Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = molecular beacon probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2158 KiB  
Article
A Smart Nanoprobe for Visually Investigating the Activation Effect of Cyclical DOX Release on the p53 Pathway and Pathway-Related Molecules
by Ping Sun, Chunlei Gao, Zhe Chen, Siyu Wang, Gang Li, Mingming Luan and Yaoguang Wang
Biosensors 2025, 15(6), 383; https://doi.org/10.3390/bios15060383 - 13 Jun 2025
Viewed by 479
Abstract
Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on [...] Read more.
Developing appropriate methods for real-time in situ investigation of how drugs influence signaling pathways and related biomolecules holds enormous potential for helping to provide an understanding of how anticancer drugs exert their effects. Herein, we report a smart nanoprobe, PDA-MB (DOX)-Pep, constructed on the basis of polydopamine nanoparticles (PDA NPs) modified with a dense shell of molecular beacon (MB) with embedded doxorubicin (DOX) and peptide, which can respond specifically to miRNA-34a and Caspase-3 targets. Intracellular experiments demonstrated that, in comparison to the control nanoprobe PDA-MB-Pep, the smart nanoprobe could selectively respond to miRNA-34a, facilitating the release of the embedded DOX. The released DOX subsequently activated the p53 pathway, which further upregulated miRNA-34a expression, leading to additional DOX release. This initiated a cyclical process involving the probe’s response to miRNA-34a, DOX release, p53 activation, and miRNA-34a upregulation, ultimately enhancing cell apoptosis and increasing Caspase-3 expression. The designed smart nanoprobe offers a visual approach to explore how anticancer drugs influence signaling pathways and related molecules at the cellular level. Full article
Show Figures

Figure 1

10 pages, 5690 KiB  
Article
Detection of miR-133a-5p Using a Molecular Beacon Probe for Investigating Postmortem Intervals
by Eun Hye Lee, Mingyoung Jeong, Kwangmin Park, Dong Geon Lee, Eun Ju Lee, Haneul Lee, Ah Yeoung Kim, Jae Won Ahn, Hyun Jun Woo, Sunghyun Kim, Jaewon Lim and Jungho Kim
Non-Coding RNA 2024, 10(6), 58; https://doi.org/10.3390/ncrna10060058 - 26 Nov 2024
Viewed by 1437
Abstract
Background: When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs [...] Read more.
Background: When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable in the cell nucleus even after death-related changes occur. Objective: This study developed a molecular beacon probe for mmu-miR-133a-5p and assessed its use in mouse muscle tissue at temperatures of 4 °C and 21 °C to estimate the PMI. Methods: A total of 36 healthy adult male BALB/c mice were divided into 9 PMI time points (0, 2, 6, 8, and 10 days) with 3 mice per time point, and they were exposed to 4 °C and 21 °C. Next, the expression pattern of mmu-miR-133a in the skeletal muscle tissue over a 10-day PMI period was analyzed using the developed molecular beacon probe. Results: The molecular beacon (MB) probe was designed for optimal thermodynamic stability with a hairpin structure that opened in the presence of mmu-miR-133a-5p, thus separating the fluorophore from the quencher and resulting in a strong fluorescence signal at 495 nm. Fluorescence intensity increased with mmu-miR-133a-5p concentration from 1 ng/μL to 1000 ng/μL and exhibited a strong correlation (R2 = 0.9966) and a detection limit of 1 ng/μL. Subsequently, the expression level of mmu-miR-133a-5p was observed to be stable in mouse skeletal muscle tissue at both 4 °C and 21 °C. Conclusions: This user-friendly assay can complete measurements in just 30 min after RNA extraction and is suitable for point-of-care testing, and it possesses the potential to improve existing complex and time-consuming methods for PMI estimation. Full article
(This article belongs to the Section Detection and Biomarkers of Non-Coding RNA)
Show Figures

