Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = mmWave spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 92
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 378
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 2797 KiB  
Article
Model-Driven Meta-Learning-Aided Fast Beam Prediction in Millimeter-Wave Communications
by Wenqin Lu, Xueqin Jiang, Yuwen Cao, Tomoaki Ohtsuki and Enjian Bai
Electronics 2025, 14(13), 2734; https://doi.org/10.3390/electronics14132734 - 7 Jul 2025
Viewed by 250
Abstract
Beamforming plays a key role in improving the spectrum utilization efficiency of multi-antenna systems. However, we observe that (i) conventional beam prediction solutions suffer from high model training overhead and computational latency and thus cannot adapt quickly to changing wireless environments, and (ii) [...] Read more.
Beamforming plays a key role in improving the spectrum utilization efficiency of multi-antenna systems. However, we observe that (i) conventional beam prediction solutions suffer from high model training overhead and computational latency and thus cannot adapt quickly to changing wireless environments, and (ii) deep-learning-based beamforming may face the risk of catastrophic oblivion in dynamically changing environments, which can significantly degrade system performance. Inspired by the above challenges, we propose a continuous-learning-inspired beam prediction model for fast beamforming adaptation in dynamic downlink millimeter-wave (mmWave) communications. More specifically, we develop a meta-empirical replay (MER)-based beam prediction model. It combines empirical replay and optimization-based meta-learning. This approach optimizes the trade-offs between transmission and interference in dynamic environments, enabling effective fast beamforming adaptation. Finally, the high-performance gains brought by the proposed model in dynamic communication environments are verified through simulations. The simulation results show that our proposed model not only maintains a high-performance memory for old tasks but also adapts quickly to new tasks. Full article
Show Figures

Figure 1

31 pages, 927 KiB  
Article
A Narrative Review on Key Values Indicators of Millimeter Wave Radars for Ambient Assisted Living
by Maria Gardano, Antonio Nocera, Michela Raimondi, Linda Senigagliesi and Ennio Gambi
Electronics 2025, 14(13), 2664; https://doi.org/10.3390/electronics14132664 - 30 Jun 2025
Viewed by 324
Abstract
The demographic shift toward an aging population calls for innovative strategies to ensure independence, health, and quality of life in later years. In this context, Ambient Assisted Living (AAL) solutions, supported by Information and Communication Technologies (ICTs), offer promising advances for non-invasive and [...] Read more.
The demographic shift toward an aging population calls for innovative strategies to ensure independence, health, and quality of life in later years. In this context, Ambient Assisted Living (AAL) solutions, supported by Information and Communication Technologies (ICTs), offer promising advances for non-invasive and continuous support. Commonly, ICTs are evaluated only from the perspectives related to key performance indicators (KPIs); nevertheless, the design and implementation of such technologies must account for important psychological, social, and ethical dimensions. Radar-based sensing systems are emerging as an option due to their unobtrusive nature and capacity to operate without direct user interaction. This work explores how radar technologies, particularly those operating in the millimeter wave (mmWave) spectrum, can provide core key value indicators (KVIs) essential to aging societies, such as human dignity, trustworthiness, fairness, and sustainability. Through a review of key application domains, the paper illustrates the practical contributions of mmWave radar in Ambient Assisting Living (AAL) contexts, underlining how its technical attributes align with the complex needs of elderly care environments and produce value for society. This work uniquely integrates key value indicator (KVI) frameworks with mmWave radar capabilities to address unmet ethical needs in the AAL domain. It advances existing literature by proposing a value-driven design approach that directly informs technical specifications, enabling the alignment of engineering choices with socially relevant values and supporting the development of technologies for a more inclusive and ethical society. Full article
(This article belongs to the Special Issue Assistive Technology: Advances, Applications and Challenges)
Show Figures

