Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = modal birefringence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4465 KB  
Article
Genetic Algorithm Optimization for Designing Polarization-Maintaining Few-Mode Fibers with Uniform Doping Profiles
by Hao Gu, Jian Wang, Zhiyu Chang, Kun Li, Xingcheng Han and Bin Liu
Photonics 2025, 12(11), 1063; https://doi.org/10.3390/photonics12111063 - 28 Oct 2025
Viewed by 225
Abstract
To support mode-division multiplexing with reduced inter-modal crosstalk, we propose a novel polarization-maintaining few-mode fiber design with a uniform doping profile and no air holes. The fiber employs two placed low-index inclusions to lift modal degeneracy and achieve strong birefringence while maintaining compatibility [...] Read more.
To support mode-division multiplexing with reduced inter-modal crosstalk, we propose a novel polarization-maintaining few-mode fiber design with a uniform doping profile and no air holes. The fiber employs two placed low-index inclusions to lift modal degeneracy and achieve strong birefringence while maintaining compatibility with standard MCVD and OVD fabrication processes. A genetic algorithm is used to optimize the geometrical and refractive index parameters. Finite element simulations show that the optimized design supports ten guided modes with a minimum effective index difference exceeding 3.8×104 across the C+L band. The fiber exhibits moderate dispersion and strong modal isolation. Tolerance analysis confirms good robustness against index fluctuations and moderate sensitivity to dimensional variations. These features suggest that the proposed PM-FMF is a promising candidate for short-reach spatial-division multiplexing applications where intrinsic polarization and mode separation are desired. Full article
Show Figures

Figure 1

14 pages, 7151 KB  
Article
Design of Hollow-Core Anti-Resonant Fibers Supporting Few Weakly Coupled Polarization-Maintaining Modes
by Linxuan Zong, Jiayao Cheng and Yueyu Xiao
Photonics 2025, 12(10), 1018; https://doi.org/10.3390/photonics12101018 - 15 Oct 2025
Viewed by 463
Abstract
A nested semi-tube hollow-core anti-resonant fiber (HC-ARF) that can support the high-purity transmission of a few polarization-maintaining modes is designed in this paper. By employing bi-thickness hybrid silica/silicon anti-resonant tubes, the birefringence of the orthogonal polarized modes is significantly improved, and the weak [...] Read more.
A nested semi-tube hollow-core anti-resonant fiber (HC-ARF) that can support the high-purity transmission of a few polarization-maintaining modes is designed in this paper. By employing bi-thickness hybrid silica/silicon anti-resonant tubes, the birefringence of the orthogonal polarized modes is significantly improved, and the weak coupling condition of the five lowest-order polarization maintaining modes, including the LP01_x, LP01_y, LP11a_x, LP11b_x, and LP11a_y, can be met. The effective refractive index difference between each pair of the supported adjacent modes is larger than 1.0 × 10−4. With hybrid multi-layer nested semi-tubes, the confinement losses of the supported modes are all less than 1.50 × 10−1 dB/m within a transmission band from 1.530 to 1.620 μm. The minimum confinement losses of the LP01_y, LP01_x, LP11a_y, LP11a_x, and LP11b_x modes are 3.71 × 10−4 dB/m, 1.61 × 10−3 dB/m, 2.00 × 10−2 dB/m, 1.30 × 10−1 dB/m, and 4.20 × 10−2 dB/m, respectively. Meanwhile, the unwanted higher-order modes are filtered out well to guarantee the modal purity. The minimum higher-order-mode extinction ratio of the lowest-loss LP21 mode to the highest-loss LP11 mode remains larger than 139 from 1.545 to 1.615 μm. The numerical results highlight the potential of the proposed polarization-maintaining few-mode hollow-core anti-resonant fibers in many application fields, such as short-range and high-capacity data transmission networks, fiber sensing systems, quantum communication systems, and so on. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

