Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Collection Process
2.6. Effect Size
2.7. Risk of Bias Assessment
2.8. Synthesis Methods
2.9. Assessment of Publication Bias
3. Results
3.1. Study Characteristics
3.2. Most Frequently Reported Biomarkers
3.3. Other Biomarkers
3.4. Identification of Biomarker Trends
3.5. Risk of Bias Assessment
4. Discussion
4.1. Limitations
4.2. Study Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Explanation |
AKI | Acute Kidney Injury |
AKIN | Acute Kidney Injury Network |
BUN | Blood Urea Nitrogen |
BUN/Cr | Blood Urea Nitrogen/Creatinine Ratio |
BMI | Body Mass Index |
CI | Confidence Interval |
CRP | C-Reactive Protein |
IGFBP-7 | Insulin-like Growth Factor Binding Protein-7 |
KDIGO | Kidney Disease: Improving Global Outcomes |
KIM-1 | Kidney Injury Molecule-1 |
L-FABP | Liver-type Fatty Acid Binding Protein |
MCP-1 | Monocyte Chemoattractant Protein-1 |
NA | Not Applicable |
NGAL | Neutrophil Gelatinase-Associated Lipocalin |
NHLBI | National Heart, Lung, and Blood Institute |
NR | Not Reported |
pKIM-1 | Plasma Kidney Injury Molecule-1 |
pNGAL | Plasma Neutrophil Gelatinase-Associated Lipocalin |
RIFLE | Risk, Injury, Failure, Loss, and End-Stage Kidney Disease |
sCK | Serum Creatine Kinase |
sCRP | Serum C-Reactive Protein |
sCr | Serum Creatinine |
sCys C | Serum Cystatin C |
TIMP-2 | Tissue Inhibitor of Metalloproteinases-2 |
TNF-α | Tumor Necrosis Factor Alpha |
uCr | Urinary Creatinine |
uKIM-1 | Urinary Kidney Injury Molecule-1 |
uNGAL | Urinary Neutrophil Gelatinase-Associated Lipocalin |
YKL-40 | Chitinase 3-like Protein 1 |
References
- Zuo, Y.; Zou, L.; Zhang, M.; Smith, L.; Yang, L.; Loprinzi, P.D.; Ren, Z. The Temporal and Spatial Evolution of Marathons in China from 2010 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 5046. [Google Scholar] [CrossRef]
- Zhu, H.; Han, X.; Miao, G.; Yan, Q. A Preliminary Exploration of the Regression Equation for Performance in Amateur Half-Marathon Runners: A Perspective Based on Respiratory Muscle Function. Front. Physiol. 2024, 15, 1340513. [Google Scholar] [CrossRef] [PubMed]
- RunSignup. Annual Industry Report 2024 (RaceTrends 2024). Available online: https://info.runsignup.com/wp-content/uploads/sites/3/2025/01/24-Race-Trends-08-Online-compressed.pdf (accessed on 20 August 2025).