Figure 1

31 pages, 2854 KiB  
Review
Advancements in LAMP-Based Diagnostics: Emerging Techniques and Applications in Viral Detection with a Focus on Herpesviruses in Transplant Patient Management
by Ana Cláudia Martins Braga Gomes Torres, Carolina Mathias, Suelen Cristina Soares Baal, Ana Flávia Kohler, Mylena Lemes Cunha and Lucas Blanes
Int. J. Mol. Sci. 2024, 25(21), 11506; https://doi.org/10.3390/ijms252111506 - 26 Oct 2024
Cited by 1 | Viewed by 3057
Abstract
Loop-mediated isothermal amplification (LAMP) is a highly effective molecular diagnostic technique, particularly advantageous for point-of-care (POC) settings. In recent years, LAMP has expanded to include various adaptations such as DARQ-LAMP, QUASR, FLOS-LAMP, displacement probes and molecular beacons. These methods enable multiplex detection of [...] Read more.
Loop-mediated isothermal amplification (LAMP) is a highly effective molecular diagnostic technique, particularly advantageous for point-of-care (POC) settings. In recent years, LAMP has expanded to include various adaptations such as DARQ-LAMP, QUASR, FLOS-LAMP, displacement probes and molecular beacons. These methods enable multiplex detection of multiple targets in a single reaction, enhancing cost-effectiveness and diagnostic efficiency. Consequently, LAMP has gained significant traction in diagnosing diverse viruses, notably during the COVID-19 pandemic. However, its application for detecting Herpesviridae remains relatively unexplored. This group of viruses is of particular interest due to their latency and potential reactivation, crucial for immunocompromised patients, including organ and hematopoietic stem cell transplant recipients. This review highlights recent advancements in LAMP for virus diagnosis and explores current research trends and future prospects, emphasizing the detection challenges posed by Herpesviridae. Full article
(This article belongs to the Special Issue Viral Infections and Host Immune Responses)
Show Figures

Figure 1

11 pages, 3368 KiB  
Article
Development and Comparison of Visual LAMP and LAMP-TaqMan Assays for Colletotrichum siamense
by Shuning Cui, Haoze Ma, Xinyue Wang, Han Yang, Yuanzheng Wu, Yanli Wei, Jishun Li and Jindong Hu
Microorganisms 2024, 12(7), 1325; https://doi.org/10.3390/microorganisms12071325 - 28 Jun 2024
Cited by 2 | Viewed by 1671
Abstract
Strawberry anthracnose caused by Colletotrichum spp. has resulted in significant losses in strawberry production worldwide. Strawberry anthracnose occurs mainly at the seedling and early planting stages, and Colletotrichum siamense is the main pathogen in North China, where mycelia, anamorphic nuclei, and conidia produced [...] Read more.
Strawberry anthracnose caused by Colletotrichum spp. has resulted in significant losses in strawberry production worldwide. Strawberry anthracnose occurs mainly at the seedling and early planting stages, and Colletotrichum siamense is the main pathogen in North China, where mycelia, anamorphic nuclei, and conidia produced in the soil are the main sources of infection. The detection of pathogens in soil is crucial for predicting the prevalence of anthracnose. In this study, a visualized loop-mediated isothermal amplification (LAMP) assay and a loop-mediated isothermal amplification method combined with a TaqMan probe (LAMP-TaqMan) assay were developed for the β-tubulin sequence of C. siamense. Both methods can detect Colletotrichum siamense genomic DNA at very low concentrations (104 copies/g) in soil, while both the visualized LAMP and LAMP-TaqMan assays exhibited a detection limit of 50 copies/μL, surpassing the sensitivity of conventional PCR and qPCR techniques, and both methods showed high specificity for C. siamense. The two methods were compared: LAMP-TaqMan exhibited enhanced specificity due to the incorporation of fluorescent molecular beacons, while visualized LAMP solely necessitated uncomplicated incubation at a constant temperature, with the results determined by the color change; therefore, the requirements for the instrument are relatively straightforward and user-friendly. In conclusion, both assays will help monitor populations of C. siamense in China and control strawberry anthracnose in the field. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