9 pages, 1827 KB  
Article
Efficient Second-Harmonic Generation in Thin-Film Lithium Tantalate Through Modal Phase-Matching
by Jiacheng Liu, Gongyu Xia, Pingyu Zhu, Kaikai Zhang, Ping Xu and Zhihong Zhu
Photonics 2024, 11(12), 1150; https://doi.org/10.3390/photonics11121150 - 6 Dec 2024
Cited by 5 | Viewed by 2052
Abstract
Lithium tantalate (LT) exhibits nonlinear optical properties that are comparable to those of lithium niobate (LN), yet the former surpasses the latter in several respects. These include an enhanced optical damage threshold, a wider transparency range, and lower birefringence. Consequently, LT is an [...] Read more.
Lithium tantalate (LT) exhibits nonlinear optical properties that are comparable to those of lithium niobate (LN), yet the former surpasses the latter in several respects. These include an enhanced optical damage threshold, a wider transparency range, and lower birefringence. Consequently, LT is an excellent material for optical frequency conversion applications. In this study, we have devised a novel device based on thin-film lithium tantalate (TFLT) for the efficient generation of second-harmonic waves. The design employs modal phase-matching (MPM), which circumvents the intricacies of conventional poling techniques, and attains a normalised conversion efficiency of 120% W−1cm−2. In order to address the challenges presented by higher-order modes, a mode converter with an insertion loss of less than 0.1 dB has been developed, thereby ensuring the efficient utilisation of the second harmonic. This study not only demonstrates the potential of TFLT for high-performance SHG, but also promotes the development of integrated nonlinear TFLT platforms. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

13 pages, 3022 KB  
Article
Structure-Function Correlation of Retinal Fibrosis in Eyes with Neovascular Age-Related Macular Degeneration
by Markus Schranz, Stefan Sacu, Gregor S. Reiter, Magdalena Baratsits, Silvia Desissaire, Michael Pircher, Georgios Mylonas, Christoph Hitzenberger, Ursula Schmidt-Erfurth and Philipp Ken Roberts
J. Clin. Med. 2024, 13(4), 1074; https://doi.org/10.3390/jcm13041074 - 14 Feb 2024
Cited by 5 | Viewed by 2105
Abstract
Purpose: To assess retinal function in areas of presumed fibrosis due to neovascular age-related macular degeneration (nAMD), using multimodal imaging and structure-function correlation. Design: Cross-sectional observational study. Methods: 30 eyes of 30 consecutive patients with nAMD with a minimum history of one year [...] Read more.
Purpose: To assess retinal function in areas of presumed fibrosis due to neovascular age-related macular degeneration (nAMD), using multimodal imaging and structure-function correlation. Design: Cross-sectional observational study. Methods: 30 eyes of 30 consecutive patients with nAMD with a minimum history of one year of anti-vascular endothelial growth factor therapy were included. Each patient underwent microperimetry (MP), color fundus photography (CFP), standard spectral-domain-based OCT (SD-OCT), and polarization sensitive-OCT (PS-OCT) imaging. PS-OCT technology can depict retinal fibrosis based on its birefringence. CFP, SD-OCT, and PS-OCT were evaluated independently for the presence of fibrosis at the corresponding MP stimuli locations. MP results and morphologic findings in CFP, SD-OCT, and PS-OCT were co-registered and analyzed using mixed linear models. Results: In total, 1350 MP locations were evaluated to assess the functional impact of fibrosis according to a standardized protocol. The estimated means of retinal areas with signs of fibrosis were 12.60 db (95% confidence interval: 10.44–14.76) in CFP, 11.60 db (95% COI: 8.84–14.36) in OCT, and 11.02 db (95% COI 8.10–13.94) in PS-OCT. Areas evaluated as subretinal fibrosis in three (7.2 db) or two (10.1 db) modalities were significantly correlated with a lower retinal sensitivity than a subretinal fibrosis observed in only one (15.3 db) or none (23.3 db) modality (p < 0.001). Conclusions: CFP, SD-OCT and PS-OCT are all suited to detect areas of reduced retinal sensitivity related to fibrosis, however, a multimodal imaging approach provides higher accuracy in the identification of areas with low sensitivity in MP (i.e., impaired retinal function), and thereby improves the detection rate of subretinal fibrosis in nAMD. Full article
Show Figures

