Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,304)

Search Parameters:
Keywords = model maintenance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 702 KB  
Article
Modeling of Electromagnetic Fields Along the Route of a Gas-Insulated Line Feeding Traction Substations
by Andrey Kryukov, Hristo Beloev, Dmitry Seredkin, Ekaterina Voronina, Aleksandr Kryukov, Iliya Iliev, Ivan Beloev and Konstantin Suslov
Energies 2026, 19(3), 624; https://doi.org/10.3390/en19030624 (registering DOI) - 25 Jan 2026
Abstract
Power supply for traction substations (TSs) of AC railways has traditionally been provided by 110–220 kV overhead transmission lines (OHL). These OHLs can be damaged during strong winds and ice formation. Furthermore, these lines generate significant electromagnetic fields (EMFs), which adversely affect maintenance [...] Read more.
Power supply for traction substations (TSs) of AC railways has traditionally been provided by 110–220 kV overhead transmission lines (OHL). These OHLs can be damaged during strong winds and ice formation. Furthermore, these lines generate significant electromagnetic fields (EMFs), which adversely affect maintenance personnel, the public, and the environment. Mitigating the resulting damages requires the establishment of protection zones, necessitating significant land allocation. Enhancing the reliability of power supply to traction substations and reducing EMF levels can be achieved through the use of gas-insulated lines (GIL), whose application in the power industry of many countries is continuously increasing. The aim of the research presented in this article was to develop computer models for determining the EMF of a GIL supplying a group of traction substations, taking into account actual traction loads characterized by non-sinusoidal waveforms and asymmetry. To solve this problem, an approach implemented in the Fazonord AC-DC software package, based on the use of phase coordinates, was applied. This allowed for the correct accounting of the skin effect and proximity effect in the massive current-carrying parts of the GIL, as well as the influence of asymmetry and harmonic distortions. The simulation results showed that the use of GIL brings the voltage unbalance factors at the 110 kV busbars of the traction substations within the permissible range, with the maximum values of these coefficients not exceeding 2%. The results of the harmonic distortion assessment demonstrated a significant reduction in harmonic distortion factors in the 110 kV network for the GIL compared to the OHL. The performed electromagnetic field calculations confirmed that the GIL generates magnetic field strengths one order of magnitude lower than those of the OHL. The obtained results lead to the conclusion that the use of gas-insulated lines for powering traction substations is highly effective, ensuring increased reliability, improved power quality, and a reduced negative impact of EMF on personnel, the public, the environment, and electronic equipment. Full article
19 pages, 1924 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 (registering DOI) - 25 Jan 2026
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
35 pages, 24985 KB  
Article
From Blade Loads to Rotor Health: An Inverse Modelling Approach for Wind Turbine Monitoring
by Attia Bibi, Chiheng Huang, Wenxian Yang, Oussama Graja, Fang Duan and Liuyang Zhang
Energies 2026, 19(3), 619; https://doi.org/10.3390/en19030619 (registering DOI) - 25 Jan 2026
Abstract
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in [...] Read more.
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in the field, yet their reliability is limited by strong sensitivity to varying operational and environmental conditions. This study presents a data-driven rotor health-monitoring framework that enhances the diagnostic value of blade bending-moments. Assuming that the wind speed profile remains approximately stationary over short intervals (e.g., 20 s), a machine-learning model is trained on bending-moment data from healthy blades to predict the incident wind-speed profile under a wide range of conditions. During operation, real-time bending-moment signals from each blade are independently processed by the trained model. A healthy rotor yields consistent wind-speed profile predictions across all three blades, whereas deviations for an individual blade indicate rotor asymmetry. In this study, the methodology is verified using high-fidelity OpenFAST simulations with controlled blade pitch misalignment as a representative fault case, providing simulation-based verification of the proposed framework. Results demonstrate that the proposed inverse-modeling and cross-blade consistency framework enables sensitive and robust detection and localization of pitch-related rotor faults. While only pitch misalignment is explicitly investigated here, the approach is inherently applicable to other rotor asymmetry mechanisms such as mass imbalance or aerodynamic degradation, supporting reliable condition monitoring and earlier maintenance interventions. Using OpenFAST simulations, the proposed framework reconstructs height-resolved wind profiles with RMSE below 0.15 m/s (R² > 0.997) under healthy conditions, and achieves up to 100% detection accuracy for moderate-to-severe pitch misalignment faults. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
24 pages, 3904 KB  
Article
Calibration of Low-Cost Sensors for PM10 and PM2.5 Based on Artificial Intelligence for Smart Cities
by Ricardo Gómez, José Rodríguez and Roberto Ferro
Sensors 2026, 26(3), 796; https://doi.org/10.3390/s26030796 (registering DOI) - 25 Jan 2026
Abstract
Exposure to Particulate Matter (PM) is linked to respiratory and cardiovascular diseases, certain types of cancer, and accounts for approximately seven million premature deaths globally. While governments and organizations have implemented various strategies for Air Quality (AQ) such as the deployment of Air [...] Read more.