- Hespanhol Junior, L.C.; Pillay, J.D.; van Mechelen, W.; Verhagen, E. Meta-Analyses of the Effects of Habitual Running on Indices of Health in Physically Inactive Adults. Sports Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef]
- Braschler, L.; Nikolaidis, P.T.; Thuany, M.; Chlíbková, D.; Rosemann, T.; Weiss, K.; Wilhelm, M.; Knechtle, B. Physiology and Pathophysiology of Marathon Running: A Narrative Review. Sports Med. Open 2025, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V.; Tiller, N.B.; Doutreleau, S.; Khodaee, M.; Knechtle, B.; Pasternak, A.; Rojas-Valverde, D. Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med. 2022, 52, 725–740. [Google Scholar] [CrossRef]
- Mansour, S.G.; Verma, G.; Pata, R.W.; Martin, T.G.; Perazella, M.A.; Parikh, C.R. Kidney Injury and Repair Biomarkers in Marathon Runners. Am. J. Kidney Dis. 2017, 70, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.G.; Martin, T.G.; Obeid, W.; Pata, R.W.; Myrick, K.M.; Kukova, L.; Jia, Y.; Bjornstad, P.; El-Khoury, J.M.; Parikh, C.R. The Role of Volume Regulation and Thermoregulation in AKI during Marathon Running. Clin. J. Am. Soc. Nephrol. 2019, 14, 1297–1305. [Google Scholar] [CrossRef]
- Goyal, A.; Daneshpajouhnejad, P.; Hashmi, M.F.; Bashir, K. Acute Kidney Injury. Crit. Care Nurse 2023, 36, 75–76. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pr. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Palant, C.E.; Amdur, R.L.; Chawla, L.S. The Acute Kidney Injury to Chronic Kidney Disease Transition: A Potential Opportunity to Improve Care in Acute Kidney Injury. Contrib. Nephrol. 2016, 187, 55–72. [Google Scholar] [CrossRef]
- Hodgson, L.; Walter, E.; Venn, R.; Galloway, R.; Pitsiladis, Y.; Sardat, F.; Forni, L. Acute Kidney Injury Associated with Endurance Events—Is It a Cause for Concern? A Systematic Review. BMJ Open Sport Exerc. Med. 2017, 3, e000093. [Google Scholar] [CrossRef]
- Oh, D.J. A Long Journey for Acute Kidney Injury Biomarkers. Ren. Fail. 2020, 42, 154–165. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Corporation for Digital Scholarship. Open-Source Reference Management Software, Zotero, Version [7.0.11]; Corporation for Digital Scholarship: Vienna, VA, USA. Available online: https://www.zotero.org/ (accessed on 29 May 2024).
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2019. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute. Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 20 August 2025).
- Schwarzer, G. Meta: An R Package for Meta-Analysis. R. News 2007, 7, 40–45. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, VA, USA, 2024. [Google Scholar]
- Leckie, T.; Fitzpatrick, D.; Richardson, A.J.; Hunter, A.; Bains, S.; Grimaldi, R.; Galloway, R.; Forni, L.G.; Hodgson, L.E. Marathon Running and Cell-Cycle Arrest Biomarkers of Acute Kidney Injury. J. Sci. Med. Sport 2023, 26, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Kosaki, K.; Kumamoto, S.; Tokinoya, K.; Yoshida, Y.; Sugaya, T.; Murase, T.; Akari, S.; Nakamura, T.; Nabekura, Y.; Takekoshi, K.; et al. Xanthine Oxidoreductase Activity in Marathon Runners: Potential Implications for Marathon-Induced Acute Kidney Injury. J. Appl. Physiol. 2022, 133, 1–10. [Google Scholar] [CrossRef]
- Atkins, W.C.; Butts, C.L.; Kelly, M.R.; Troyanos, C.; Laursen, R.M.; Duckett, A.; Emerson, D.M.; Rosa-Caldwell, M.E.; McDermott, B.P. Acute Kidney Injury Biomarkers and Hydration Outcomes at the Boston Marathon. Front. Physiol. 2022, 12, 813554. [Google Scholar] [CrossRef]
