Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = molecularly imprinted polymer (MIP) based biosensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7948 KiB  
Review
Advancing Food Safety Surveillance: Rapid and Sensitive Biosensing Technologies for Foodborne Pathogenic Bacteria
by Yuerong Feng, Jiyong Shi, Jiaqian Liu, Zhecong Yuan and Shujie Gao
Foods 2025, 14(15), 2654; https://doi.org/10.3390/foods14152654 - 29 Jul 2025
Viewed by 448
Abstract
Foodborne pathogenic bacteria critically threaten public health and food industry sustainability, serving as a predominant trigger of food contamination incidents. To mitigate these risks, the development of rapid, sensitive, and highly specific detection technologies is essential for early warning and effective control of [...] Read more.
Foodborne pathogenic bacteria critically threaten public health and food industry sustainability, serving as a predominant trigger of food contamination incidents. To mitigate these risks, the development of rapid, sensitive, and highly specific detection technologies is essential for early warning and effective control of foodborne diseases. In recent years, biosensors have gained prominence as a cutting-edge tool for detecting foodborne pathogens, owing to their operational simplicity, rapid response, high sensitivity, and suitability for on-site applications. This review provides a comprehensive evaluation of critical biorecognition elements, such as antibodies, aptamers, nucleic acids, enzymes, cell receptors, molecularly imprinted polymers (MIPs), and bacteriophages. We highlight their design strategies, recent advancements, and pivotal contributions to improving detection specificity and sensitivity. Additionally, we systematically examine mainstream biosensor-based detection technologies, with a focus on three dominant types: electrochemical biosensors, optical biosensors, and piezoelectric biosensors. For each category, we analyze its fundamental principles, structural features, and practical applications in food safety monitoring. Finally, this review identifies future research priorities, including multiplex target detection, enhanced processing of complex samples, commercialization, and scalable deployment of biosensors. These advancements are expected to bridge the gap between laboratory research and real-world food safety surveillance, fostering more robust and practical solutions. Full article
Show Figures

Figure 1

15 pages, 3820 KiB  
Article
Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing
by Christopher Animashaun, Abdellatif Ait Lahcen and Gymama Slaughter
Biosensors 2025, 15(6), 384; https://doi.org/10.3390/bios15060384 - 13 Jun 2025
Cited by 1 | Viewed by 926
Abstract
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited [...] Read more.
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

43 pages, 9263 KiB  
Review
Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens
by Antía Fdez-Sanromán, Nuria Bernárdez-Rodas, Emilio Rosales, Marta Pazos, Elisa González-Romero and Maria Ángeles Sanromán
Biosensors 2025, 15(3), 189; https://doi.org/10.3390/bios15030189 - 15 Mar 2025
Cited by 3 | Viewed by 5574
Abstract
This review explores the development, technological foundations, and applications of biosensor technologies across various fields, such as medicine for disease diagnosis and monitoring, and the food industry. However, the primary focus is on their use in detecting contaminants and pathogens, as well as [...] Read more.
This review explores the development, technological foundations, and applications of biosensor technologies across various fields, such as medicine for disease diagnosis and monitoring, and the food industry. However, the primary focus is on their use in detecting contaminants and pathogens, as well as in environmental monitoring for water quality assessment. The review classifies different types of biosensors based on their bioreceptor and transducer, highlighting how they are specifically designed for the detection of emerging contaminants (ECs) and pathogens in water. Key innovations in this technology are critically examined, including advanced techniques such as systematic evolution of ligands by exponential enrichment (SELEX), molecularly imprinted polymers (MIPs), and self-assembled monolayers (SAMs), which enable the fabrication of sensors with improved sensitivity and selectivity. Additionally, the integration of microfluidic systems into biosensors is analyzed, demonstrating significant enhancements in performance and detection speed. Through these advancements, this work emphasizes the fundamental role of biosensors as key tools for safeguarding public health and preserving environmental integrity. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