Exposure to Particulate Matter (PM) is linked to respiratory and cardiovascular diseases, certain types of cancer, and accounts for approximately seven million premature deaths globally. While governments and organizations have implemented various strategies for Air Quality (AQ) such as the deployment of Air Quality Monitoring Networks (AQMN), these networks often suffer from limited spatial coverage and involve high installation and maintenance costs. Consequently, the implementation of networks based on Low-Cost Sensors (LCS) has emerged as a viable alternative. Nevertheless, LCS systems have certain drawbacks, such as lower reading precision, which can be mitigated through specific calibration models and methods. This paper presents the results and conclusions derived from simultaneous PM10 and PM2.5 monitoring comparisons between LCS nodes and a T640X reference sensor. Additionally, Relative Humidity (RH), temperature, and absorption flow measurements were collected via an Automet meteorological station. The monitoring equipment was installed at the Faculty of Environment of the Universidad Distrital in Bogotá. The LCS calibration process began with data preprocessing, which involved filtering, segmentation, and the application of FastDTW. Subsequently, calibration was performed using a variety of models, including two statistical approaches, three Machine Learning algorithms, and one Deep Learning model. The findings highlight the critical importance of applying FastDTW during preprocessing and the necessity of incorporating RH, temperature, and absorption flow factors to enhance accuracy. Furthermore, the study concludes that Random Forest and XGBoost offered the highest performance among the methods evaluated. While satellites map city-wide patterns and MAX-DOAS enables hourly source attribution, our calibrated LCS network supplies continuous, street-scale data at low CAPEX/OPEX—forming a practical backbone for sustained micro-scale monitoring in Bogotá. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

13 pages, 706 KB  
Article
Addressing Pharmacy Admissions Declines Through a Student-Led Pre-Health Advising and Leadership System (PAALS): An Implementation Evaluation
by Ashim Malhotra
Pharmacy 2026, 14(1), 15; https://doi.org/10.3390/pharmacy14010015 (registering DOI) - 25 Jan 2026
Abstract
To enhance PharmD student leadership and advocacy skills, combat the paucity of trained pre-health advisors for pharmacy admissions, augment community relationships, and increase pharmacy admissions volume, we designed, implemented, and assessed PAALS, a Pre-health Academic Advising and Leadership System. PAALS was grounded in [...] Read more.