- Nescolarde, L.; Roca, E.; Bogónez-Franco, P.; Hernández-Hermoso, J.; Bayes-Genis, A.; Ara, J. Relationship Be-tween Bioimpedance Vector Displacement and Renal Function After a Marathon in Non-Elite Runners. Front. Physiol. 2020, 11, 352. [Google Scholar] [CrossRef]
- Mccullough, P.A.; Chinnaiyan, K.M.; Gallagher, M.J.; Colar, J.M.; Geddes, T.; Gold, J.M.; Trivax, J.E. Changes in Renal Markers and Acute Kidney Injury after Marathon Running. Nephrology 2011, 16, 194–199. [Google Scholar] [CrossRef]
- Bekos, C.; Zimmermann, M.; Unger, L.; Janik, S.; Hacker, P.; Mitterbauer, A.; Koller, M.; Fritz, R.; Gäbler, C.; Kessler, M.; et al. Non-Professional Marathon Running: RAGE Axis and ST2 Family Changes in Relation to Open-Window Effect, Inflammation and Renal Function. Sci. Rep. 2016, 6, 32315. [Google Scholar] [CrossRef]
- Hewing, B.; Schattke, S.; Spethmann, S.; Sanad, W.; Schroeckh, S.; Schimke, I.; Halleck, F.; Peters, H.; Brechtel, L.; Lock, J.; et al. Cardiac and Renal Function in a Large Cohort of Amateur Marathon Runners. Cardiovasc. Ultrasound 2015, 13, 13. [Google Scholar] [CrossRef]
- Poortmans, J.R. Exercise and Renal Function. Sports Med. 1984, 1, 125–153. [Google Scholar] [CrossRef]
- Byrne, C.; Lee, J.K.; Chew, S.A.; Lim, C.L.; Tan, E.Y. Continuous Thermoregulatory Responses to Mass-Participation Distance Running in Heat. Med. Sci. Sports Exerc. 2006, 38, 803–810. [Google Scholar] [CrossRef]
- Chapman, C.L.; Johnson, B.D.; Vargas, N.T.; Hostler, D.; Parker, M.D.; Schlader, Z.J. Both Hyperthermia and Dehy-dration during Physical Work in the Heat Contribute to the Risk of Acute Kidney Injury. J. Appl. Physiol. 2020, 128, 715–728. [Google Scholar] [CrossRef]
- Schlader, Z.J.; Hostler, D.; Parker, M.D.; Pryor, R.R.; Lohr, J.W.; Johnson, B.D.; Chapman, C.L. The Potential for Renal Injury Elicited by Physical Work in the Heat. Nutrients 2019, 11, 2087. [Google Scholar] [CrossRef] [PubMed]
- Arpino, V.; Brock, M.; Gill, S.E. The Role of TIMPs in Regulation of Extracellular Matrix Proteolysis. Matrix Biol. 2015, 44–46, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Basile, D.P.; Martin, D.R.; Hammerman, M.R. Extracellular Matrix-Related Genes in Kidney after Ischemic Injury: Potential Role for TGF-β in Repair. Am. J. Physiol. 1998, 275, F894–F903. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, T.; Wan, X.; Meng, Y.; Zhao, Z.; Bian, J.; Bao, R.; Deng, X.; Yang, T. IGFBP7 Regulates Sepsis-Induced Acute Kidney Injury through ERK1/2 Signaling. J. Cell. Biochem. 2019, 120, 7602–7611. [Google Scholar] [CrossRef]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef]
- Jalleh, R.; Torpy, D.J. The Emerging Role of Copeptin. Clin. Biochem. Rev. 2021, 42, 17–25. [Google Scholar] [CrossRef]
- Kamijo-Ikemori, A.; Sugaya, T.; Kimura, K. Urinary Fatty Acid Binding Protein in Renal Disease. Clin. Chim. Acta 2006, 374, 1–7. [Google Scholar] [CrossRef]
- Kamijo, A.; Sugaya, T.; Hikawa, A.; Yamanouchi, M.; Hirata, Y.; Ishimitsu, T.; Numabe, A.; Takagi, M.; Hayakawa, H.; Tabei, F.; et al. Urinary Liver-Type Fatty Acid Binding Protein as a Useful Biomarker in Chronic Kidney Disease. Mol. Cell. Biochem. 2006, 284, 175–182. [Google Scholar] [CrossRef]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, Regulation, and Involvement in Disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef]