Figure 1

35 pages, 2010 KiB  
Article
Intelligent Transmission Control Scheme for 5G mmWave Networks Employing Hybrid Beamforming
by Hazem (Moh’d Said) Hatamleh, As’ad Mahmoud As’ad Alnaser, Roba Mahmoud Ali Aloglah, Tomader Jamil Bani Ata, Awad Mohamed Ramadan and Omar Radhi Aqeel Alzoubi
Future Internet 2025, 17(7), 277; https://doi.org/10.3390/fi17070277 - 24 Jun 2025
Viewed by 310
Abstract
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is [...] Read more.
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is required due to the growing demands for spectrum resources in upcoming enormous machine-type communication applications. Ultra-high data speed, reduced latency, and improved connection are all promised by the development of 5G mmWave networks. Yet, due to severe route loss and directional communication requirements, there are substantial obstacles to transmission reliability and energy efficiency. To address this limitation in this research we present an intelligent transmission control scheme tailored to 5G mmWave networks. Transport control protocol (TCP) performance over mmWave links can be enhanced for network protocols by utilizing the mmWave scalable (mmS)-TCP. To ensure that users have the stronger average power, we suggest a novel method called row compression two-stage learning-based accurate multi-path processing network with received signal strength indicator-based association strategy (RCTS-AMP-RSSI-AS) for an estimate of both the direct and indirect channels. To change user scenarios and maintain effective communication constantly, we utilize the innovative method known as multi-user scenario-based MATD3 (Mu-MATD3). To improve performance, we introduce the novel method of “digital and analog beam training with long-short term memory (DAH-BT-LSTM)”. Finally, as optimizing network performance requires bottleneck-aware congestion reduction, the low-latency congestion control schemes (LLCCS) are proposed. The overall proposed method improves the performance of 5G mmWave networks. Full article
(This article belongs to the Special Issue Advances in Wireless and Mobile Networking—2nd Edition)
Show Figures

Figure 1

13 pages, 3609 KiB  
Article
A Compact Wideband Millimeter-Wave Crossover for Phased Array Antenna Systems in Remote Sensing Applications
by Fayyadh H. Ahmed, Rola Saad and Salam K. Khamas
Sensors 2025, 25(12), 3641; https://doi.org/10.3390/s25123641 - 10 Jun 2025
Viewed by 364
Abstract
A new compact, wideband, millimeter-wave microstrip crossover—designed without vias—demonstrates effective performance with an insertion loss of 2 dB across a wide frequency range. For Path 1, the operational bandwidth spans 11 GHz (13–24 GHz), while for Path 2, it extends over 10 GHz [...] Read more.
A new compact, wideband, millimeter-wave microstrip crossover—designed without vias—demonstrates effective performance with an insertion loss of 2 dB across a wide frequency range. For Path 1, the operational bandwidth spans 11 GHz (13–24 GHz), while for Path 2, it extends over 10 GHz (12–22 GHz). The overlapping bandwidth, maintaining the 2 dB insertion loss criterion, covers 9 GHz (13–22 GHz). The design introduces two transition mechanisms to achieve optimal scattering parameters for the crossover: a stair-shaped microstrip line (MST) to ground-backed coplanar waveguide (GCPW) for the initial crossed line (Path 1), and vertical coupling between microstrip and coplanar hourglass microstrip patches on a single-layer substrate for Path 2. This innovative approach ensures an insertion loss of approximately 1 dB for both paths across the bandwidth, with a slight increase beyond 20 GHz for Path 2 due to substrate losses. Both crossed lines maintain a return loss of 10 dB across the spectrum, with isolation of approximately 20 dB. This design presents a flat, compact, and via-less configuration, with physical dimensions measuring 6.5 mm × 7.6 mm. The proposed design exhibits excellent scattering parameters, which enhance the efficiency of phased array antenna systems in terms of power transfer between input and output ports, as well as improving isolation between different input ports in the feed network of these systems used in remote sensing. Consequently, this contributes to the increased sensitivity and accuracy of such systems. Full article
(This article belongs to the Special Issue Antennas for Wireless Communications)
Show Figures