9 pages, 1336 KiB  
Communication
Complementary DNA Significantly Enhancing Signal Response and Sensitivity of a Molecular Beacon Probe to Aflatoxin B1
by Chao Wang, Kexiao Zhu, Jie Yu and Pengfei Shi
Biosensors 2023, 13(2), 195; https://doi.org/10.3390/bios13020195 - 28 Jan 2023
Cited by 7 | Viewed by 2593
Abstract
This paper reported an improved molecular beacon method for the rapid detection of aflatoxin B1 (AFB1), a natural mycotoxin with severe carcinogenicity. With the assistance of a complementary DNA (cDNA) chain, the molecular beacon which consists of a DNA aptamer flanked by FAM [...] Read more.
This paper reported an improved molecular beacon method for the rapid detection of aflatoxin B1 (AFB1), a natural mycotoxin with severe carcinogenicity. With the assistance of a complementary DNA (cDNA) chain, the molecular beacon which consists of a DNA aptamer flanked by FAM and BHQ1 displayed a larger fluorescent response to AFB1, contributing to the sensitive detection of AFB1. Upon optimization of some key experimental factors, rapid detection of AFB1 ranging from 1 nM to 3 μM, within 20 min, was realized by using this method. A limit of detection (LoD) of 1 nM was obtained, which was lower than the LoD (8 nM) obtained without cDNA assistance. This aptamer-based molecular beacon detection method showed advantages in easy operation, rapid analysis and larger signal response. Good specificity and anti-interference ability were demonstrated. This method showed potential in real-sample analysis. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis)
Show Figures

Figure 1

20 pages, 3610 KiB  
Article
Detection of Circulating SARS-CoV-2 Variants of Concern (VOCs) Using a Multiallelic Spectral Genotyping Assay
by Andreas C. Chrysostomou, Antonia Aristokleous, Johana Hezka Rodosthenous, Christina Christodoulou, Georgia Stathi and Leondios G. Kostrikis
Life 2023, 13(2), 304; https://doi.org/10.3390/life13020304 - 21 Jan 2023
Cited by 5 | Viewed by 6164
Abstract
Throughout the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, resulting in new variants, some of which possess increased infectivity, immune evasion, and virulence. Such variants have been denoted by the World Health Organization as variants [...] Read more.
Throughout the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, resulting in new variants, some of which possess increased infectivity, immune evasion, and virulence. Such variants have been denoted by the World Health Organization as variants of concern (VOC) because they have resulted in an increased number of cases, posing a strong risk to public health. Thus far, five VOCs have been designated, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), including their sublineages. Next-generation sequencing (NGS) can produce a significant amount of information facilitating the study of variants; however, NGS is time-consuming and costly and not efficient during outbreaks, when rapid identification of VOCs is urgently needed. In such periods, there is a need for fast and accurate methods, such as real-time reverse transcription PCR in combination with probes, which can be used for monitoring and screening of the population for these variants. Thus, we developed a molecular beacon-based real-time RT-PCR assay according to the principles of spectral genotyping. This assay employs five molecular beacons that target ORF1a:ΔS3675/G3676/F3677, S:ΔH69/V70, S:ΔE156/F157, S:ΔΝ211, S:ins214EPE, and S:ΔL242/A243/L244, deletions and an insertion found in SARS-CoV-2 VOCs. This assay targets deletions/insertions because they inherently provide higher discrimination capacity. Here, the design process of the molecular beacon-based real-time RT-PCR assay for detection and discrimination of SARS-CoV-2 is presented, and experimental testing using SARS-CoV-2 VOC samples from reference strains (cultured virus) and clinical patient samples (nasopharyngeal samples), which have been previously classified using NGS, were evaluated. Based on the results, it was shown that all molecular beacons can be used under the same real-time RT-PCR conditions, consequently improving the time and cost efficiency of the assay. Furthermore, this assay was able to confirm the genotype of each of the tested samples from various VOCs, thereby constituting an accurate and reliable method for VOC detection and discrimination. Overall, this assay is a valuable tool that can be used for screening and monitoring the population for VOCs or other emerging variants, contributing to limiting their spread and protecting public health. Full article
(This article belongs to the Special Issue Virology Applications to COVID-19 Pandemic)
Show Figures

Figure 1

22 pages, 3754 KiB  
Review
State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics
by Ghazala Ashraf, Zi-Tao Zhong, Muhammad Asif, Ayesha Aziz, Tayyaba Iftikhar, Wei Chen and Yuan-Di Zhao
Biosensors 2022, 12(12), 1172; https://doi.org/10.3390/bios12121172 - 15 Dec 2022
Cited by 13 | Viewed by 3756
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for [...] Read more.
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs’ detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed. Full article
(This article belongs to the Special Issue Advances in Fluorescent Probe Biosensing)
Show Figures