- Rice, J.C.; Spence, J.S.; Yetman, D.L.; Safirstein, R.L. Monocyte Chemoattractant Protein-1 Expression Correlates with Monocyte Infiltration in the Post-Ischemic Kidney. Ren. Fail. 2002, 24, 703–723. [Google Scholar] [CrossRef]
- Stroo, I.; Claessen, N.; Teske, G.J.; Butter, L.M.; Florquin, S.; Leemans, J.C. Deficiency for the Chemokine Monocyte Chem-oattractant Protein-1 Aggravates Tubular Damage after Renal Ischemia/Reperfusion Injury. PLoS ONE 2015, 10, e0123203. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.M. Tumor Necrosis Factor. Cancer Lett. 2013, 328, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Moledina, D.G.; Wilson, F.P.; Pober, J.S.; Perazella, M.A.; Singh, N.; Luciano, R.L.; Obeid, W.; Lin, H.; Kuperman, M.; Moeckel, G.W.; et al. Urine TNF-α and IL-9 for Clinical Diagnosis of Acute Interstitial Nephritis. JCI Insight 2019, 4, e127456. [Google Scholar] [CrossRef]
- Chen, G.; Liu, B.; Li, H.; Mai, Z.; Zhang, L.; Li, M.; Liu, L.; Chen, S.; Chen, J.; Liu, Y. Ethnicity-Stratified Analysis of the Association between TNF-α Genetic Polymorphisms and Acute Kidney Injury: A Systematic Review and Me-ta-Analysis. Biomed. Res. Int. 2020, 2020, 5262351. [Google Scholar] [CrossRef]
- Volck, B.; Price, P.A.; Johansen, J.S.; Sørensen, O.; Benfield, T.L.; Nielsen, H.J.; Calafat, J.; Borregaard, N. YKL 40, a Mammalian Member of the Chitinase Family, Is a Matrix Protein of Specific Granules in Human Neutrophils. Proc. Assoc. Am. Physicians 1998, 110, 351–360. Available online: https://pubmed.ncbi.nlm.nih.gov/9686683/ (accessed on 16 September 2025).
- Kazakova, M.H.; Sarafian, V.S. YKL 40—A Novel Biomarker in Clinical Practice? Folia Med. 2009, 51, 5–14. [Google Scholar]
- Blazevic, N.; Rogic, D.; Pelajic, S.; Miler, M.; Glavcic, G.; Ratkajec, V.; Vrkljan, N.; Bakula, D.; Hrabar, D.; Pavic, T. YKL-40 as a Biomarker in Various Inflammatory Diseases: A Review. Biochem. Med. 2024, 34, 010502. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Hall, I.E.; Kale, S.; Lee, S.; He, C.H.; Lee, Y.; Chupp, G.L.; Moeckel, G.W.; Lee, C.G.; Elias, J.A.; et al. Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and pre-dicts delayed allograft function. J. Am. Soc. Nephrol. 2013, 24, 309–319. [Google Scholar] [CrossRef]
- Vikse, B.E.; Vollset, S.E.; Tell, G.S.; Refsum, H.; Iversen, B.M. Distribution and Determinants of Serum Creatinine in the General Population: The Hordaland Health Study. Scand. J. Clin. Lab. Investig. 2004, 64, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Bufkin, K.B.; Silva, J. The XpressCard Point-of-Care Test for Human Neutrophil Gelatinase-Associated Lipocalin Enhances the Predic-tion of Acute Kidney Injury. J. Clin. Med. 2024, 13, 7564. [Google Scholar] [CrossRef] [PubMed]
- Meersch, M.; Schmidt, C.; Van Aken, H.; Martens, S.; Rossaint, J.; Singbartl, K.; Görlich, D.; Kellum, J.A.; Zarbock, A. Urinary TIMP-2 and IGFBP7 as Early Biomarkers of Acute Kidney Injury and Renal Recovery following Cardiac Surgery. PLoS ONE 2014, 9, e93460. [Google Scholar] [CrossRef]
Study | Country | Region | Study Design | Marathon Place | Mean Age (Years) | Females (%) | BMI (kg/m2) |
---|---|---|---|---|---|---|---|
Leckie, 2023 [20] | United Kingdom | Europe | prospective cohort | Brighton 2019 | 41 ± 10 | 18 | NR |
Kosaki, 2022 [21] | Japan | Europe | prospective cohort | Tsukuba 2018 | 23 ± 1 | 0 | 21.3 ± 1.5 |