16 pages, 3025 KiB  
Article
Electrochemical Biosensors by Means of Molecularly Imprinted Polymers (MIPs) Cortisol Recognition
by Jindapa Nampeng, Naphatsawan Vongmanee, Chuchart Pintavirooj, Wen-Tai Chiu and Sarinporn Visitsattapongse
Polymers 2025, 17(4), 545; https://doi.org/10.3390/polym17040545 - 19 Feb 2025
Cited by 1 | Viewed by 2994
Abstract
Depression and anxiety are two common mental health issues that require serious attention, as they have significant impacts on human well-being, with both being emotionally and physically reflected in the increasing number of suicide cases globally. The World Health Organization (WHO) estimated that [...] Read more.
Depression and anxiety are two common mental health issues that require serious attention, as they have significant impacts on human well-being, with both being emotionally and physically reflected in the increasing number of suicide cases globally. The World Health Organization (WHO) estimated that about 322 million people around the world experienced mental illnesses in 2017, and this number continues to increase. Cortisol is a major stress-controlled hormone that is regulated by the hypothalamic–pituitary–adrenal (HPA) axis. The HPA axis has three main components, including the hypothalamus, pituitary gland, and adrenal gland, where cortisol, the primary stress hormone, is released. It plays crucial roles in responding to stress, energy balance, and the immune system. The cortisol level in the bloodstream usually increases when stress develops. Molecularly imprinted polymers (MIPs) have been highlighted in terms of creating artificial bioreceptors by mimicking the shape of detected biomolecules, making natural bioreceptor molecules no longer required. MIPs can overcome the limitations of chemicals and physical properties reducing over time and the short-time shelf life of natural bioreceptors. MIPs’ benefits are reflected in their ease of use, high sensitivity, high specificity, reusability, durability, and the lack of requirement for complicated sample preparation before use. Moreover, MIPs incur low costs in manufacturing, giving them a favorable budget for the market with simple utilization. MIPs can be formulated by only three key steps, including formation, the polymerization of functional monomers, and the creation of three-dimensional cavities mimicking the shape and size of targeting molecules. MIPs have a high potential as biosensors, especially working as bioanalytics for protein, anti-body, antigen, or bacteria detection. Herein, this research proposes an MIP-based cortisol biosensor in which cortisol is imprinted on methyl methacrylate (MMA) and methacrylic acid (MAA) produced by UV polymerization. This MIP-based biosensor may be an alternative method with which to detect and monitor the levels of hormones in biological samples such as serum, saliva, or urine due to its rapid detection ability, which would be of benefit for diagnosing depression and anxiety and prescribing treatment. In this study, quantitative detection was performed using an electrochemical technique to measure the changes in electrical signals in different concentrations of a cortisol solution ranging from 0.1 to 1000 pg/mL. The MIP-based biosensor, as derived by calculation, achieved its best detection limit of 1.035 pg/mL with a gold electrode. Tests were also performed on molecules with a similar molecular structure, including Medroxyprogesterone acetate and drospirenone, to ensure the sensitivity and accuracy of the sensors, demonstrating a low sensitivity and low linear response. Full article
Show Figures