Figure 1

13 pages, 452 KiB  
Article
Enhanced mm-Wave Frequency Up-Conversion via a Time-Varying Graphene Aperture on a Cavity Resonator
by Stamatios Amanatiadis, Theodosios Karamanos, Fabrice Lemoult and Nikolaos V. Kantartzis
Micromachines 2025, 16(6), 679; https://doi.org/10.3390/mi16060679 - 4 Jun 2025
Viewed by 447
Abstract
The transition to 5G and beyond has highlighted the need for efficient devices that operate at mm-wave frequencies, which require new structures and pose fabrication challenges. This paper proposes a novel non-linear antenna that combines the well-established substrate-integrated cavity (SIC) radiators and time-varying [...] Read more.
The transition to 5G and beyond has highlighted the need for efficient devices that operate at mm-wave frequencies, which require new structures and pose fabrication challenges. This paper proposes a novel non-linear antenna that combines the well-established substrate-integrated cavity (SIC) radiators and time-varying graphene for generating harmonic frequencies in the mm-wave spectrum. Graphene is represented as having a dispersive surface conductivity, while time modulation of the conductivity is introduced by varying the applied bias electric field. A modified FDTD algorithm is, additionally, used to simulate the time-varying graphene behaviour under different modulation schemes. The final antenna design involves an SIC resonator with a graphene-covered slot aperture for radiation. The numerical study highlights the effective generation of harmonics using the modulated graphene at the mm-wave regime. Finally, different modulation schemes are applied to enhance certain higher-order harmonics, demonstrating the potential of this non-linear antenna design for future mm-wave and THz frequency applications. Full article
Show Figures

Figure 1

19 pages, 8477 KiB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Viewed by 621
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

13 pages, 3748 KiB  
Article
Compact, Broadband, and High-Gain Four-Port MIMO Antenna for Future Millimeter Wave Applications
by Esraa Mousa Ali, Shine Let Gunamony, Mohamad A. Alawad and Turki Essa Alharbi
Micromachines 2025, 16(5), 558; https://doi.org/10.3390/mi16050558 - 3 May 2025
Viewed by 578
Abstract
A wideband antenna with a relatively compact size along with a multiple input and multiple output (MIMO) configuration for millimeter wave applications is proposed in this work. The antenna offers a low profile and simple structure. First of all, an antenna is designed [...] Read more.
A wideband antenna with a relatively compact size along with a multiple input and multiple output (MIMO) configuration for millimeter wave applications is proposed in this work. The antenna offers a low profile and simple structure. First of all, an antenna is designed using Rogers RT/duroid 6002 (Rogers Corporation, Chandler, AZ, USA) with a thickness of 0.79 mm, offering wideband ranges from 21 to 35 GHz. Subsequently, the unit element is converted into a four-port MIMO antenna to improve the capacity of the system, resulting in a high data rate, which is critical for 5G as well as for devices operating in the mm wave spectrum. The proposed work exhibits total dimensions of 24 × 24 mm2 and offers a peak gain of 8.5 dBi, with an efficiency of more than 80%. The MIMO performance parameters are also studied, and the antenna offers exceptional performance in terms of mutual coupling (Sij) without inserting a decoupling structure, envelop correlation coefficient (ECC), and diversity parameters. The proposed MIMO antenna offers a minimum isolation of −25 dBi and an ECC of less than 0.018. All the other MIMO parameter values lie below the acceptable range. The High Frequency Structure Simulator (HFSS) EM software (v.19) tool is used to analyze the antenna and study its performance. The simulated outcomes are verified by fabricating a prototype, where the result offers a good comparison among both results. Moreover, the contrast in terms of different performance parameters is carried out amongst recent research articles, highlighting the key contribution of the presented design. A compact size antenna with a wideband, simplified structure, and stable performance throughout the working band is achieved; thus, it is a solid contender for mm wave applications and 5G devices. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