To enhance PharmD student leadership and advocacy skills, combat the paucity of trained pre-health advisors for pharmacy admissions, augment community relationships, and increase pharmacy admissions volume, we designed, implemented, and assessed PAALS, a Pre-health Academic Advising and Leadership System. PAALS was grounded in Astin’s Theory of Student Involvement and evaluated using the RE-AIM implementation science framework. RE-AIM measured outcomes across Reach, Effectiveness, Adoption, Implementation, and Maintenance as indicators of PAALS’s scale, fidelity, sustainability, and institutional embedding. Analysis of PAALS using the RE-AIM framework demonstrated the following outcomes: (1) Reach: 42 P1-P3 PharmD students participated as mentors; external partnerships expanded from 2 to 8 regional high schools and community programs; and more than 25 mentored learners successfully matriculated into the PharmD program. (2) Effectiveness: students enacted sustained leadership, advocacy, and mentoring roles. (3) Adoption: voluntary uptake of mentoring and governance roles by PharmD students occurred with repeated engagement by external partner institutions. (4) Implementation: Core program components were delivered consistently using existing institutional resources. (5) Maintenance: PAALS remained operational across five academic years despite student turnover, with leadership succession and institutional embedding sustained across cohorts. Our findings demonstrate that student-led advising and advocacy ecosystems address critical gaps in pharmacy-specific pre-health advising models. Full article
(This article belongs to the Section Pharmacy Education and Student/Practitioner Training)
Show Figures

Figure 1

18 pages, 6924 KB  
Article
Analysis of Subgrade Disease Mechanism Based on Abaqus and Highway Experiment
by Jianfei Zhao, Zhiming Yuan, Yuan Qi, Fei Meng, Kaiqi Zhong, Zhiheng Cheng, Yuan Tian and Cong Du
Infrastructures 2026, 11(2), 37; https://doi.org/10.3390/infrastructures11020037 - 23 Jan 2026
Abstract
The subgrade is a critical component of highway infrastructure that directly affects pavement performance and traffic safety. With the rapid expansion of highway networks and increasing heavy-truck traffic, latent subgrade distresses, such as insufficient base strength, uneven settlement, and base cracking, have become [...] Read more.
The subgrade is a critical component of highway infrastructure that directly affects pavement performance and traffic safety. With the rapid expansion of highway networks and increasing heavy-truck traffic, latent subgrade distresses, such as insufficient base strength, uneven settlement, and base cracking, have become key factors limiting pavement serviceability. These distresses are often difficult to detect at early stages and may evolve into sudden structural failures if not properly identified. This study investigates the evolution mechanisms and spatial characteristics of representative subgrade distresses through an integrated framework combining FWD screening, GPR imaging, core sampling, and Abaqus-based finite element simulation. Field data were collected from the Changshen Expressway. Potential weak zones were first identified using FWD testing and further localized by GPR, while multilayer constitutive parameters were obtained from core sample analyses. The field-derived material parameters were then incorporated into an FE model to simulate pavement responses under loading and to interpret the underlying distress mechanisms. The proposed framework enables identification of dominant distress types, quantification of stiffness degradation, and clarification of deterioration pathways within the subgrade system. The results provide practical support for condition assessment, health monitoring, and maintenance decision-making in highway infrastructure. Full article
(This article belongs to the Special Issue Smart Transportation Infrastructure: Optimization and Development)
Show Figures

Figure 1

19 pages, 1514 KB  
Article
Multi-Source Data Fusion and Multi-Task Physics-Informed Transformer for Power Transformer Fault Diagnosis
by Yuanfang Huang, Zhanhong Huang and Junbin Chen
Energies 2026, 19(3), 599; https://doi.org/10.3390/en19030599 (registering DOI) - 23 Jan 2026
Abstract
Power transformers are critical assets in power systems, and their reliable operation is essential for grid stability. Conventional fault diagnosis methods suffer from delayed response and limited adaptability, while existing artificial intelligence-based approaches face challenges related to data heterogeneity, limited interpretability, and weak [...] Read more.