Figure 1

17 pages, 4006 KiB  
Article
A Wearable Electrochemical Sensor Based on a Molecularly Imprinted Polymer Integrated with a Copper Benzene-1,3,5-Tricarboxylate Metal-Organic Framework for the On-Body Monitoring of Cortisol in Sweat
by Pingping Tang and Feiyu He
Polymers 2024, 16(16), 2289; https://doi.org/10.3390/polym16162289 - 13 Aug 2024
Cited by 5 | Viewed by 2694
Abstract
Owing to their potential to transform traditional medical diagnostics and health monitoring, wearable biosensors have become an alternative evolutionary technology in the field of medical care. However, it is still necessary to overcome some key technique challenges, such as the selectivity, sensitivity, and [...] Read more.
Owing to their potential to transform traditional medical diagnostics and health monitoring, wearable biosensors have become an alternative evolutionary technology in the field of medical care. However, it is still necessary to overcome some key technique challenges, such as the selectivity, sensitivity, and stability of biometric identification. Herein, a novel, wearable electrochemical sensor based on a molecularly imprinted polymer (MIP) integrated with a copper benzene-1,3,5-tricarboxylate metal–organic framework (MOF) was designed for the detection of stress through the on-body monitoring of cortisol in sweat. The MOF was used as the substrate for MIP deposition to enhance the stability and sensitivity of the sensor. The sensor consisted of two layers, with a microfluidic layer as the top layer for spontaneous sweating and a modified electrode as the bottom layer for sensing. The sensor measured cortisol levels by detecting the current change that occurred when the target molecules bound to the imprinted cavities, using Prussian blue nanoparticles embedded in the MIP framework as the REDOX probe. The proposed sensor exhibited a linear detection range of 0.01–1000 nM with a detection limit of 0.0027 nM, and favorable specificity over other analogies. This facile anti-body free sensor showed excellent stability, and can be successfully applied for in situ cortisol monitoring. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3656 KiB  
Article
An Innovative Approach for Tailoring Molecularly Imprinted Polymers for Biosensors—Application to Cancer Antigen 15-3
by Daniela dos Santos Oliveira, Andreia Sofia Rodrigues Oliveira, Patrícia Vitorino Mendonça, Jorge Fernando Jordão Coelho, Felismina Teixeira Coelho Moreira and Maria Goreti Ferreira Sales
Biosensors 2024, 14(5), 222; https://doi.org/10.3390/bios14050222 - 30 Apr 2024
Cited by 4 | Viewed by 2766
Abstract
This work presents a novel approach for tailoring molecularly imprinted polymers (MIPs) with a preliminary stage of atom transfer radical polymerization (ATRP), for a more precise definition of the imprinted cavity. A well-defined copolymer of acrylamide and N,N′-methylenebisacrylamide (PAAm-co-PMBAm) was [...] Read more.
This work presents a novel approach for tailoring molecularly imprinted polymers (MIPs) with a preliminary stage of atom transfer radical polymerization (ATRP), for a more precise definition of the imprinted cavity. A well-defined copolymer of acrylamide and N,N′-methylenebisacrylamide (PAAm-co-PMBAm) was synthesized by ATRP and applied to gold electrodes with the template, followed by a crosslinking reaction. The template was removed from the polymer matrix by enzymatic/chemical action. The surface modifications were monitored via electrochemical impedance spectroscopy (EIS), having the MIP polymer as a non-conducting film designed with affinity sites for CA15-3. The resulting biosensor exhibited a linear response to CA15-3 log concentrations from 0.001 to 100 U/mL in PBS or in diluted fetal bovine serum (1000×) in PBS. Compared to the polyacrylamide (PAAm) MIP from conventional free-radical polymerization, the ATRP-based MIP extended the biosensor’s dynamic linear range 10-fold, improving low concentration detection, and enhanced the signal reproducibility across units. The biosensor demonstrated good sensitivity and selectivity. Overall, the work described confirmed that the process of radical polymerization to build an MIP material influences the detection capacity for the target substance and the reproducibility among different biosensor units. Extending this approach to other cancer biomarkers, the methodology presented could open doors to a new generation of MIP-based biosensors for point-of-care disease diagnosis. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Biomedical Applications)
Show Figures

Figure 1

22 pages, 4336 KiB  
Review
An Overview on Recent Advances in Biomimetic Sensors for the Detection of Perfluoroalkyl Substances
by Fatemeh Ahmadi Tabar, Joseph W. Lowdon, Soroush Bakhshi Sichani, Mehran Khorshid, Thomas J. Cleij, Hanne Diliën, Kasper Eersels, Patrick Wagner and Bart van Grinsven
Sensors 2024, 24(1), 130; https://doi.org/10.3390/s24010130 - 26 Dec 2023
Cited by 6 | Viewed by 5697
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. Therefore, it is essential to map the extent of the problem to be able to remediate it properly in the next few decades. Current state-of-the-art detection platforms, however, are lab based and therefore too expensive and time-consuming for routine screening. Traditional biosensor tests based on, e.g., lateral flow assays may struggle with the low regulatory levels of PFAS (ng/mL), the complexity of environmental matrices and the presence of coexisting chemicals. Therefore, a lot of research effort has been directed towards the development of biomimetic receptors and their implementation into handheld, low-cost sensors. Numerous research groups have developed PFAS sensors based on molecularly imprinted polymers (MIPs), metal–organic frameworks (MOFs) or aptamers. In order to transform these research efforts into tangible devices and implement them into environmental applications, it is necessary to provide an overview of these research efforts. This review aims to provide this overview and critically compare several technologies to each other to provide a recommendation for the direction of future research efforts focused on the development of the next generation of biomimetic PFAS sensors. Full article
(This article belongs to the Special Issue Feature Papers in Section Biosensors 2023)
Show Figures

