic strategies finalized at inhibiting p17/vp17s’ interaction with their receptors could complement ART by addressing HIV-related neurovascular morbidity. Full article
(This article belongs to the Special Issue Advances in HIV Research: Molecular Basis and Potential Therapies)
Show Figures

Figure 1

13 pages, 655 KB  
Article
Study of Effects of Topical Fluorometholone on Tear MCP-1 in Eyes Undergoing Trabeculectomy: Effect on Early Trabeculectomy Outcomes in Asian Glaucoma Patients
by Olivia Shimin Huang, Jackie Jia Lin Sim, Hla Myint Htoon, Annabel Chee Yen Chew, Rachel Shujuan Chong, Rahat Husain, Shamira Perera and Tina T. Wong
J. Clin. Med. 2025, 14(22), 8057; https://doi.org/10.3390/jcm14228057 - 13 Nov 2025
Cited by 1 | Viewed by 519
Abstract
Objectives: We aimed to determine if a 2-week pre-operative course of fluorometholone (FML) eyedrops in chronically medicated glaucoma patients reduces the levels of the pro-inflammatory cytokine Monocyte Chemoattractant Protein 1 (MCP-1) and improves early post-operative outcomes after trabeculectomy or phaco-trabeculectomy. Methods: We conducted [...] Read more.
Objectives: We aimed to determine if a 2-week pre-operative course of fluorometholone (FML) eyedrops in chronically medicated glaucoma patients reduces the levels of the pro-inflammatory cytokine Monocyte Chemoattractant Protein 1 (MCP-1) and improves early post-operative outcomes after trabeculectomy or phaco-trabeculectomy. Methods: We conducted a single-center, unmasked, prospective pilot interventional case series of 36 patients with glaucoma who received a 2-week course of FML eyedrops prior to undergoing trabeculectomy. A multiplex bead assay was used to quantify the presence of MCP-1 levels in tear samples before and after the use of FML eyedrops, and 307 eyes without treatment with topical FML served as historical controls. Clinical outcome measures of early post-operative outcomes included IOP and additional post-operative interventions (i.e., needling, glaucoma medications, and surgery) required to achieve the desired IOP at 6 months. Results: Out of 36 patients who received FML, 19 patients had a low MCP-1 level (<250 pg/mL/mg) at baseline, which did not significantly change after using FML, and were excluded from analysis. Of the 17 remaining patients, propensity score-matched analysis was conducted to compare them with 17 patients who did not receive FML, matching for the variables of age, gender, ethnicity, diagnosis, longest glaucoma medication duration, and surgery type. Patients with FML treatment had lower odds of requiring any post-operative intervention (including needling, surgery, or IOP-lowering medications) (OR 0.22, CI 0.049–0.95, p = 0.042) compared to patients who did not have pre-operative FML treatment. Conclusions: In patients with higher levels of MCP-1 pre-operatively, the use of FML for 2 weeks pre-operatively improved their early post-operative outcomes following trabeculectomy or phaco-trabeculectomy. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