Figure 1

15 pages, 6812 KB  
Article
A Weakly-Coupled Double Bow-Tie Multi-Ring Elliptical Core Multi-Mode Fiber for Mode Division Multiplexing across C+L+U Band
by Yingjuan Ci, Fang Ren, Xiao Lei, Yidan Li, Deyang Zhou and Jianping Wang
Appl. Sci. 2023, 13(10), 5855; https://doi.org/10.3390/app13105855 - 9 May 2023
Cited by 1 | Viewed by 2401
Abstract
We herein present a weakly-coupled double bow-tie multi-ring elliptical core multi-mode fiber (DBT-MREC-MMF) supporting 22 eigenmodes for mode division multiplexing across the C+L+U band. The proposed fiber introduces a multi-ring elliptical core, bow-tie air holes, and bow-tie stress-applying areas to effectively split adjacent [...] Read more.
We herein present a weakly-coupled double bow-tie multi-ring elliptical core multi-mode fiber (DBT-MREC-MMF) supporting 22 eigenmodes for mode division multiplexing across the C+L+U band. The proposed fiber introduces a multi-ring elliptical core, bow-tie air holes, and bow-tie stress-applying areas to effectively split adjacent eigenmodes. By utilizing the finite element method (FEM), we accordingly optimized the fiber to support the 22 modes under the weakly-coupled condition. We evaluated the impact of fiber parameters on the minimum effective refractive index difference (min Δneff) between adjacent eigenmodes, model birefringence (Bm), and bending loss at a wavelength of 1550 nm. Additionally, broadband performance metrics, such as effective modal index (neff), effective index difference (Δneff), effective mode area (Aeff), differential mode delay (DMD), and chromatic dispersion (D), were comprehensively studied over the entire C+L+U band, ranging from 1530 to 1675 nm. The proposed fiber is capable of supporting 22 completely separated eigenmodes with a min Δneff between adjacent eigenmodes larger than 3.089 × 10−4 over the entire C+L+U band. The proposed DBT-MREC-MMF holds great potential for use in short-haul communication systems that require MDM to improve transmission capacity and expand bandwidth. Full article
(This article belongs to the Special Issue Advances in Fiber Optic Design and Optical Communication)
Show Figures

Figure 1

9 pages, 9496 KB  
Article
Ferroelectric Nanodomain Engineering in Bulk Lithium Niobate Crystals in Ultrashort-Pulse Laser Nanopatterning Regime
by Sergey Kudryashov, Alexey Rupasov, Mikhail Kosobokov, Andrey Akhmatkhanov, George Krasin, Pavel Danilov, Boris Lisjikh, Anton Turygin, Evgeny Greshnyakov, Michael Kovalev, Artem Efimov and Vladimir Shur
Nanomaterials 2022, 12(23), 4147; https://doi.org/10.3390/nano12234147 - 23 Nov 2022
Cited by 14 | Viewed by 2905
Abstract
Ferroelectric nanodomains were formed in bulk lithium niobate single crystals near nanostructured microtracks laser-inscribed by 1030-nm 0.3-ps ultrashort laser pulses at variable pulse energies in sub- and weakly filamentary laser nanopatterning regimes. The microtracks and related nanodomains were characterized by optical, scanning probe [...] Read more.
Ferroelectric nanodomains were formed in bulk lithium niobate single crystals near nanostructured microtracks laser-inscribed by 1030-nm 0.3-ps ultrashort laser pulses at variable pulse energies in sub- and weakly filamentary laser nanopatterning regimes. The microtracks and related nanodomains were characterized by optical, scanning probe and confocal second-harmonic generation microscopy methods. The nanoscale material sub-structure in the microtracks was visualized in the sample cross-sections by atomic force microscopy (AFM), appearing weakly birefringent in polarimetric microscope images. The piezoresponce force microscopy (PFM) revealed sub-100 nm ferroelectric domains formed in the vicinity of the embedded microtrack seeds, indicating a promising opportunity to arrange nanodomains in the bulk ferroelectric crystal in on-demand positions. These findings open a new modality in direct laser writing technology, which is related to nanoscale writing of ferroelectric nanodomains and prospective three-dimensional micro-electrooptical and nanophotonic devices in nonlinear-optical ferroelectrics. Full article
(This article belongs to the Special Issue Laser Synthesis and Processing of Nanostructured Materials)
Show Figures