35 pages, 17275 KiB  
Article
Performance Analysis of Downlink 5G Networks in Realistic Environments
by Aymen I. Zreikat and Hunseok Kang
Appl. Sci. 2025, 15(8), 4526; https://doi.org/10.3390/app15084526 - 19 Apr 2025
Viewed by 627
Abstract
Fifth-generation (5G) networks are the fifth generation of mobile networks and are regarded as a global standard, following 1G, 2G, 3G, and 4G networks. Fifth-generation, with its large available bandwidth provided by mmWave, not only provides the end user with higher spectrum efficiency, [...] Read more.
Fifth-generation (5G) networks are the fifth generation of mobile networks and are regarded as a global standard, following 1G, 2G, 3G, and 4G networks. Fifth-generation, with its large available bandwidth provided by mmWave, not only provides the end user with higher spectrum efficiency, massive capacity, low latency, and high speed but is also a network designed to connect virtually everyone and everything together, including machines, objects, and devices. Therefore, studies of such systems’ performance evaluation and capacity bounds are critical for the research community. Furthermore, the performance of these systems should be investigated in realistic contexts while considering signal strength and restricted uplink power to maintain system coverage and capacity, which are also affected by the environment and the value of the service factor parameter. However, any proposed application should include a multiservice case to reflect the true state of 5G systems. As an extension of previous work, the capacity bounds for 5G networks are derived and analyzed in this research, considering both single and multiservice cases with mobility. In addition, the influence of different parameters on network performance, such as the interference, service factor, and non-orthogonality factors, and cell radii, is also discussed. The numerical findings and analysis reveal that the type of environment and service factor parameters have the greatest influence on system capacity and coverage. Subsequently, it is shown that the investigated parameters have a major impact on cell performance and therefore can be considered key indicators for mobile designers and operators to consider in planning and designing future networks. To validate these findings, some results are evaluated against ITU-T standards, while others are compared with related studies from the literature. Full article
(This article belongs to the Special Issue Trends and Prospects for Wireless Sensor Networks and IoT)
Show Figures

Figure 1

10 pages, 4624 KiB  
Article
Broadband and Wide Field-of-View Refractive and Meta-Optics Hybrid Imaging System for Mid-Wave Infrared
by Bo Liu, Yunqiang Zhang, Zhu Li, Bingyan Wei, Xuetao Gan and Xin Xie
Nanomaterials 2025, 15(7), 566; https://doi.org/10.3390/nano15070566 - 7 Apr 2025
Viewed by 539
Abstract
We propose a wide field-of-view (FOV) refractive and meta-optics hybrid imaging system designed for the mid-wave infrared spectrum (3–5 μm) to address the challenge of high-quality imaging in wide FOV applications. The system consists of only three refractive lenses and two metasurfaces (one [...] Read more.
We propose a wide field-of-view (FOV) refractive and meta-optics hybrid imaging system designed for the mid-wave infrared spectrum (3–5 μm) to address the challenge of high-quality imaging in wide FOV applications. The system consists of only three refractive lenses and two metasurfaces (one functioning as a circular polarizer and the other as a phase element), with a total length of 29 mm. Through a detailed analysis of modulation transfer function curves and spot diagrams, the system achieves 178° FOV while maintaining exceptional imaging performance across a temperature range of −40 °C to 60 °C. The system demonstrates the potential for extending applications to other wavelengths and scenarios, thereby contributing to the advancement of high-performance compact optical systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photonics, Plasmonics and Metasurfaces)
Show Figures