Power transformers are critical assets in power systems, and their reliable operation is essential for grid stability. Conventional fault diagnosis methods suffer from delayed response and limited adaptability, while existing artificial intelligence-based approaches face challenges related to data heterogeneity, limited interpretability, and weak integration of physical mechanisms. To address these issues, this paper proposes a physics-informed enhanced transformer-based framework for power transformer fault diagnosis. A unified temporal representation scheme is developed to integrate heterogeneous monitoring data using Dynamic Time Warping and physics-guided feature projection. Physical priors derived from thermodynamic laws and gas diffusion principles are embedded into the attention mechanism through multi-physics coupling constraints, improving physical consistency and interpretability. In addition, a multi-task diagnostic strategy is adopted to jointly perform fault classification, severity assessment, and fault localization. Experiments on 3000 samples from 76 power transformers demonstrate that the proposed method achieves high diagnostic accuracy and superior robustness under noise and interference, indicating its effectiveness for practical predictive maintenance applications. Full article
Show Figures

Figure 1

21 pages, 5271 KB  
Article
Diagnosis of Partial Discharge in High-Voltage Potential Transformers Using 2D Scatter Plots with Residual Neural Networks
by Chun-Chun Hung, Meng-Hui Wang, Shiue-Der Lu and Cheng-Chien Kuo
Processes 2026, 14(3), 403; https://doi.org/10.3390/pr14030403 - 23 Jan 2026
Abstract
This study aims to propose a fault diagnosis method for partial discharge (PD) in high-voltage (HV) potential transformers (PTs) by combining discrete wavelet transform (DWT), scatter plot (SP), and a residual neural network (ResNet) deep learning model for feature extraction and classification. First, [...] Read more.
This study aims to propose a fault diagnosis method for partial discharge (PD) in high-voltage (HV) potential transformers (PTs) by combining discrete wavelet transform (DWT), scatter plot (SP), and a residual neural network (ResNet) deep learning model for feature extraction and classification. First, models of HV PTs under normal conditions and three internal fault types were established, including coil eccentricity, voids between the primary winding and the core, and voids between the primary and secondary windings. After measuring the PD signals, DWT filtering was applied to process the signals, and the filtered PD signals, together with the fundamental voltage signals, were transformed into an image-based feature SP to represent the characteristics of each fault. Finally, the SPs were trained using the ResNet model to identify four different defect types in HV PTs. Experimental results showed that the proposed method achieves a fault identification accuracy of 98%. Additionally, compared to other deep learning models, the proposed method significantly improves diagnostic efficiency and accuracy. This study also developed an intelligent online fault monitoring and predictive maintenance system for HV PTs to enhance the stability of power grids and equipment. Full article
(This article belongs to the Section Energy Systems)
22 pages, 1462 KB  
Article
Effects of Window and Batch Size on Autoencoder-LSTM Models for Remaining Useful Life Prediction
by Eugene Jeon, Donghwan Jin and Yeonhee Kim
Machines 2026, 14(2), 135; https://doi.org/10.3390/machines14020135 - 23 Jan 2026
Abstract
Remaining useful life (RUL) prediction is central to predictive maintenance, but acquiring sufficient run-to-failure data remains challenging. To better exploit limited labeled data, this study investigates a pipeline combining an unsupervised autoencoder (AE) and supervised LSTM regression on the NASA C-MAPSS dataset. Building [...] Read more.
Remaining useful life (RUL) prediction is central to predictive maintenance, but acquiring sufficient run-to-failure data remains challenging. To better exploit limited labeled data, this study investigates a pipeline combining an unsupervised autoencoder (AE) and supervised LSTM regression on the NASA C-MAPSS dataset. Building on an AE-LSTM baseline, we analyze how window size and batch size affect accuracy and training efficiency. Using the FD001 and FD004 subsets with training-capped RUL labels, we perform multi-seed experiments over a wide grid of window lengths and batch sizes. The AE is pre-trained on normalized sensor streams and reused as a feature extractor, while the LSTM head is trained with early stopping. Performance was assessed using RMSE, C-MAPSS score, and training time, reporting 95% confidence intervals. Results show that fine-tuning the encoder with a batch size of 128 yielded the best mean RMSE of 13.99 (FD001) and 28.67 (FD004). We obtained stable optimal window ranges (40–70 for FD001; 60–80 for FD004) and found that batch sizes of 64–256 offer the best accuracy–efficiency trade-off. These optimal ranges were further validated using Particle Swarm Optimization (PSO). These findings offer practical recommendations for tuning AE-LSTM-based RUL prediction models and demonstrate that performance remains stable within specific hyperparameter ranges. Full article
32 pages, 3315 KB  
Article
Digital Twin Success Factors and Their Impact on Efficiency, Energy, and Cost Under Economic Strength: A Structural Equation Modeling and XGBoost Approach
by Jiachen Sun, Atasya Osmadi, Terh Jing Khoo, Qinghua Liu, Yi Zheng, Shan Liu and Yiwen Xu
Buildings 2026, 16(3), 467; https://doi.org/10.3390/buildings16030467 - 23 Jan 2026
Viewed by 22
Abstract
Digital twin (DT) technology is recognized for its transformative potential to enhance efficiency in the construction process. However, the full potential of DT in construction practices remains largely unrealised. Moreover, few studies explore how DT success factors affect efficiency improvement (EI), energy optimization [...] Read more.