Figure 1

10 pages, 2809 KB  
Article
Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers
by Michał Kwaśny, Paweł Mergo, Marek Napierała, Krzysztof Markiewicz and Urszula A. Laudyn
Materials 2022, 15(16), 5604; https://doi.org/10.3390/ma15165604 - 15 Aug 2022
Cited by 3 | Viewed by 2108
Abstract
Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test [...] Read more.
Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test (FUT) was subjected to uniformly applied diameter stress caused by winding on a cylinder of a given diameter. Our work analyzed how the nonlinear frequency conversion and the output modal field profiles depended on the degree of birefringence in FUT. The experimental results significantly affected the order of the excited moduli in fiber sections characterized by different amounts of birefringence. We also checked the efficiency of the FWM process for different polarizations of the pump beam to determine those for which the FWM process was most effective for the 532 nm sub-nanosecond pulses. More than 30% conversion efficiency was obtained for the FUTs with a length of tens of centimeters. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

23 pages, 5831 KB  
Review
Recent Progress in Distributed Brillouin Sensors Based on Few-Mode Optical Fibers
by Yong Hyun Kim and Kwang Yong Song
Sensors 2021, 21(6), 2168; https://doi.org/10.3390/s21062168 - 19 Mar 2021
Cited by 18 | Viewed by 3870
Abstract
Brillouin scattering is a dominant inelastic scattering observed in optical fibers, where the energy and momentum transfer between photons and acoustic phonons takes place. Narrowband reflection (or gain and loss) spectra appear in the spontaneous (or stimulated) Brillouin scattering, and their linear dependence [...] Read more.
Brillouin scattering is a dominant inelastic scattering observed in optical fibers, where the energy and momentum transfer between photons and acoustic phonons takes place. Narrowband reflection (or gain and loss) spectra appear in the spontaneous (or stimulated) Brillouin scattering, and their linear dependence of the spectral shift on ambient temperature and strain variations is the operation principle of distributed Brillouin sensors, which have been developed for several decades. In few-mode optical fibers (FMF’s) where higher-order spatial modes are guided in addition to the fundamental mode, two different optical modes can be coupled by the process of stimulated Brillouin scattering (SBS), as observed in the phenomena called intermodal SBS (two photons + one acoustic phonon) and intermodal Brillouin dynamic grating (four photons + one acoustic phonon; BDG). These intermodal scattering processes show unique reflection (or gain and loss) spectra depending on the spatial mode structure of FMF, which are useful not only for the direct measurement of polarization and modal birefringence in the fiber, but also for the measurement of environmental variables like strain, temperature, and pressure affecting the birefringence. In this paper, we present a technical review on recent development of distributed Brillouin sensors on the platform of FMF’s. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Fiber Lasers)
Show Figures