Figure 1

26 pages, 3410 KiB  
Article
Mobile Point-of-Care Device Using Molecularly Imprinted Polymer-Based Chemosensors Targeting Interleukin-1β Biomarker
by Rowoon Park, Sangheon Jeon, Jae Won Lee, Jeonghwa Jeong, Young Woo Kwon, Sung Hyun Kim, Joonkyung Jang, Dong-Wook Han and Suck Won Hong
Biosensors 2023, 13(12), 1013; https://doi.org/10.3390/bios13121013 - 5 Dec 2023
Cited by 12 | Viewed by 3602
Abstract
Molecularly imprinted polymers (MIPs) have garnered significant attention as a promising material for engineering specific biological receptors with superior chemical complementarity to target molecules. In this study, we present an electrochemical biosensing platform incorporating MIP films for the selective detection of the interleukin-1β [...] Read more.
Molecularly imprinted polymers (MIPs) have garnered significant attention as a promising material for engineering specific biological receptors with superior chemical complementarity to target molecules. In this study, we present an electrochemical biosensing platform incorporating MIP films for the selective detection of the interleukin-1β (IL-1β) biomarker, particularly suitable for mobile point-of-care testing (POCT) applications. The IL-1β-imprinted biosensors were composed of poly(eriochrome black T (EBT)), including an interlayer of poly(3,4-ethylene dioxythiophene) and a 4-aminothiophenol monolayer, which were electrochemically polymerized simultaneously with template proteins (i.e., IL-1β) on custom flexible screen-printed carbon electrodes (SPCEs). The architecture of the MIP films was designed to enhance the sensor sensitivity and signal stability. This approach involved a straightforward sequential-electropolymerization process and extraction for leaving behind cavities (i.e., rebinding sites), resulting in the efficient production of MIP-based biosensors capable of molecular recognition for selective IL-1β detection. The electrochemical behaviors were comprehensively investigated using cyclic voltammograms and electrochemical impedance spectroscopy responses to assess the imprinting effect on the MIP films formed on the SPCEs. In line with the current trend in in vitro diagnostic medical devices, our simple and effective MIP-based analytical system integrated with mobile POCT devices offers a promising route to the rapid detection of biomarkers, with particular potential for periodontitis screening. Full article
(This article belongs to the Special Issue Nanomaterial Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

18 pages, 2987 KiB  
Review
Research Progress on Bionic Recognition and Biosensors for the Detection of Biomarkers of Diabetic Nephropathy
by Ye Tian, Lili Gao, Abubakar Abdussalam and Guobao Xu
Chemosensors 2023, 11(10), 510; https://doi.org/10.3390/chemosensors11100510 - 22 Sep 2023
Cited by 3 | Viewed by 1996
Abstract
Diabetic nephropathy (DN) refers to kidney damage caused by diabetes and is one of the major microvascular complications of diabetes. This disease has a certain degree of concealment in the early stage, with clinical symptoms appearing later and a higher mortality rate. Therefore, [...] Read more.
Diabetic nephropathy (DN) refers to kidney damage caused by diabetes and is one of the major microvascular complications of diabetes. This disease has a certain degree of concealment in the early stage, with clinical symptoms appearing later and a higher mortality rate. Therefore, the detection of early biomarkers for DN is of great importance in reducing kidney function damage. The common biomarkers for DN mainly include glomerular and tubular lesion markers. At present, clinical diagnosis often uses a combination of multiple indicators and symptoms, and the development of a simple, efficient, and sensitive multi-marker detection platform is particularly important for the early diagnosis of DN. In recent years, with the vigorous development of various biomimetic molecular recognition technologies, biomimetic recognition biosensors (BRBS) have many advantages, such as easy preparation, low cost, high stability, and repeatability under harsh environmental conditions, and have great application potential in the analysis of DN biomarkers. This article reviews the research progress of molecularly imprinted polymers (MIPs) construction technology and aptamers assembly technology developed in the field of biomimetic sensor research in recent years, as well as the detection of DN biomarkers based on BRBS, and prospects for their development. Full article
Show Figures