Digital twin (DT) technology is recognized for its transformative potential to enhance efficiency in the construction process. However, the full potential of DT in construction practices remains largely unrealised. Moreover, few studies explore how DT success factors affect efficiency improvement (EI), energy optimization (EO), and cost control (CC) in the context of economic strength (ES). The study applied a hybrid research method to examine the impact of key DT success factors on EI, EO, and CC under the moderation of ES. After a critical literature review, five key DT success factors were identified. Then, 490 valid questionnaires were analyzed with the Partial Least Squares Structural Equation Model (PLS-SEM) to assess how success factors affect DT effectiveness. This is complemented using extreme gradient boosting (XGBoost) to assess prediction accuracy and understand which factors most influenced EI, EO, and CC. Research shows that ES exerts a significant positive influence on the relationships between most success factors and performance outcomes. High levels of ES enhance the contribution of success factors to performance in EI, EO, and CC. Resource management (RM) has a strong influence on EI and EO, but a weaker influence on CC; process optimization (PO) has the strongest influence on EO, a moderate influence on CC, and the weakest influence on EI; real-time monitoring (R-Tm) primarily affects EI; sustainable design (SD) has a comprehensive and significant regulatory effect on EI, EO, and CC; and predictive maintenance (PM) has a strong influence on both EI and CC. In practice, it offers practical guidance for implementing DT and supports policy and resource planning for building stakeholders. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
30 pages, 24852 KB  
Article
Multi-Source Remote Sensing Data-Driven Susceptibility Mapping of Retrogressive Thaw Slumps in the Yangtze River Source Region
by Yun Tian, Taorui Zeng, Qing Lü, Hongwei Jiang, Sihan Yang, Hang Cao and Wenbing Yu
Remote Sens. 2026, 18(3), 380; https://doi.org/10.3390/rs18030380 - 23 Jan 2026
Viewed by 26
Abstract
Despite the ecological sensitivity of the Yangtze River Source Region (YRSR), the current research critically lacks a quantified assessment of the spatial occurrence probability of Retrogressive Thaw Slumps (RTSs) in this specific high-altitude terrain. This study aims to bridge this knowledge gap by [...] Read more.
Despite the ecological sensitivity of the Yangtze River Source Region (YRSR), the current research critically lacks a quantified assessment of the spatial occurrence probability of Retrogressive Thaw Slumps (RTSs) in this specific high-altitude terrain. This study aims to bridge this knowledge gap by establishing a robust susceptibility assessment framework to accurately model the spatial distribution and risk levels of RTSs. The innovations of this research include (i) the construction of a complete and up-to-date 2024 RTS inventory for the entire YRSR based on high-resolution optical remote sensing; (ii) the integration of time-series spectral features (e.g., vegetation and moisture trends) alongside static topographic variables to enhance the physical interpretability of machine learning models; and (iii) the application of advanced ensemble learning algorithms combined with SHAP analysis to establish a comprehensive RTS susceptibility zonation. The results reveal a rapid intensification of instability, evidenced by an 83.5% surge in RTS abundance, with the CatBoost model achieving exceptional accuracy (AUC = 0.994), and identifying that specific static topographic factors (particularly elevations between 4693 and 4812 m and north-to-east aspect) and dynamic spectral anomalies (indicated by declining vegetation vigor and increasing surface wetness) are the dominant drivers controlling RTS distribution. This study provides essential baseline data and spatial guidance for ecological conservation and engineering maintenance in the Asian Water Tower, demonstrating a highly effective paradigm for monitoring permafrost hazards under climate warming. Full article
(This article belongs to the Special Issue Landslide Detection Using Machine and Deep Learning)
Show Figures

Figure 1

26 pages, 4329 KB  
Review
Advanced Sensor Technologies in Cutting Applications: A Review
by Motaz Hassan, Roan Kirwin, Chandra Sekhar Rakurty and Ajay Mahajan
Sensors 2026, 26(3), 762; https://doi.org/10.3390/s26030762 (registering DOI) - 23 Jan 2026
Viewed by 34
Abstract
Advances in sensing technologies are increasingly transforming cutting operations by enabling data-driven condition monitoring, predictive maintenance, and process optimization. This review surveys recent developments in sensing modalities for cutting systems, including vibration sensors, acoustic emission sensors, optical and vision-based systems, eddy-current sensors, force [...] Read more.