Figure 1

12 pages, 1435 KB  
Communication
A Highly Birefringent Photonic Crystal Fiber for Terahertz Spectroscopic Chemical Sensing
by Tianyu Yang, Liang Zhang, Yunjie Shi, Shidi Liu and Yuming Dong
Sensors 2021, 21(5), 1799; https://doi.org/10.3390/s21051799 - 5 Mar 2021
Cited by 38 | Viewed by 3911
Abstract
A photonic crystal fiber (PCF) with high relative sensitivity was designed and investigated for the detection of chemical analytes in the terahertz (THz) regime. To ease the complexity, an extremely simple cladding employing four struts is adopted, which forms a rectangular shaped core [...] Read more.
A photonic crystal fiber (PCF) with high relative sensitivity was designed and investigated for the detection of chemical analytes in the terahertz (THz) regime. To ease the complexity, an extremely simple cladding employing four struts is adopted, which forms a rectangular shaped core area for filling with analytes. Results of enormous simulations indicate that a minimum 87.8% relative chemical sensitivity with low confinement and effective material absorption losses can be obtained for any kind of analyte, e.g., HCN (1.26), water (1.33), ethanol (1.35), KCN (1.41), or cocaine (1.50), whose refractive index falls in the range of 1.2 to 1.5. Besides, the PCF can also achieve high birefringence (∼0.01), low and flat dispersion, a large effective modal area, and a large numerical aperture within the investigated frequency range from 0.5 to 1.5 THz. We believe that the proposed PCF can be applied to chemical sensing of liquid and THz systems requiring wide-band polarization-maintaining transmission and low attenuation. Full article
(This article belongs to the Special Issue Terahertz Emitters and Detectors)
Show Figures

Figure 1

11 pages, 2081 KB  
Article
A Novel Method of Spectra Processing for Brillouin Optical Time Domain Reflectometry
by Fedor L. Barkov, Yuri A. Konstantinov and Anton I. Krivosheev
Fibers 2020, 8(9), 60; https://doi.org/10.3390/fib8090060 - 22 Sep 2020
Cited by 17 | Viewed by 4202
Abstract
A new method of Brillouin spectra post-processing, which could be applied in modern distributed optical sensors: Brillouin optical time domain analyzers/reflectometers (BOTDA/BOTDR), has been demonstrated. It operates by means of the correlation analysis performed with special technique («backward-correlation»). It does not need any [...] Read more.
A new method of Brillouin spectra post-processing, which could be applied in modern distributed optical sensors: Brillouin optical time domain analyzers/reflectometers (BOTDA/BOTDR), has been demonstrated. It operates by means of the correlation analysis performed with special technique («backward-correlation»). It does not need any additional data for time or space averaging and operates with the single spectrum only. We have simulated the method accuracy dependence on signal-to-noise ratio (SNR) and other parameters. It is shown that the new method produces better results at low SNRs than conventional technique, based on finding of Brillouin spectrum maximum, do. These results are in a good agreement with the experiment. Finally, we have estimated the performance of the new method for its application in polarization-BOTDA set-up for a polarization maintaining (PM) fiber modal birefringence distributed study. Full article
(This article belongs to the Special Issue Optical Fibers as a Key Element of Distributed Sensor Systems)
Show Figures

Graphical abstract

11 pages, 3736 KB  
Letter
Bragg Grating Assisted Sagnac Interferometer in SiO2-Al2O3-La2O3 Polarization-Maintaining Fiber for Strain–Temperature Discrimination
by Zhifang Wu, Peili Wu, Maryna Kudinova, Hailiang Zhang, Perry Ping Shum, Xuguang Shao, Georges Humbert, Jean-Louis Auguste, Xuan Quyen Dinh and Jixiong Pu
Sensors 2020, 20(17), 4772; https://doi.org/10.3390/s20174772 - 24 Aug 2020
Cited by 5 | Viewed by 3389
Abstract
Polarization-maintaining fibers (PMFs) have always received great attention in fiber optic communication systems and components which are sensitive to polarization. Moreover, they are widely applied for high-accuracy detection and sensing devices, such as fiber gyroscope, electric/magnetic sensors, multi-parameter sensors, and so on. Here, [...] Read more.
Polarization-maintaining fibers (PMFs) have always received great attention in fiber optic communication systems and components which are sensitive to polarization. Moreover, they are widely applied for high-accuracy detection and sensing devices, such as fiber gyroscope, electric/magnetic sensors, multi-parameter sensors, and so on. Here, we demonstrated the combination of a fiber Bragg grating (FBG) and Sagnac interference in the same section of a new type of PANDA-structure PMF for the simultaneous measurement of axial strain and temperature. This specialty PMF features two stress-applied parts made of lanthanum-aluminum co-doped silicate (SiO2-Al2O3-La2O3, SAL) glass, which has a higher thermal expansion coefficient than borosilicate glass used commonly in commercial PMFs. Furthermore, the FBG inscribed in this SAL PMF not only aids the device in discriminating strain and temperature, but also calibrates the phase birefringence of the SAL PMF more precisely thanks to the much narrower bandwidth of grating peaks. By analyzing the variation of wavelength interval between two FBG peaks, the underlying mechanism of the phase birefringence responding to temperature and strain is revealed. It explains exactly the sensing behavior of the SAL PMF based Sagnac interference dip. A numerical simulation on the SAL PMF’s internal stress and consequent modal effective refractive indices was performed to double confirm the calibration of fiber’s phase birefringence. Full article
Show Figures