Figure 1

14 pages, 587 KiB  
Review
Wearable Insulin Biosensors for Diabetes Management: Advances and Challenges
by Sotiria D. Psoma and Chryso Kanthou
Biosensors 2023, 13(7), 719; https://doi.org/10.3390/bios13070719 - 7 Jul 2023
Cited by 26 | Viewed by 9529
Abstract
We present a critical review of the current progress in wearable insulin biosensors. For over 40 years, glucose biosensors have been used for diabetes management. Measurement of blood glucose is an indirect method for calculating the insulin administration dosage, which is critical for [...] Read more.
We present a critical review of the current progress in wearable insulin biosensors. For over 40 years, glucose biosensors have been used for diabetes management. Measurement of blood glucose is an indirect method for calculating the insulin administration dosage, which is critical for insulin-dependent diabetic patients. Research and development efforts aiming towards continuous-insulin-monitoring biosensors in combination with existing glucose biosensors are expected to offer a more accurate estimation of insulin sensitivity, regulate insulin dosage and facilitate progress towards development of a reliable artificial pancreas, as an ultimate goal in diabetes management and personalised medicine. Conventional laboratory analytical techniques for insulin detection are expensive and time-consuming and lack a real-time monitoring capability. On the other hand, biosensors offer point-of-care testing, continuous monitoring, miniaturisation, high specificity and sensitivity, rapid response time, ease of use and low costs. Current research, future developments and challenges in insulin biosensor technology are reviewed and assessed. Different insulin biosensor categories such as aptamer-based, molecularly imprinted polymer (MIP)-based, label-free and other types are presented among the latest developments in the field. This multidisciplinary field requires engagement between scientists, engineers, clinicians and industry for addressing the challenges for a commercial, reliable, real-time-monitoring wearable insulin biosensor. Full article
(This article belongs to the Special Issue Advances in Biosensors for Health-Care and Diagnostics)
Show Figures

Figure 1

28 pages, 4840 KiB  
Review
Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases
by Greta Pilvenyte, Vilma Ratautaite, Raimonda Boguzaite, Simonas Ramanavicius, Chien-Fu Chen, Roman Viter and Arunas Ramanavicius
Biosensors 2023, 13(6), 620; https://doi.org/10.3390/bios13060620 - 5 Jun 2023
Cited by 44 | Viewed by 6729
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with [...] Read more.
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials’ influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared. Full article
Show Figures

Figure 1

14 pages, 1228 KiB  
Review
Molecularly Imprinted Polymers for the Determination of Cancer Biomarkers
by Greta Pilvenyte, Vilma Ratautaite, Raimonda Boguzaite, Arunas Ramanavicius, Roman Viter and Simonas Ramanavicius
Int. J. Mol. Sci. 2023, 24(4), 4105; https://doi.org/10.3390/ijms24044105 - 18 Feb 2023
Cited by 72 | Viewed by 7358
Abstract
Biomarkers can provide critical information about cancer and many other diseases; therefore, developing analytical systems for recognising biomarkers is an essential direction in bioanalytical chemistry. Recently molecularly imprinted polymers (MIPs) have been applied in analytical systems to determine biomarkers. This article aims to [...] Read more.
Biomarkers can provide critical information about cancer and many other diseases; therefore, developing analytical systems for recognising biomarkers is an essential direction in bioanalytical chemistry. Recently molecularly imprinted polymers (MIPs) have been applied in analytical systems to determine biomarkers. This article aims to an overview of MIPs used for the detection of cancer biomarkers, namely: prostate cancer (PSA), breast cancer (CA15-3, HER-2), epithelial ovarian cancer (CA-125), hepatocellular carcinoma (AFP), and small molecule cancer biomarkers (5-HIAA and neopterin). These cancer biomarkers may be found in tumours, blood, urine, faeces, or other body fluids or tissues. The determination of low concentrations of biomarkers in these complex matrices is technically challenging. The overviewed studies used MIP-based biosensors to assess natural or artificial samples such as blood, serum, plasma, or urine. Molecular imprinting technology and MIP-based sensor creation principles are outlined. Analytical signal determination methods and the nature and chemical structure of the imprinted polymers are discussed. Based on the reviewed biosensors, the results are compared, and the most suitable materials for each biomarker are discussed. Full article
(This article belongs to the Topic Functional Surface Modifications of Nanostructures)
Show Figures