Figure 1

23 pages, 2748 KiB  
Review
Fluorescent Platforms for RNA Chemical Biology Research
by Jinxi Du, Ricky Dartawan, William Rice, Forrest Gao, Joseph H. Zhou and Jia Sheng
Genes 2022, 13(8), 1348; https://doi.org/10.3390/genes13081348 - 27 Jul 2022
Cited by 9 | Viewed by 4856
Abstract
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in [...] Read more.
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating. Full article
(This article belongs to the Special Issue RNA Chemical Biology)
Show Figures

Figure 1

11 pages, 3307 KiB  
Article
Adjusting the Structure of a Peptide Nucleic Acid (PNA) Molecular Beacon and Promoting Its DNA Detection by a Hybrid with Quencher-Modified DNA
by Hajime Shigeto, Takamasa Kishi, Koki Ishii, Takashi Ohtsuki, Shohei Yamamura and Mizuki Kitamatsu
Processes 2022, 10(4), 722; https://doi.org/10.3390/pr10040722 - 8 Apr 2022
Cited by 2 | Viewed by 2822
Abstract
In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we [...] Read more.
In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we investigated their fluorescence changes (F1/1/F0) with and without full-match DNA. As the numbers of Glu/Lys or Dab increased, the F1/1/F0 tended to decrease. Among the different beacons, the PNA beacon with one Glu and one Lys (P1Q1) showed the largest F1/1/F0. On the other hand, a relatively large F1/1/F0 was obtained when the number of Glu/Lys and the number of Dab were the same, and the balance between the numbers of Glu/Lys and Dab seemed to affect the F1/1/F0. We also investigated the DNA detection by the prehybrid of P1Q1, which consists of the T790M base sequence, [P1Q1(T790M)], with quencher-modified DNA (Q-DNA). We examined the DNA detection with single-base mismatch by P1Q1(T790M), and we clarified that there was difficulty in detecting the sequence with P1Q1 alone, but that the sequence was successfully detected by the prehybrid of P1Q1 with the Q-DNA. Full article
(This article belongs to the Special Issue The Amazing World of Peptide Engineering)
Show Figures

Figure 1

12 pages, 2325 KiB  
Article
A Rapid and Easy-to-Perform Method of Nucleic-Acid Based Dengue Virus Diagnosis Using Fluorescence-Based Molecular Beacons
by Soumi Sukla, Prasenjit Mondal, Subhajit Biswas and Surajit Ghosh
Biosensors 2021, 11(12), 479; https://doi.org/10.3390/bios11120479 - 26 Nov 2021
Cited by 7 | Viewed by 4113
Abstract
Detecting dengue virus (DENV) infection in patients as early as possible makes the disease management convenient. Conventionally, DENV infection is diagnosed by ELISA-based methods, but sensitivity and specificity are major concerns. Reverse-transcription-PCR (RT-PCR)-based detection confirms the presence of DENV RNA; however, it is [...] Read more.
Detecting dengue virus (DENV) infection in patients as early as possible makes the disease management convenient. Conventionally, DENV infection is diagnosed by ELISA-based methods, but sensitivity and specificity are major concerns. Reverse-transcription-PCR (RT-PCR)-based detection confirms the presence of DENV RNA; however, it is expensive, time-consuming, and skilled personnel are required. A fluorescence-based detection system that detects DENV RNA in patient’s serum directly, without any nucleic acid amplification step, has been developed. The method uses target-specific complementary sequence in the molecular beacon, which would specifically bind to the DENV RNA. The molecular beacons are approximately 40 bases long hairpin structures, with a fluorophore-quencher system attached at the terminal ends of the stem. These probes are biotinylated in the stem region, so that they can be immobilized on the streptavidin-tagged magnetic beads. These magnetic beads, coupled with biotinylated molecular beacons, are used for the detection of the target RNA in the serum by incubating the mixture. After incubation, beads are separated and re-suspended in a buffer. The measurement of fluorescence is taken in fluorometer after 15 min incubation at 50 °C. The whole work is carried out in a single tube. This rapid method can precisely detect dengue RNA within two hours, confirming ongoing DENV replication in the patient. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