16 pages, 1689 KB  
Article
Dual Roles of CD147 in Regulating THP-1 Monocyte Migration and MCP-1-Induced Inflammatory Responses
by Nutjeera Intasai, Kanokporn Sornsuwan, On-anong Juntit, Thanathat Pamonsupornwichit, Kanyarat Thongheang, Phatcharida Jantaree and Chatchai Tayapiwatana
Int. J. Mol. Sci. 2025, 26(22), 10850; https://doi.org/10.3390/ijms262210850 - 8 Nov 2025
Viewed by 706
Abstract
Cluster of Differentiation (CD) 147, a transmembrane glycoprotein, plays a critical role in monocyte function by regulating invasion, migration and cytokine production. This study explored the impact of CD147 on monocyte chemotaxis and inflammatory responses following monocyte chemoattractant protein-1 (MCP-1) modulation using CD147 [...] Read more.
Cluster of Differentiation (CD) 147, a transmembrane glycoprotein, plays a critical role in monocyte function by regulating invasion, migration and cytokine production. This study explored the impact of CD147 on monocyte chemotaxis and inflammatory responses following monocyte chemoattractant protein-1 (MCP-1) modulation using CD147 knockout (CD147KO) THP-1 monocytes. CD147KO THP-1 cells exhibited significantly enhanced migration towards MCP-1 and chemoattractants secreted by MDA-MB-231 breast cancer cells compared to wild-type (WT) THP-1 cells, while surface expression of the adhesion molecule CD44 remained unchanged. Despite their increased migration, CD147KO cells showed no significant differences in CC chemokine receptor type 1 (CC1) or CC chemokine receptor type 2 (CCR2) protein expression. Upon MCP-1 stimulation, CD147KO THP-1 monocytes exhibited elevated mRNA expression of interleukin (IL)-6 and IL-10, accompanied by a reduction in tumor necrosis factor alpha (TNF-α) at higher MCP-1 concentrations. IL-6 upregulation in CD147KO THP-1 monocytes appears to be a candidate mediator of their enhanced migratory capacity. In summary, this study highlights the dual role of CD147 as a potential checkpoint in regulating THP-1 monocyte migration, with its function varying depending on the context and microenvironment. Additionally, CD147KO THP-1 monocytes exhibited a shift in the balance between pro- and anti-inflammatory cytokine responses. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 2363 KB  
Article
MicroRNA-210 Suppresses NF-κB Signaling in Lipopolysaccharide-Stimulated Dental Pulp Cells Under Hypoxic Conditions
by Xiyuan Bai, Nobuyuki Kawashima, Shihan Wang, Peifeng Han, Mayuko Fujii, Keisuke Sunada-Nara, Ziniu Yu, Takashi Okiji and Yoshio Yahata
Int. J. Mol. Sci. 2025, 26(22), 10837; https://doi.org/10.3390/ijms262210837 - 7 Nov 2025
Viewed by 560
Abstract
Dental pulp tissue, enclosed within rigid dentin, is susceptible to bacterial invasion via dentinal tubules, often leading to severe pulpal inflammation. This condition is typically associated with a hypoxic microenvironment, yet the mechanistic link between hypoxia and inflammation remains unclear. We identified a [...] Read more.
Dental pulp tissue, enclosed within rigid dentin, is susceptible to bacterial invasion via dentinal tubules, often leading to severe pulpal inflammation. This condition is typically associated with a hypoxic microenvironment, yet the mechanistic link between hypoxia and inflammation remains unclear. We identified a marked upregulation of microRNA-210 (miR-210) in human dental pulp cells (hDPCs) cultured under hypoxic conditions. This study investigated the role of miR-210 in modulating inflammation in lipopolysaccharide (LPS)-stimulated hDPCs. Hypoxic conditions and enforced expression of hypoxia-inducible factor 1α (HIF1α) significantly increased miR-210 levels. While LPS stimulation elevated proinflammatory cytokines (Interleukin-6, Monocyte Chemoattractant Protein-1, and Tumor Necrosis Factor Alpha) and activated nuclear factor-kappa B (NF-κB) signaling, miR-210 overexpression suppressed LPS-mediated cytokine production and NF-κB activity. Luciferase assays revealed that miR-210 targets and negatively regulates TGF-beta activated kinase 1 binding protein 1 (TAB1), a key upstream regulator of NF-κB. Transfection with an miR-210 mimic reduced TAB1 expression, NF-κB activation, and cytokine output in both LPS-stimulated hDPCs and rat pulp tissue ex vivo. Conversely, miR-210 inhibition enhanced TAB1 levels and inflammatory cytokine expression under hypoxic conditions. These findings suggest that miR-210 mitigates inflammation via the TAB1–NF-κB pathway, functioning as a negative feedback regulator. miR-210 may represent a promising therapeutic target for pulpal inflammation. Full article
Show Figures