Figure 1

22 pages, 6718 KiB  
Review
Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors
by Giancarla Alberti, Camilla Zanoni, Stefano Spina, Lisa Rita Magnaghi and Raffaela Biesuz
Chemosensors 2023, 11(2), 144; https://doi.org/10.3390/chemosensors11020144 - 15 Feb 2023
Cited by 18 | Viewed by 3691
Abstract
In recent years, plasmonic sensors have been used in various fields ranging from environmental monitoring, pharmaceutical analysis, medical diagnosis, and food quality assessment to forensics. A significant amount of information on plasmonic sensors and their applications already exists and there is a continuing [...] Read more.
In recent years, plasmonic sensors have been used in various fields ranging from environmental monitoring, pharmaceutical analysis, medical diagnosis, and food quality assessment to forensics. A significant amount of information on plasmonic sensors and their applications already exists and there is a continuing development of reliable, selective, sensitive, and low-cost sensors. Combining molecularly imprinting technology with plasmonic sensors is an increasingly timely and important challenge to obtain portable, easy-to-use, particularly selective devices helpful in detecting analytes at the trace level. This review proposes an overview of the applications of molecularly imprinted plasmonic chemosensors and biosensors, critically discussing the performances, pros, and cons of the more recently developed devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Plasmonic Sensor)
Show Figures

Figure 1

20 pages, 6770 KiB  
Article
Fabrication of a Molecularly Imprinted Nano-Interface-Based Electrochemical Biosensor for the Detection of CagA Virulence Factors of H. pylori
by Kirti Saxena, Bayu Tri Murti, Po-Kang Yang, Bansi Dhar Malhotra, Nidhi Chauhan and Utkarsh Jain
Biosensors 2022, 12(12), 1066; https://doi.org/10.3390/bios12121066 - 23 Nov 2022
Cited by 20 | Viewed by 3541
Abstract
H. pylori is responsible for several stomach-related diseases including gastric cancer. The main virulence factor responsible for its establishment in human gastric cells is known as CagA. Therefore, in this study, we have fabricated a highly sensitive MIP-based electrochemical biosensor for the detection [...] Read more.
H. pylori is responsible for several stomach-related diseases including gastric cancer. The main virulence factor responsible for its establishment in human gastric cells is known as CagA. Therefore, in this study, we have fabricated a highly sensitive MIP-based electrochemical biosensor for the detection of CagA. For this, an rGO and gold-coated, screen-printed electrode sensing platform was designed to provide a surface for the immobilization of a CagA-specific, molecularly imprinted polymer; then it was characterized electrochemically. Interestingly, molecular dynamics simulations were studied to optimize the MIP prepolymerization system, resulting in a well-matched, optimized molar ratio within the experiment. A low binding energy upon template removal indicates the capability of MIP to recognize the CagA antigen through a strong binding affinity. Under the optimized electrochemical experimental conditions, the fabricated CagA-MIP/Au/rGO@SPE sensor exhibited high sensitivity (0.275 µA ng−1 mL−1) and a very low limit of detection (0.05 ng mL−1) in a linear range of 0.05–50 ng mL−1. The influence of other possible interferents in analytical response has also been observed with the successful determination of the CagA antigen. Full article
Show Figures

Figure 1

15 pages, 6909 KiB  
Article
A Highly Sensitive Molecularly Imprinted Polymer (MIP)-Coated Microwave Glucose Sensor
by Amir Hossein Omidvar, Atena Amanati Shahri, Ariana Lacorte Caniato Serrano, Jonas Gruber and Gustavo Pamplona Rehder
Sensors 2022, 22(22), 8648; https://doi.org/10.3390/s22228648 - 9 Nov 2022
Cited by 14 | Viewed by 3115
Abstract
A novel, low-cost, sensitive microwave microfluidic glucose detecting biosensor incorporating molecularly imprinted polymer (MIP) is presented. The sensing device is based on a stub resonator to characterize water glucose solutions. The tip of one of the stubs is coated with MIP to increase [...] Read more.
A novel, low-cost, sensitive microwave microfluidic glucose detecting biosensor incorporating molecularly imprinted polymer (MIP) is presented. The sensing device is based on a stub resonator to characterize water glucose solutions. The tip of one of the stubs is coated with MIP to increase the selectivity of the sensor and hence the sensitivity compared to the uncoated or to the coated with non-imprinted polymer (NIP) sensor. The sensor was fabricated on a FR4 substrate for low-cost purposes. In the presence of the MIP, the sensor loaded with a glucose solution ranging from 50 mg/dL to 400 mg/dL is observed to experience an absorption frequency shift of 73 MHz when the solutions flow in a microfluidic channel passing sensing area, while the lower limit of detection (LLD) of the sensor is discovered to be 2.4 ng/dL. The experimental results show a high sensitivity of 1.3 MHz/(mg/dL) in terms of absorption frequency. Full article
Show Figures

Figure 1

Back to TopTop