Advances in sensing technologies are increasingly transforming cutting operations by enabling data-driven condition monitoring, predictive maintenance, and process optimization. This review surveys recent developments in sensing modalities for cutting systems, including vibration sensors, acoustic emission sensors, optical and vision-based systems, eddy-current sensors, force sensors, and emerging hybrid/multi-modal sensing frameworks. Each sensing approach offers unique advantages in capturing mechanical, acoustic, geometric, or electromagnetic signatures related to tool wear, process instability, and fault development, while also showing modality-specific limitations such as noise sensitivity, environmental robustness, and integration complexity. Recent trends show a growing shift toward hybrid and multi-modal sensor fusion, where data from multiple sensors are combined using advanced data analytics and machine learning to improve diagnostic accuracy and reliability under changing cutting conditions. The review also discusses how artificial intelligence, Internet of Things connectivity, and edge computing enable scalable, real-time monitoring solutions, along with the challenges related to data needs, computational costs, and system integration. Future directions highlight the importance of robust fusion architectures, physics-informed and explainable models, digital twin integration, and cost-effective sensor deployment to accelerate adoption across various manufacturing environments. Overall, these advancements position advanced sensing and hybrid monitoring strategies as key drivers of intelligent, Industry 4.0-oriented cutting processes. Full article
Show Figures

Figure 1

30 pages, 7812 KB  
Article
Drone-Based Road Marking Condition Mapping: A Drone Imaging and Geospatial Pipeline for Asset Management
by Minh Dinh Bui, Jubin Lee, Kanghyeok Choi, HyunSoo Kim and Changjae Kim
Drones 2026, 10(2), 77; https://doi.org/10.3390/drones10020077 (registering DOI) - 23 Jan 2026
Viewed by 30
Abstract
This study presents a drone-based method for assessing the condition of road markings from high-resolution imagery acquired by a UAV. A DJI Matrice 300 RTK (Real-Time Kinematic) equipped with a Zenmuse P1 camera (DJI, China) is flown over urban road corridors to capture [...] Read more.
This study presents a drone-based method for assessing the condition of road markings from high-resolution imagery acquired by a UAV. A DJI Matrice 300 RTK (Real-Time Kinematic) equipped with a Zenmuse P1 camera (DJI, China) is flown over urban road corridors to capture images with centimeter-level ground sampling distance. In contrast to common approaches that rely on vehicle-mounted or street-view cameras, using a UAV reduces survey time and deployment effort while still providing views that are suitable for marking. The flight altitude, overlap, and corridor pattern are chosen to limit occlusions from traffic and building shadows while preserving the resolution required for condition assessment. From these images, the method locates individual markings, assigns a class to each marking, and estimates its level of deterioration. Candidate markings are first detected with YOLOv9 on the UAV imagery. The detections are cropped and segmented, which refines marking boundaries and thin structures. The condition is then estimated at the pixel level by modeling gray-level statistics with kernel density estimation (KDE) and a two-component Gaussian mixture model (GMM) to separate intact and distressed material. Subsequently, we compute a per-instance damage ratio that summarizes the proportion of degraded pixels within each marking. All results are georeferenced to map coordinates using a 3D reference model, allowing visualization on base maps and integration into road asset inventories. Experiments on unseen urban areas report detection performance (precision, recall, mean average precision) and segmentation performance (intersection over union), and analyze the stability of the damage ratio and processing time. The findings indicate that the drone-based method can identify road markings, estimate their condition, and attach each record to geographic space in a way that is useful for inspection scheduling and maintenance planning. Full article
(This article belongs to the Special Issue Urban Traffic Monitoring and Analysis Using UAVs)
23 pages, 3111 KB  
Article
Data-Driven Predictive Maintenance for Aircraft Components Through Sparse Event Logs
by Fulin Sezenoğlu Çetin, Ufuk Üngör, Emre Koyuncu and İbrahim Özkol
Aerospace 2026, 13(1), 110; https://doi.org/10.3390/aerospace13010110 - 22 Jan 2026
Viewed by 7
Abstract
Effective predictive maintenance is crucial for ensuring aircraft reliability, reducing operational disruptions, and supporting spare part inventory management in airline operations. However, maintenance data is often sparse, with irregular observations, missing records, and imbalanced failure distributions, making accurate forecasting a significant challenge. This [...] Read more.