Atkins, 2021 [22] | USA | America | prospective cohort | Boston 2019 | 46 ± 10 | 49 | |
Nescolarde, 2020 [23] | Spain | Europe | prospective cohort | Barcelona 2017 | 41 ± 4 | 0 | 24.0 ± 2.1 |
Mansour, 2019 [8] | USA | America | prospective cohort | Hartford 2017 | 37 (35–44) | 57 | 24 (22–25) |
Mansour, 2017 [7] | USA | America | prospective cohort | Hartford 2015 | 44.2 ± 12.9 | 59 | 22.4 ± 2.4 |
McCullough, 2011 [24] | USA | America | prospective cohort | Detroit 2008 | 38.7 ± 9.0 | 52 | 23.0 ± 2.6 |
Bekos, 2016 [25] | Austria | Europe | prospective cohort | Vienna 2012 | 36.83 ± 7.56 | 29 | 22.29 ± 2.16 |
Hewing, 2015 [26] | Germany | Europe | prospective cohort | Berlin 2006, 2007 | 50.3 [22–72] | 53 | 22.4 ± 2.1 |
Study | Previous Marathons (Number) | km/Week | Running History (Years) | AKI Definition Criteria | AKI Stage I * | Measured Parameters |
---|---|---|---|---|---|---|
Leckie, 2023 [20] | 5 ± 7 [0–39] | 43 ± 17 [15–72] | NR | KDIGO | Yes | sCr, uCr, TIMP-2, IGFBP-7, TIMP-2*IGFBP-7 |
Kosaki, 2022 [21] | NR | NR | NR | AKIN | Yes | sCr, L-FABP |
Atkins, 2021 [22] | NR | NR | NR | NR | No | sCr, uCr, sCys C, uNGAL |
Nescolarde, 2020 [23] | NR | NR | 8.2 ± 5.1 | AKIN | Yes | sCr, sCK, Uree serică, sPCR |
Mansour, 2019 [8] | 3 (1–9) | 47 (27–58) | 9 (5, 12) | AKIN | Yes | sCr, BUN/Cr, sCK, uNGAL, pNGAL, uKIM-1, pKIM-1, copeptină, TNF-alpha plasmatic, MCP-1 plasmatic, MCP-1 urinar, YKL-40 plasmatic, YKL-40 urinar |
Mansour, 2017 [7] | 5 (2–16) | 51 ± 16 | 12.0 (5.0–15.0) | AKIN | Yes | sCr, sCK, uNGAL, uKIM-1, TNF-alpha urinar, MCP-1 urinar, YKL-40 urinar |
McCullough, 2011 [24] | 2.3 ± 3.0 | 27 ± 19 | AKIN | Yes | sCr, sCys C, pNGAL, pKIM-1, sCK | |
Bekos, 2016 [25] | NR | 61.85 ± 20.58 | NR | AKIN | Yes | sCK, sCRP |
Hewing, 2015 [26] | 6.0 [3.0–13.0] | 50.0 [40.0–65.0] | 10.0 [6.0–20.0] | RIFLE | Yes | sCr, sCys C, sCRP |
Pattern of Change | Biomarker | Pre-Marathon | Post-Marathon | 24 h |
---|---|---|---|---|
Increase post-marathon, further increase at 24 h | Serum creatine kinase | 1.00 | 3.08 | 8.16 |
Plasma KIM-1 | 1.00 | 1.50 | 2.40 | |
Increase post-marathon, decrease at 24 h above baseline | TIMP-2*IGFBP | 1.00 | 47.40 | 1.80 |
Copeptin | 1.00 | 15.43 | 1.44 | |
Urinary L-FABP | 1.00 | 12.00 | 2.74 | |
Urinary MCP-1 | 1.00 | 10.83 | 3.83 | |
IGFBP-7 | 1.00 | 7.33 | 1.13 | |
TIMP-2 | 1.00 | 5.17 | 1.33 | |
Urinary TNF-alpha | 1.00 | 5.00 | 1.00 | |
Urinary NGAL | 1.00 | 4.63 | 3.32 | |
Urinary KIM-1 | 1.00 | 2.99 | 2.16 | |
Serum creatinine | 1.00 | 1.57 | 1.27 | |
Increase post-marathon, decrease at 24 h below baseline | Urinary YKL-40 | 1.00 | 5.41 | 0.78 |
Plasma NGAL | 1.00 | 2.34 | 0.25 | |
Urinary creatinine | 1.00 | 2.11 | 0.77 | |
Increase post-marathon (no 24 h values) | Plasma MCP-1 | 1.00 | 2.56 | – |
Plasma TNF-alpha | 1.00 | 1.53 | – | |
Plasma YKL-40 | 1.00 | 1.37 | – | |
Serum urea | 1.00 | 1.23 | – | |
Decrease post-marathon | Serum cystatin C | 1.00 | 0.92 | 0.26 |
BUN/Creatinine ratio | 1.00 | 0.88 | 1.12 | |
C-reactive protein | 1.00 | 0.63 | – |
Criteria/Study | Leckie, 2023 [20] | Kosaki, 2022 [21] | Atkins, 2021 [22] | Nescolarde, 2020 [23] | Mansour, 2019 [8] | Mansour, 2017 [7] | McCullough, 2011 [24] | Bekos, 2016 [25] | Hewing, 2015 [26] |
---|---|---|---|---|---|---|---|---|---|
1. Was the study question or objective clearly stated? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2. Were eligibility/selection criteria for the study population prespecified and clearly described? | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