16 pages, 1447 KiB  
Article
Optical Biosensor Platforms Display Varying Sensitivity for the Direct Detection of Influenza RNA
by Samantha J. Courtney, Zachary R. Stromberg, Adán Myers y Gutiérrez, Daniel Jacobsen, Loreen R. Stromberg, Kiersten D. Lenz, James Theiler, Brian T. Foley, Jason Gans, Karina Yusim and Jessica Z. Kubicek-Sutherland
Biosensors 2021, 11(10), 367; https://doi.org/10.3390/bios11100367 - 30 Sep 2021
Cited by 7 | Viewed by 2824
Abstract
Detection methods that do not require nucleic acid amplification are advantageous for viral diagnostics due to their rapid results. These platforms could provide information for both accurate diagnoses and pandemic surveillance. Influenza virus is prone to pandemic-inducing genetic mutations, so there is a [...] Read more.
Detection methods that do not require nucleic acid amplification are advantageous for viral diagnostics due to their rapid results. These platforms could provide information for both accurate diagnoses and pandemic surveillance. Influenza virus is prone to pandemic-inducing genetic mutations, so there is a need to apply these detection platforms to influenza diagnostics. Here, we analyzed the Fast Evaluation of Viral Emerging Risks (FEVER) pipeline on ultrasensitive detection platforms, including a waveguide-based optical biosensor and a flow cytometry bead-based assay. The pipeline was also evaluated in silico for sequence coverage in comparison to the U.S. Centers for Disease Control and Prevention’s (CDC) influenza A and B diagnostic assays. The influenza FEVER probe design had a higher tolerance for mismatched bases than the CDC’s probes, and the FEVER probes altogether had a higher detection rate for influenza isolate sequences from GenBank. When formatted for use as molecular beacons, the FEVER probes detected influenza RNA as low as 50 nM on the waveguide-based optical biosensor and 1 nM on the flow cytometer. In addition to molecular beacons, which have an inherently high background signal we also developed an exonuclease selection method that could detect 500 pM of RNA. The combination of high-coverage probes developed using the FEVER pipeline coupled with ultrasensitive optical biosensors is a promising approach for future influenza diagnostic and biosurveillance applications. Full article
(This article belongs to the Special Issue Biosensors for Bacterial and Viral Detection)
Show Figures

Figure 1

9 pages, 7249 KiB  
Article
Label-Free Fluorescence Molecular Beacon Probes Based on G-Triplex DNA and Thioflavin T for Protein Detection
by Jun Xue, Jintao Yi and Hui Zhou
Molecules 2021, 26(10), 2962; https://doi.org/10.3390/molecules26102962 - 17 May 2021
Cited by 5 | Viewed by 3034
Abstract
Protein detection plays an important role in biological and biomedical sciences. The immunoassay based on fluorescence labeling has good specificity but a high labeling cost. Herein, on the basis of G-triplex molecular beacon (G3MB) and thioflavin T (ThT), we developed a simple and [...] Read more.
Protein detection plays an important role in biological and biomedical sciences. The immunoassay based on fluorescence labeling has good specificity but a high labeling cost. Herein, on the basis of G-triplex molecular beacon (G3MB) and thioflavin T (ThT), we developed a simple and label-free biosensor for protein detection. The biotin and streptavidin were used as model enzymes. In the presence of target streptavidin (SA), the streptavidin hybridized with G3MB-b (biotin-linked-G-triplex molecular beacon) perfectly and formed larger steric hindrance, which hindered the hydrolysis of probes by exonuclease III (Exo III). In the absence of target streptavidin, the exonuclease III successively cleaved the stem of G3MB-b and released the G-rich sequences which self-assembled into a G-triplex and subsequently activated the fluorescence signal of thioflavin T. Compared with the traditional G-quadruplex molecular beacon (G4MB), the G3MB only needed a lower dosage of exonuclease III and a shorter reaction time to reach the optimal detection performance, because the concise sequence of G-triplex was good for the molecular beacon design. Moreover, fluorescence experiment results exhibited that the G3MB-b had good sensitivity and specificity for streptavidin detection. The developed label-free biosensor provides a valuable and general platform for protein detection. Full article
(This article belongs to the Special Issue Application of Nucleic Acid Probe in Analysis and Detection)
Show Figures