Figure 1

32 pages, 1004 KiB  
Article
Highly Adaptive Reconfigurable Receiver Front-End for 5G and Satellite Applications
by Mfonobong Uko, Sunday Ekpo, Sunday Enahoro, Fanuel Elias, Rahul Unnikrishnan and Yasir Al-Yasir
Technologies 2025, 13(4), 124; https://doi.org/10.3390/technologies13040124 - 22 Mar 2025
Viewed by 736
Abstract
The deployment of fifth-generation (5G) and beyond-5G wireless communication systems necessitates advanced transceiver architectures to support high data rates, spectrum efficiency, and energy-efficient designs. This paper presents a highly adaptive reconfigurable receiver front-end (HARRF) designed for 5G and satellite applications, integrating a switchable [...] Read more.
The deployment of fifth-generation (5G) and beyond-5G wireless communication systems necessitates advanced transceiver architectures to support high data rates, spectrum efficiency, and energy-efficient designs. This paper presents a highly adaptive reconfigurable receiver front-end (HARRF) designed for 5G and satellite applications, integrating a switchable low noise amplifier (LNA) and a single pole double throw (SPDT) switch. The HARRF architecture supports both X-band (8–12 GHz) and K/Ka-band (23–28 GHz) operations, enabling seamless adaptation between radar, satellite communication, and millimeter-wave (mmWave) 5G applications. The proposed receiver front-end employs a 0.15 μm pseudomorphic high electron mobility transistor (pHEMT) process, optimised through a three-stage cascaded LNA topology. A switched-tuned matching network is utilised to achieve reconfigurability between X-band and K/Ka-band. Performance evaluations indicate that the X-band LNA achieves a gain of 23–27 dB with a noise figure below 7 dB, whereas the K/Ka-band LNA provides 23–27 dB gain with a noise figure ranging from 2.3–2.6 dB. The SPDT switch exhibits low insertion loss and high isolation, ensuring minimal signal degradation across operational bands. Network analysis and scattering parameter extractions were conducted using advanced design system (ADS) simulations, demonstrating superior return loss, power efficiency, and impedance matching. Comparative analysis with state-of-the-art designs shows that the proposed HARRF outperforms existing solutions in terms of reconfigurability, stability, and wideband operation. The results validate the feasibility of the proposed reconfigurable RF front-end in enabling efficient spectrum utilisation and energy-efficient transceiver systems for next-generation communication networks. Full article
Show Figures

Graphical abstract

25 pages, 8019 KiB  
Article
AI-Driven Pilot Overhead Reduction in 5G mmWaveMassive MIMO Systems
by Mohammad Riad Abou Yassin, Soubhi Abou Chahine and Hamza Issa
Appl. Syst. Innov. 2025, 8(1), 24; https://doi.org/10.3390/asi8010024 - 13 Feb 2025
Cited by 1 | Viewed by 1411
Abstract
The emergence of 5G technology promises remarkable advancements in wireless communication, particularly in the realm of mmWave (millimeter-wave) massive multiple input multiple output (m-MIMO) systems. However, the realization of its full potential is hindered by the challenge of pilot overhead, which compromises system [...] Read more.
The emergence of 5G technology promises remarkable advancements in wireless communication, particularly in the realm of mmWave (millimeter-wave) massive multiple input multiple output (m-MIMO) systems. However, the realization of its full potential is hindered by the challenge of pilot overhead, which compromises system efficiency. The efficient usage of pilot signals is crucial for precise channel estimation and interference reduction to maintain data integrity. Nevertheless, this requirement brings up the challenge of pilot overhead, which utilizes precious spectrum space, thus reducing spectral efficiency (SE). To address this obstacle, researchers have progressively turned to artificial intelligence (AI) and machine learning (ML) methods to design hybrid beam-forming systems that enhance SE while reducing changes to the bit error rate (BER). This study addresses the challenge of pilot overhead in hybrid beamforming for 5G mmWave m-MIMO systems by leveraging advanced artificial intelligence (AI) techniques. We propose a framework integrating k-clustering, linear regression, random forest regression, and neural networks with singular value decomposition (NN-SVD) to optimize pilot placement and hybrid beamforming strategies. The results demonstrate an 82% reduction in pilot overhead, a 250% improvement in spectral efficiency, and a tenfold enhancement in bit error rate at low SNR conditions, surpassing state-of-the-art methods. These findings validate the efficacy of the proposed system in advancing next-generation wireless networks. Full article
Show Figures