Figure 1

11 pages, 3066 KB  
Article
Liquid-Filled Highly Asymmetric Photonic Crystal Fiber Sagnac Interferometer Temperature Sensor
by Yashar E. Monfared, Amir Ahmadian, Vigneswaran Dhasarathan and Chunhao Liang
Photonics 2020, 7(2), 33; https://doi.org/10.3390/photonics7020033 - 19 May 2020
Cited by 16 | Viewed by 3584
Abstract
In this paper, we theoretically designed and numerically studied a high-resolution and ultrasensitive photonic crystal fiber temperature sensor by selective filling of a liquid with high thermo-optic coefficient in one of the airholes of the fiber. The finite element method was utilized to [...] Read more.
In this paper, we theoretically designed and numerically studied a high-resolution and ultrasensitive photonic crystal fiber temperature sensor by selective filling of a liquid with high thermo-optic coefficient in one of the airholes of the fiber. The finite element method was utilized to study the propagation characteristics and the modal birefringence of the fiber under different ambient temperatures. A large base birefringence value of 7.7 × 10−4 as well as a large birefringence sensitivity of almost 29% to a 10 °C temperature variation was achieved for the optimized fiber design with liquid chloroform between 15 °C and 35 °C. We also studied the performance of the proposed optical fiber in a temperature sensing Sagnac interferometer. An average linear temperature sensitivity of 17.53 nm/°C with an average resolution of 5.7 × 10−4 °C was achieved over a temperature range of 20 °C (15 °C to 35 °C). Full article
Show Figures

Figure 1

8 pages, 2003 KB  
Article
Second-Harmonic Generation in Suspended AlGaAs Waveguides: A Comparative Study
by Iännis Roland, Marco Ravaro, Stéphan Suffit, Pascal Filloux, Aristide Lemaître, Ivan Favero and Giuseppe Leo
Micromachines 2020, 11(2), 229; https://doi.org/10.3390/mi11020229 - 23 Feb 2020
Cited by 11 | Viewed by 4392
Abstract
Due to adjustable modal birefringence, suspended AlGaAs optical waveguides with submicron transverse sections can support phase-matched frequency mixing in the whole material transparency range, even close to the material bandgap, by tuning the width-to-height ratio. Furthermore, their single-pass conversion efficiency is potentially huge, [...] Read more.
Due to adjustable modal birefringence, suspended AlGaAs optical waveguides with submicron transverse sections can support phase-matched frequency mixing in the whole material transparency range, even close to the material bandgap, by tuning the width-to-height ratio. Furthermore, their single-pass conversion efficiency is potentially huge, thanks to the extreme confinement of the interacting modes in the highly nonlinear and high-refractive-index core, with scattering losses lower than in selectively oxidized or quasi-phase-matched AlGaAs waveguides. Here we compare the performances of two types of suspended waveguides made of this material, designed for second-harmonic generation (SHG) in the telecom range: (a) a nanowire suspended in air by lateral tethers and (b) an ultrathin nanorib, made of a strip lying on a suspended membrane of the same material. Both devices have been fabricated from a 123 nm thick AlGaAs epitaxial layer and tested in terms of SHG efficiency, injection and propagation losses. Our results point out that the nanorib waveguide, which benefits from a far better mechanical robustness, performs comparably to the fully suspended nanowire and is well-suited for liquid sensing applications. Full article
(This article belongs to the Special Issue Nonlinear Photonics Devices)
Show Figures