Figure 1

18 pages, 1420 KiB  
Review
Seeing Is Believing: Visualizing Circular RNAs
by Pruthvi Raj Bejugam, Aniruddha Das and Amaresh Chandra Panda
Non-Coding RNA 2020, 6(4), 45; https://doi.org/10.3390/ncrna6040045 - 11 Nov 2020
Cited by 18 | Viewed by 8620
Abstract
Advancement in the RNA sequencing techniques has discovered hundreds of thousands of circular RNAs (circRNAs) in humans. However, the physiological function of most of the identified circRNAs remains unexplored. Recent studies have established that spliceosomal machinery and RNA-binding proteins modulate circRNA biogenesis. Furthermore, [...] Read more.
Advancement in the RNA sequencing techniques has discovered hundreds of thousands of circular RNAs (circRNAs) in humans. However, the physiological function of most of the identified circRNAs remains unexplored. Recent studies have established that spliceosomal machinery and RNA-binding proteins modulate circRNA biogenesis. Furthermore, circRNAs have been implicated in regulating crucial cellular processes by interacting with various proteins and microRNAs. However, there are several challenges in understanding the mechanism of circRNA biogenesis, transport, and their interaction with cellular factors to regulate cellular events because of their low abundance and sequence similarity with linear RNA. Addressing these challenges requires systematic studies that directly visualize the circRNAs in cells at single-molecule resolution along with the molecular regulators. In this review, we present the design, benefits, and weaknesses of RNA imaging techniques such as single-molecule RNA fluorescence in situ hybridization and BaseScope in fixed cells and fluorescent RNA aptamers in live-cell imaging of circRNAs. Furthermore, we propose the potential use of molecular beacons, multiply labeled tetravalent RNA imaging probes, and Cas-derived systems to visualize circRNAs. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

12 pages, 2602 KiB  
Communication
Optical Biosensing System for the Detection of Survivin mRNA in Colorectal Cancer Cells Using a Graphene Oxide Carrier-Bound Oligonucleotide Molecular Beacon
by Katarzyna Ratajczak, Bartlomiej E. Krazinski, Anna E. Kowalczyk, Beata Dworakowska, Slawomir Jakiela and Magdalena Stobiecka
Nanomaterials 2018, 8(7), 510; https://doi.org/10.3390/nano8070510 - 9 Jul 2018
Cited by 61 | Viewed by 5634
Abstract
The anti-apoptotic protein survivin is one of the most promising cancer biomarkers owing to its high expression in human cancers and rare occurrence in normal adult tissues. In this work, we have investigated the role of supramolecular interactions between a graphene oxide (GO) [...] Read more.
The anti-apoptotic protein survivin is one of the most promising cancer biomarkers owing to its high expression in human cancers and rare occurrence in normal adult tissues. In this work, we have investigated the role of supramolecular interactions between a graphene oxide (GO) nanosheet nanocarrier and a survivin molecular beacon (SurMB), functionalized by attaching fluorophore Joe and quencher Dabcyl (SurMB-Joe). Molecular dynamics simulations revealed hydrogen bonding of Joe moiety and Dabcyl to GO carriers that considerably increase the SurMB-GO bonding strength. This was confirmed in experimental work by the reduced fluorescence background in the OFF state, thereby increasing the useful analytical signal range for mRNA detection. A new mechanism of hairpin–hairpin interaction of GO@SurMB with target oligonucleotides has been proposed. A low limit of detection, LOD = 16 nM (S/N = 3), has been achieved for complementary tDNA using GO@SurMB-Joe nanocarriers. We have demonstrated an efficient internalization of SurMB-Joe-loaded GO nanocarriers in malignant SW480 cells. The proposed tunability of the bonding strength in the attached motifs for MBs immobilized on nanocarriers, via structural modifications, should be useful in gene delivery systems to enhance the efficacy of gene retention, cell transfection and genomic material survivability in the cellular environment. Full article
Show Figures

Graphical abstract

8 pages, 5663 KiB  
Article
Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes
by Corrado Napoli, Stefano Lai, Ambra Giannetti, Sara Tombelli, Francesco Baldini, Massimo Barbaro and Annalisa Bonfiglio
Sensors 2018, 18(4), 990; https://doi.org/10.3390/s18040990 - 27 Mar 2018
Cited by 23 | Viewed by 7223
Abstract
In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs) and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular [...] Read more.
In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs) and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs). Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated. Full article
(This article belongs to the Special Issue Label-Free Biosensors)
Show Figures

Figure 1

Back to TopTop