Figure 1

26 pages, 2317 KB  
Article
Dendritic Polyglycerol Sulfate Reduces Inflammation Through Inhibition of the HMGB1/RAGE Axis in RAW 264.7 Macrophages
by Marten Kagelmacher, Cristina S. Quella, Emma Kautz, Anna Klumpp, Felix Weichert, Issan Zhang, Dusica Maysinger, Poornima G. Wedamulla, Suzana K. Straus, Thomas Risse, Rainer Haag, Marina Pigaleva and Jens Dernedde
Int. J. Mol. Sci. 2025, 26(21), 10440; https://doi.org/10.3390/ijms262110440 - 27 Oct 2025
Viewed by 853
Abstract
High Mobility Group Box 1 (HMGB1) is a central pro-inflammatory mediator released from damaged or stressed cells, where it activates receptors such as the Receptor for Advanced Glycation Endproducts (RAGE). Dendritic polyglycerol sulfate (dPGS), a hyperbranched polyanionic polymer, is known for its anti-inflammatory [...] Read more.
High Mobility Group Box 1 (HMGB1) is a central pro-inflammatory mediator released from damaged or stressed cells, where it activates receptors such as the Receptor for Advanced Glycation Endproducts (RAGE). Dendritic polyglycerol sulfate (dPGS), a hyperbranched polyanionic polymer, is known for its anti-inflammatory activity. In this study, we examined how dPGS modulates HMGB1-driven signaling in RAW 264.7 macrophages and human microglia. Recombinant human HMGB1 expressed in Escherichia coli (E. coli) was purified by nickel-nitrilotriacetic acid (Ni-NTA) and heparin chromatography. Proximity ligation assays (PLA) revealed that dPGS significantly disrupted HMGB1/RAGE interactions, particularly under lipopolysaccharide (LPS) stimulation, thereby reducing inflammatory signaling complex formation. This correlated with reduced activation of the nuclear factor kappa B (NF-κB) pathway, demonstrated by decreased nuclear translocation and transcriptional activity. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (RT-qPCR) showed that dPGS suppressed HMGB1- and LPS-induced transcription of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) and Griess assays confirmed reduced TNF-α secretion and nitric oxide production. Electron paramagnetic resonance (EPR) spectroscopy further showed that dPGS altered HMGB1/soluble RAGE (sRAGE) complex dynamics, providing mechanistic insight into its receptor-disruptive action. Full article
Show Figures

Graphical abstract

13 pages, 1536 KB  
Article
All-Trans Retinoic Acid Attenuates Inflammation and Insulin Resistance Induced by Adipocyte–Macrophage Coculture
by Kwang-Rim Baek and Hye-Kyeong Kim
Molecules 2025, 30(20), 4111; https://doi.org/10.3390/molecules30204111 - 16 Oct 2025
Cited by 1 | Viewed by 1123
Abstract
Obesity is characterized by chronic low-grade inflammation, largely driven by macrophage infiltration into adipose tissue, which contributes to the development of insulin resistance. All-trans retinoic acid (ATRA), a biologically active metabolite of vitamin A, has demonstrated anti-inflammatory properties. This study examined the effects [...] Read more.
Obesity is characterized by chronic low-grade inflammation, largely driven by macrophage infiltration into adipose tissue, which contributes to the development of insulin resistance. All-trans retinoic acid (ATRA), a biologically active metabolite of vitamin A, has demonstrated anti-inflammatory properties. This study examined the effects of ATRA on inflammation and insulin resistance using a coculture model comprising hypertrophied 3T3-L1 adipocytes and RAW264.7 macrophages. Coculture markedly elevated the production of pro-inflammatory mediators—including nitric oxide, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, and interleukin-6—and increased free fatty acid release while suppressing the secretion of anti-inflammatory adiponectin. Treatment with ATRA (0.1, 1, and 10 μM) significantly reversed these coculture-induced alterations (p < 0.001). ATRA also inhibited the nuclear translocation of NF-κB and downregulated the expression of retinol-binding protein 4 (RBP4). Moreover, ATRA improved insulin-stimulated glucose uptake in adipocytes rendered insulin-resistant by coculture (p < 0.01), an effect associated with the restoration of glucose transporter 4 (GLUT4) and insulin receptor substrate-2 (IRS-2) expression. These findings suggest that ATRA effectively mitigates inflammation and insulin resistance arising from adipocyte–macrophage interactions, highlighting its potential as a therapeutic agent for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