Figure 1

12 pages, 2935 KB  
Article
Chalcogenide–Tellurite Composite Photonic Crystal Fiber: Extreme Non-Linearity Meets Large Birefringence
by Amir Ahmadian and Yashar Esfahani Monfared
Appl. Sci. 2019, 9(20), 4445; https://doi.org/10.3390/app9204445 - 19 Oct 2019
Cited by 18 | Viewed by 3315
Abstract
In this paper, we propose a novel design of a photonic crystal fiber (PCF) with tellurite-cladding, three rings of air-holes and elliptical concentration of As2S3 in the fiber core. The combined effect of tight mode confinement (an effective mode area [...] Read more.
In this paper, we propose a novel design of a photonic crystal fiber (PCF) with tellurite-cladding, three rings of air-holes and elliptical concentration of As2S3 in the fiber core. The combined effect of tight mode confinement (an effective mode area of nearly 0.6 µm2), large non-linear refractive index of As2S3 and significant variation between the effective modal index values of the two orthogonal states of the fundamental guided mode leads to extreme non-linear coefficient and birefringence values, all achieved at the zero dispersion wavelength (ZDW) of 1550 nm. The corresponding birefringence and non-linear coefficient (7 × 10−3 and 28 W−1 m−1, respectively) are more than three orders of magnitude larger than that of the regular silica-based highly non-linear PCFs. In addition, we numerically demonstrate that by modifying the core and air-hole dimensions one can easily control the dispersion curve and tune the ZDW of the proposed fiber to any excitation wavelength ranging from near-infrared to short-wave-infrared, including optical telecommunication windows close to 1550 nm. The superior characteristics of the proposed elliptical-core composite PCF including extreme non-linearity, nearly-zero confinement loss (2.47 × 10−12 dB/cm), the ability to maintain polarization of light, and tunable ZDW can open the door to new possibilities in non-linear optics, optical telecommunications, optical signal processing, and sensing devices. Full article
(This article belongs to the Special Issue Photonic Glass-Ceramics: Fabrication, Properties and Applications)
Show Figures

Figure 1

7 pages, 2817 KB  
Article
Analysis of Bending-Induced Degradation of Orbital Angular Momentum Modes in Optical Fibers
by In Joon Lee, Joohyung Song and Sangin Kim
Photonics 2019, 6(3), 97; https://doi.org/10.3390/photonics6030097 - 1 Sep 2019
Cited by 2 | Viewed by 4082
Abstract
In this work, bending-induced deterioration of orbital angular momentum (OAM) modes in ring core fiber (RCF), photonic crystal fiber (PCF), and vortex fiber (VF) was theoretically investigated: Bending losses, coupling losses, and intermodal crosstalk at the interface between straight and bent optical fibers [...] Read more.
In this work, bending-induced deterioration of orbital angular momentum (OAM) modes in ring core fiber (RCF), photonic crystal fiber (PCF), and vortex fiber (VF) was theoretically investigated: Bending losses, coupling losses, and intermodal crosstalk at the interface between straight and bent optical fibers were investigated from the modal analysis of those three types of OAM mode fibers. In addition, the degradation of a topological charge number of an OAM mode due to the bending-induced birefringence and horizontal mode asymmetry was also investigated. Our investigation revealed that, in all aspects, the PCF is most robust to bending among the three types of optical fibers, and the most serious bending-induced problem in the VF and the RCF is the degradation of the topological charge number. The allowed minimum bending radii of VF and RCF appeared to be ~15 and ~45 mm, respectively, for the specific structures considered in this work. We expect that the methodology and results of our quantitative analysis on bending-induced degradation of OAM modes will be of great use in the design of OAM mode fibers for practical use. Full article
Show Figures

Figure 1

Back to TopTop