Effective predictive maintenance is crucial for ensuring aircraft reliability, reducing operational disruptions, and supporting spare part inventory management in airline operations. However, maintenance data is often sparse, with irregular observations, missing records, and imbalanced failure distributions, making accurate forecasting a significant challenge. This study proposes a data-driven framework for maintenance prediction under sparse observational data. We implement and compare two distinct methodologies: survival analysis via DeepHit for time-to-event prediction, and a latent space classifier with autoencoder backbone. Each method is evaluated on historical aircraft maintenance logs and component installation records, addressing challenges posed by limited and imbalanced datasets. Both models are trained and tested on ten years of maintenance logs and component installation records sourced from an airline MRO (Maintenance, Repair and Overhaul) company that services a fleet of more than 500 aircraft, offering a realistic and scalable setting for fleet-wide maintenance analysis. The latent space classifier demonstrates superior overall performance and consistency across diverse components and prediction horizons compared to DeepHit, which is constrained by its sensitivity to probability thresholds. The encoder-based method effectively transfers knowledge from high-data components to those with sparse maintenance histories, enabling reliable maintenance forecasting and enhanced inventory planning for large-scale airline operations. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
26 pages, 1205 KB  
Article
Iceberg Model as a Digital Risk Twin for the Health Monitoring of Complex Engineering Systems
by Igor Kabashkin
Mathematics 2026, 14(2), 385; https://doi.org/10.3390/math14020385 - 22 Jan 2026
Viewed by 5
Abstract
This paper introduces an iceberg-based digital risk twin (DRT) framework for the health monitoring of complex engineering systems. The proposed model transforms multidimensional sensor and contextual data into a structured, interpretable three-dimensional geometry that captures both observable and latent risk components. Each monitored [...] Read more.
This paper introduces an iceberg-based digital risk twin (DRT) framework for the health monitoring of complex engineering systems. The proposed model transforms multidimensional sensor and contextual data into a structured, interpretable three-dimensional geometry that captures both observable and latent risk components. Each monitored parameter is represented as a vertical geometric sheet whose height encodes a normalized risk level, producing an evolving iceberg structure in which the visible and submerged regions distinguish emergent anomalies from latent degradation. A formal mathematical formulation is developed, defining the mappings from the risk vector to geometric height functions, spatial layout, and surface composition. The resulting parametric representation provides both analytical tractability and intuitive visualization. A case study involving an aircraft fuel system demonstrates the capacity of the DRT to reveal dominant risk drivers, parameter asymmetries, and temporal trends not easily observable in traditional time-series analysis. The model is shown to integrate naturally into AI-enabled health management pipelines, providing an interpretable intermediary layer between raw data streams and advanced diagnostic or predictive algorithms. Owing to its modular structure and domain-agnostic formulation, the DRT approach is applicable beyond aviation, including power grids, rail systems, and industrial equipment monitoring. The results indicate that the iceberg representation offers a promising foundation for enhancing explainability, situational awareness, and decision support in the monitoring of complex engineering systems. Full article
Back to TopTop