20 pages, 6534 KB  
Systematic Review
Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis
by Daniel-Corneliu Leucuța, Loredana-Ioana Trif, Oana Almășan, Ștefan Lucian Popa and Abdulrahman Ismaiel
Medicina 2025, 61(10), 1775; https://doi.org/10.3390/medicina61101775 - 1 Oct 2025
Viewed by 1405
Abstract
Background and Objectives: The objectives of this review were as follows: to measure changes in renal biomarker levels before, immediately after, and 24 h post-marathon; to identify promising biomarkers for the diagnosis of acute kidney injury; and to describe the temporal patterns [...] Read more.
Background and Objectives: The objectives of this review were as follows: to measure changes in renal biomarker levels before, immediately after, and 24 h post-marathon; to identify promising biomarkers for the diagnosis of acute kidney injury; and to describe the temporal patterns of biomarker dynamics in relation to the marathon. Materials and Methods: Studies of marathon runners reporting AKI-related biomarkers were included. Four databases (PubMed, EMBASE, Web of Science, and LILACS) were searched. Data on study design, participant characteristics, and biomarker values (pre-, post-, and 24 h post-race) were extracted, and a random effects meta-analysis was performed. Risk of bias was assessed with the National Heart, Lung, and Blood Institute pre–post tool. Results: The study showed significant increases in most biomarkers immediately after the marathon compared to baseline values. The largest increases were observed in Tissue Inhibitor of Metalloproteinases-2* Insulin-like Growth Factor Binding Protein-7 (TIMP-2*IGFBP), copeptin, urinary Liver-type Fatty Acid Binding Protein (L-FABP), urinary Monocyte Chemoattractant Protein-1 (MCP-1), IGFBP-7, urinary Chitinase 3-like Protein 1 (YKL-40), and TIMP-2, suggesting that these biomarkers are promising candidates for future research. Several patterns of biomarker evolution were observed: some increased without decreasing even at 24 h after the marathon; others increased post-marathon and decreased at 24 h while remaining above baseline; some increased after the marathon and then fell below baseline at 24 h. Conclusions: Marathon running causes significant increases in kidney injury biomarkers, with different patterns of evolution. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

36 pages, 700 KB  
Review
Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review
by Alexandra Vrabie, Bogdan Obrișcă, Bogdan Marian Sorohan and Gener Ismail
Life 2025, 15(10), 1497; https://doi.org/10.3390/life15101497 - 23 Sep 2025
Viewed by 4309
Abstract
Background and Objectives: Lupus nephritis (LN) is a major cause of mortality and morbidity in patients with systemic lupus erythematosus (SLE). Biomarkers derived from blood, urine, and multi-omics techniques are essential for enabling access to less invasive methods for LN evaluation and [...] Read more.
Background and Objectives: Lupus nephritis (LN) is a major cause of mortality and morbidity in patients with systemic lupus erythematosus (SLE). Biomarkers derived from blood, urine, and multi-omics techniques are essential for enabling access to less invasive methods for LN evaluation and personalized precision medicine. Materials and Methods: The purpose of this work was to review the studies that addressed the potential role of urinary and serological biomarkers for the diagnosis, disease activity, response to treatment, and renal outcome of adult patients with LN, published over the past decade, and summarize their results with a particular emphasis being directed towards the available traditional tools. Results: Traditional biomarkers used for the diagnosis and surveillance of LN are proteinuria, urinary sediment, estimated glomerular filtration rate (eGFR), anti-double-stranded deoxyribonucleic acid (anti-dsDNA), anti-C1q, and serum complement levels. Anti-dsDNA, serum C3, and proteinuria are the conventional biomarkers with the strongest clinical evidence, with overall moderate ability in predicting LN from non-renal SLE, disease activity, renal flares, response to therapy, and prognosis. The last decade has brought significant progress in our understanding regarding the pathogenesis of LN and, consequently, several molecules, either alone or in combination panels, have emerged as potential novel biomarkers, some of them outperforming conventional biomarkers. Promising results have been suggested for urinary activated leukocyte cell adhesion molecule (ALCAM), soluble cluster of differentiation 163 (CD163), C-X-C motif chemokine ligand 10 (CXCL10), monocyte chemoattractant protein 1 (MCP-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and vascular cell adhesion molecule 1 (VCAM-1). Conclusions: Despite the intensive research of the last decade, no novel biomarker has entered clinical practice, and we continue to rely on traditional biomarkers to assess non-invasively LN and guide its treatment. Novel biomarkers should be validated in multiple longitudinal independent cohorts, compared with conventional biomarkers, and integrated with renal histology information in order to optimize the management of LN patients. Full article
Show Figures