3. Were the participants in the study representative of those who would be eligible for the test/service/intervention in the general or clinical population of interest? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
4. Were all eligible participants who met the prespecified entry criteria enrolled? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
5. Was the sample size sufficiently large to provide confidence in the findings? | NR | NR | NR | NR | NR | NR | Yes | NR | NR |
6. Was the test/service/intervention clearly described and delivered consistently across the study population? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
7. Were the outcome measures prespecified, clearly defined, valid, reliable, and assessed consistently across all study participants? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
8. Were the people assessing the outcomes blinded to the participants’ exposures/interventions? | NR | NR | NR | NR | NR | NR | NR | NR | NR |
9. Was the loss to follow-up after baseline 20% or less? Post-marathon/24 h after. Were those lost to follow-up accounted for in the analysis? | Yes/No | NR | Yes/Yes | Yes/Yes | Yes/Yes | Yes/Yes | Yes/Yes | No/No | Yes/Yes |
10. Did the statistical methods examine changes in outcome measures from before to after the intervention? Were statistical tests performed that provided p-values for the pre-to-post changes? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes |
11. Were outcome measures of interest taken multiple times before the intervention and multiple times after the intervention (i.e., did they use an interrupted time-series design)? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
12. If the intervention was conducted at a group level (e.g., a whole hospital, a community, etc.), did the statistical analysis take into account the use of individual-level data to determine effects at the group level? | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
13. * Clear exclusion criteria for: alcohol and food abstinence 12 h before baseline measurement | NR | Yes | NR | NR | NR | NR | NR | NR | NR |
14: * Exclusion of comorbidities that could alter measurements | NR | NR | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
15: * Exclusion of medication that could alter measurements | NR | NR | Yes | NR | Yes | Yes | NR | Yes | NR |
16: * Presenting the use of water, electrolytes, and food during the marathon | NR | NR | NR | Yes | NR | NR | Yes | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leucuța, D.-C.; Trif, L.-I.; Almășan, O.; Popa, Ș.L.; Ismaiel, A. Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis. Medicina 2025, 61, 1775. https://doi.org/10.3390/medicina61101775
Leucuța D-C, Trif L-I, Almășan O, Popa ȘL, Ismaiel A. Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis. Medicina. 2025; 61(10):1775. https://doi.org/10.3390/medicina61101775
Chicago/Turabian StyleLeucuța, Daniel-Corneliu, Loredana-Ioana Trif, Oana Almășan, Ștefan Lucian Popa, and Abdulrahman Ismaiel. 2025. "Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis" Medicina 61, no. 10: 1775. https://doi.org/10.3390/medicina61101775
APA StyleLeucuța, D.-C., Trif, L.-I., Almășan, O., Popa, Ș. L., & Ismaiel, A. (2025). Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis. Medicina, 61(10), 1775. https://doi.org/10.3390/medicina61101775