Figure 1

19 pages, 5012 KB  
Article
Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy
by Xiaotong Ma, Haoyang Gao, Ze Wang, Danlin Zhu, Wei Dai, Mingyu Wu, Yifan Guo, Linlin Zhao and Weihua Xiao
Biomolecules 2025, 15(9), 1223; https://doi.org/10.3390/biom15091223 - 25 Aug 2025
Cited by 2 | Viewed by 1472
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM), characterized by cardiac dysfunction, inflammation, and fibrosis. In this study, a T2DM mouse model was established by administering a high-fat diet (60% fat) in combination with streptozotocin injection in male [...] Read more.
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM), characterized by cardiac dysfunction, inflammation, and fibrosis. In this study, a T2DM mouse model was established by administering a high-fat diet (60% fat) in combination with streptozotocin injection in male C57BL/6J mice. The mice subsequently underwent an eight-week exercise intervention consisting of swimming training, resistance training, or high-intensity interval training (HIIT). The results showed that all three forms of exercise improved cardiac function and attenuated myocardial hypertrophy in DCM mice. Exercise training further downregulated the expression of pro-inflammatory cytokines, including interleukin-6, tumor necrosis factor-α, nuclear factor κB, and monocyte chemoattractant protein-1, and mitigated myocardial fibrosis by suppressing fibronectin, α-SMA, collagen type I alpha 1 chain, collagen type III alpha 1 chain, and the TGF-β1/Smad signaling pathway. Moreover, exercise inhibited the expression of PANoptosis-related genes and proteins in cardiomyocytes of DCM mice. Notably, HIIT produced the most pronounced improvements across these pathological markers. In addition, all three exercise modalities effectively suppressed the aberrant activation of the cGAS–STING signaling pathway in the myocardium. In conclusion, exercise training exerts beneficial effects against DCM by improving cardiac function and reducing inflammation, PANoptosis, and fibrosis, and HIIT emerged as the most effective strategy. Full article
Show Figures

Graphical abstract

18 pages, 1166 KB  
Article
Association Between Oxidative–Inflammation Biomarkers and Incident Chronic Kidney Disease in People with High Cardiovascular Risk: A Nested Case–Control Study
by Maria Magdalena Quetglas-Llabrés, Andrés Díaz-López, Cristina Bouzas, Margalida Monserrat-Mesquida, Jordi Salas-Salvadó, Miguel Ruiz-Canela, J. Alfredo Martínez, José Manuel Santos-Lozano, Silvia García, Ramon Estruch, José López-Miranda, Dora Romaguera, Francisco J. Tinahones, Marcos García-Fernández, Sebastián Mas-Fontao, Pilar Matía-Martín, Jesús Vioque, Aurora Bueno, Nancy Babio, Josep A. Tur and Antoni Suredaadd Show full author list remove Hide full author list
Antioxidants 2025, 14(8), 975; https://doi.org/10.3390/antiox14080975 - 8 Aug 2025
Viewed by 1867
Abstract
Aim: To assess oxidative–inflammatory biomarker prediction of incident CKD after 1-year follow-up in a population with overweight/obesity and metabolic syndrome. Methods: Prospective nested case–control study comprising 117 CKD incident cases and 117 matched controls free of CKD after 1-year follow-up conducted [...] Read more.
Aim: To assess oxidative–inflammatory biomarker prediction of incident CKD after 1-year follow-up in a population with overweight/obesity and metabolic syndrome. Methods: Prospective nested case–control study comprising 117 CKD incident cases and 117 matched controls free of CKD after 1-year follow-up conducted in 55–75-year-old participants. Controls were time-matched 1:1 to cases by intervention group, age (≤65 vs. >65 years), and sex. Serum creatinine (SCr), cystatin C (CyC), and urine albumin-to-creatinine ratio (UACR) were measured at baseline, and CKD Epidemiology Collaboration equations for Caucasians were used to assess SCr, CyC, and CyC-SCr-based estimated Glomerular Filtration Rate (eGFR). Baseline levels of malondialdehyde (MDA), carbonyls, tumour necrosis factor alpha (TNFα), interleukin (IL)-1β, IL-1ra, IL-6, monocyte chemoattractant protein 1 (MCP-1), and leptin were determined from fasting serum samples. An inflammatory-oxidative stress score based on these biomarkers was calculated. Incident CKD was defined by eGFR-SCr <60 mL/min/1.73 m2, and/or UACR ≥30 mg/g in the absence of CKD at baseline. Results: UACR positively correlated with pro-inflammatory markers (IL-1β; TNFα) and oxidative damage marker (MDA); eGFR-cyC showed negative correlations with IL-1β and IL-1ra, and eGFR-SCr with leptin. The odds ratios (OR; 95% CI) for incident CKD in the highest vs. the lowest tertile of IL-1ra IL-6 and TNFα were (2.22; 1.22–4.04), (7.03; 2.88–17.14), and (3.79; 1.79–8.02), respectively. The inflammatory–oxidative stress score was associated with incident CKD (OR per 1-SD increment: 2.06; 1.49–2.83). Conclusions: Inflammatory/oxidative stress is associated with CKD incidence in individuals with high cardiovascular risk, underscoring the importance in identify early inflammation to prevent this disease. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

17 pages, 1639 KB  
Article
Tricyclic Isatin Derivatives as Anti-Inflammatory Compounds with High Kinase Binding Affinity
by Alexander V. Uvarov, Igor A. Schepetkin, Mark T. Quinn and Andrei I. Khlebnikov
Molecules 2025, 30(14), 2914; https://doi.org/10.3390/molecules30142914 - 10 Jul 2025
Viewed by 1212
Abstract
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and [...] Read more.
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and evaluated for inhibition of cellular inflammatory responses and binding affinity to several kinases. Compounds 5a and 5d (a.k.a. NS-102), which have an unsubstituted oxime group, inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in human THP-1Blue monocytic cells and interleukin-6 (IL-6) production in human MonoMac-6 monocytic cells, with IC50 values in the micromolar range. These compounds also inhibited LPS-induced production of several other proinflammatory cytokines, including IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF) in MonoMac-6 cells. Compounds 5a and 5d exhibited nanomolar/submicromolar binding affinity toward several kinase targets. The most potent inhibitor, 5d (3-(hydroxyimino)-5-nitro-1,3,6,7,8,9-hexahydro-2H-benzo[g]indol-2-one), demonstrated high binding affinity for 12 kinases, including DYRK1A, DYRK1B, PIM1, Haspin, HIPK1-3, IRAK1, NEK10, and DAPK1-3. Molecular modeling suggested modes of binding interaction of selected compounds in the DYRK1A and PIM1 catalytic sites that agreed with the experimental binding data. Our results demonstrate that tricyclic isatin oximes could be potential candidates for developing anti-inflammatory drugs with neuroprotective effects for treating neurodegenerative diseases. Full article
Show Figures

Figure 1

18 pages, 1016 KB  
Article
Exploring Molecular Signatures Associated with Inflammation and Angiogenesis in the Aqueous Humor of Patients with Non-Proliferative Diabetic Retinopathy
by Víctor Alegre-Ituarte, Irene Andrés-Blasco, David Peña-Ruiz, Salvatore Di Lauro, Sara Crespo-Millas, Alessio Martucci, Jorge Vila-Arteaga, María Dolores Pinazo-Durán, David Galarreta and Julián García-Feijoo
Int. J. Mol. Sci. 2025, 26(13), 6461; https://doi.org/10.3390/ijms26136461 - 4 Jul 2025
Viewed by 1703
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous [...] Read more.
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous humor (AH) of patients with non-proliferative diabetic retinopathy (NPDR). We conducted an observational, multicenter, case–control study including 116 participants classified into T2DM with NPDR, T2DM without DR, and non-diabetic controls (SCG) undergoing cataract surgery. AH samples were collected intraoperatively and analyzed for 27 cytokines using multiplex immunoassay. Eighteen immune mediators were detected in AH samples, and several were significantly elevated in the NPDR group, including the interleukins (IL) -1β, -6, -8, -15, -17, as well as the granulocyte–macrophage colony stimulating factor (GM-CSF), basic fibroblast growth factor (bFGF), interferon gamma-induced protein (IP-10), macrophage inflammatory protein 1 beta (MIP-1b), monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell-expressed and -secreted protein (RANTES), and the vascular endothelial growth factor (VEGF). These molecules are involved in retinal INF, blood–retinal barrier breakdown, and pathological neovascularization. Our findings reveal a distinct pro-INF and pro-ANG profile in the AH of NPDR patients, suggesting that these cytokines may serve as early diagnostic/prognostic biomarkers for DR. Targeting these molecules could provide novel therapeutic strategies to mitigate retinal damage and vision loss in diabetic patients. Full article
(This article belongs to the Special Issue Advanced Research in Retina: 3rd Edition)
Show Figures

Figure 1

21 pages, 4941 KB  
Article
Inosine, AMP, and Vidarabine: Network Pharmacology and LC-MS Reveal Key Bioactive Compounds in Periplaneta americana for Ulcerative Colitis Management
by Yue Li, Zheng-Mei Shi, Yong He, Zu-Wei Xi, Yi-Hao Che, Hai-Rong Zhao, Cheng-Gui Zhang, Heng Liu and Kong-Fa Hu
Int. J. Mol. Sci. 2025, 26(12), 5446; https://doi.org/10.3390/ijms26125446 - 6 Jun 2025
Viewed by 1764
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with unmet therapeutic needs. This study investigates the therapeutic potential of Periplaneta americana L. extract (PAE) and its molecular mechanisms, integrating network pharmacology and experimental validation. Liquid chromatography–mass spectrometry identified 1355 compounds in PAE. [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with unmet therapeutic needs. This study investigates the therapeutic potential of Periplaneta americana L. extract (PAE) and its molecular mechanisms, integrating network pharmacology and experimental validation. Liquid chromatography–mass spectrometry identified 1355 compounds in PAE. Network pharmacology analysis revealed that inosine, vidarabine, and adenosine 5′-monophosphate (AMP) were core components and the core components synergistically regulated key targets and acted on inflammation-related pathways, thereby establishing a multi-target anti-inflammatory regulatory network. In vivo experiments demonstrated that these compounds significantly alleviated colitis symptoms in dextran sulfate sodium-induced mice, as evidenced by reduced disease activity index scores, preserved colonic mucosal architecture, and decreased inflammatory infiltration. Mechanistically, core compounds down-regulated granulocyte-macrophage colony-stimulating factor (GM-CSF), inducible nitric oxide synthase (iNOS)/NOS2, monocyte chemoattractant protein 1 (MCP-1), and transforming growth factor beta 1 (TGF-β1), while they up-regulated interleukin-10 (IL-10) and epidermal growth factor (EGF). Additionally, they activated epidermal growth factor receptor (EGFR)-mediated pathways. Molecular docking analysis revealed that adenosine analogs preferentially bound to A1/A2a receptors, triggering signaling cascades essential for epithelial repair and inflammation resolution. This study established the multi-component, multi-pathway mechanism of PAE in UC, highlighting its dual role in suppressing inflammation and promoting mucosal healing. By bridging traditional herbal use with modern molecular insights, these findings provided a translational foundation for developing PAE-based therapies for UC. Full article
(This article belongs to the Special Issue Network Pharmacology: An Emerging Field in Drug Discovery)
Show Figures

Figure 1

16 pages, 4566 KB  
Article
Fucoxanthin-Loaded Solid Lipid Nanoparticles Exert Potent Therapeutic Efficacy in Combating High-Fat Diet Induced Obesity in Mice
by Lijun Ding, Xiao Luo and Weijia Wen
Int. J. Mol. Sci. 2025, 26(11), 5249; https://doi.org/10.3390/ijms26115249 - 29 May 2025
Cited by 4 | Viewed by 2144
Abstract
Obesity and associated metabolic disorders pose significant health challenges. Fucoxanthin, a lipophilic compound, has shown promising anti-obesity potential, but its poor solubility and bioavailability limit therapeutic efficacy. The successful formulation of solid lipid nanoparticles (SLNs) amplified fucoxanthin’s efficacy in mitigating obesity and the [...] Read more.
Obesity and associated metabolic disorders pose significant health challenges. Fucoxanthin, a lipophilic compound, has shown promising anti-obesity potential, but its poor solubility and bioavailability limit therapeutic efficacy. The successful formulation of solid lipid nanoparticles (SLNs) amplified fucoxanthin’s efficacy in mitigating obesity and the associated metabolic dysregulation. High-fat diet (HFD)-induced obese mice were treated with free fucoxanthin, lyophilized SLNs (L-SLN), and dispersed SLNs (D-SLN) loaded with fucoxanthin. The intervention with D-SLN demonstrated the most significant reduction in body weight gain (29.94%) and fat mass gain (61.80%) compared to the HFD group (p < 0.05), alongside notable improvements in metabolic indicators including fasting blood glucose, liver enzymes, lipid profile, and inflammatory markers such as leptin and monocyte chemoattractant protein 1 (MCP-1) levels. Histopathological evaluation corroborated these findings, showing highly reduced hepatic lipid droplet accumulation and improved adipocyte and testicular morphology. This advancement paved the way for translating fucoxanthin into a clinically effective anti-obesity agent. Full article
Show Figures

Figure 1

14 pages, 1536 KB  
Article
Secreted Protein Acidic and Rich in Cysteine (SPARC) Induced by the Renin–Angiotensin System Causes Endothelial Inflammation in the Early Stages of Hypertensive Vascular Injury
by Hiroe Toba, Mitsushi J. Ikemoto, Miyuki Kobara, Denan Jin, Shinji Takai and Tetsuo Nakata
Int. J. Mol. Sci. 2025, 26(9), 4414; https://doi.org/10.3390/ijms26094414 - 6 May 2025
Cited by 3 | Viewed by 1435
Abstract
Secreted protein acidic rich in cysteine (SPARC), one of the extracellular matrix proteins, is highly induced during inflammation. We investigated the pathophysiological regulation and role of SPARC in vascular inflammation in a rat model of hypertension created using deoxycorticosterone acetate (DOCA, 40 mg/kg/week, [...] Read more.
Secreted protein acidic rich in cysteine (SPARC), one of the extracellular matrix proteins, is highly induced during inflammation. We investigated the pathophysiological regulation and role of SPARC in vascular inflammation in a rat model of hypertension created using deoxycorticosterone acetate (DOCA, 40 mg/kg/week, s.c.) and salt (1% in drinking water). DOCA–salt administration time-dependently increased systolic blood pressure during the 3-week treatment period, blunted endothelium-dependent vasodilation, and increased monocyte chemoattractant protein-1 (MCP-1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression in the aorta. SPARC expression transiently increased until week 2 in the DOCA–salt rat aorta. Interestingly, aortic SPARC levels correlated with blood pressure and the levels of MCP-1 and LOX-1 during 0–2 weeks. The AT1 receptor blocker, losartan, suppressed the overexpression of SPARC, and in vitro treatment with angiotensin II enhanced the production of SPARC in rat aortic endothelial cells. Exposure to recombinant SPARC protein induced overexpression of MCP-1 and LOX-1 mRNA in endothelial cells. Bioactive forms of a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1), excessive activation of which contributes to pathological states and overexpression of which is reported to be induced by SPARC, were increased in the DOCA–salt rat aorta. These results suggest that SPARC is induced by the vascular renin–angiotensin system and causes inflammation in the early stages of hypertensive vascular injury, and that activation of ADAMTS1 might be related to the proinflammatory effects of SPARC. Full article
Show Figures

Figure 1

Back to TopTop