Figure 1

31 pages, 3473 KiB  
Article
Deep Reinforcement Learning-Driven Hybrid Precoding for Efficient Mm-Wave Multi-User MIMO Systems
by Adeb Salh, Mohammed A. Alhartomi, Ghasan Ali Hussain, Chang Jing Jing, Nor Shahida M. Shah, Saeed Alzahrani, Ruwaybih Alsulami, Saad Alharbi, Ahmad Hakimi and Fares S. Almehmadi
J. Sens. Actuator Netw. 2025, 14(1), 20; https://doi.org/10.3390/jsan14010020 - 12 Feb 2025
Cited by 3 | Viewed by 1922
Abstract
High route loss and line-of-sight requirements are two of the fundamental challenges of millimeter-wave (mm-wave) communications that are mitigated by incorporating sensor technology. Sensing gives the deep reinforcement learning (DRL) agent comprehensive environmental feedback, which helps it better predict channel fluctuations and modify [...] Read more.
High route loss and line-of-sight requirements are two of the fundamental challenges of millimeter-wave (mm-wave) communications that are mitigated by incorporating sensor technology. Sensing gives the deep reinforcement learning (DRL) agent comprehensive environmental feedback, which helps it better predict channel fluctuations and modify beam patterns accordingly. For multi-user massive multiple-input multiple-output (mMIMO) systems, hybrid precoding requires sophisticated real-time low-complexity power allocation (PA) approaches to achieve near-optimal capacity. This study presents a unique angular-based hybrid precoding (AB-HP) framework that minimizes radio frequency (RF) chain and channel estimation while optimizing energy efficiency (EE) and spectral efficiency (SE). DRL is essential for mm-wave technology to make adaptive and intelligent decision-making possible, which effectively transforms wireless communication systems. DRL optimizes RF chain usage to maintain excellent SE while drastically lowering hardware complexity and energy consumption in an AB-HP architecture by dynamically learning optimal precoding methods using environmental angular information. This article proposes enabling dual optimization of EE and SE while drastically lowering beam training overhead by incorporating maximum reward beam training driven (RBT) in the DRL. The proposed RBT-DRL improves system performance and flexibility by dynamically modifying the number of active RF chains in dynamic network situations. The simulation results show that RBT-DRL-driven beam training guarantees good EE performance for mobile users while increasing SE in mm-wave structures. Even though total power consumption rises by 45%, the SE improves by 39%, increasing from 14 dB to 20 dB, suggesting that this strategy could successfully achieve a balance between performance and EE in upcoming B5G networks. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

22 pages, 8673 KiB  
Article
A Dual-Polarized and Broadband Multiple-Antenna System for 5G Cellular Communications
by Haleh Jahanbakhsh Basherlou, Naser Ojaroudi Parchin and Chan Hwang See
Sensors 2025, 25(4), 1032; https://doi.org/10.3390/s25041032 - 9 Feb 2025
Viewed by 1352
Abstract
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements [...] Read more.
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements are compact in size and function within the frequency spectrum spanning from 3.2 to 6 GHz. They have been strategically positioned at the peripheral corners of the smartphone mainboard, resulting in a compact overall footprint of 75 mm × 150 mm FR4. Within this design framework, there are four pairs of antennas, each aligned to offer both horizontal and vertical polarization options. In addition, despite the absence of decoupling structures, the adjacent elements in the array exhibit high isolation. The array demonstrates a good bandwidth of 2800 MHz, essential for 5G applications requiring high data rates and reliable connectivity, high radiation efficiency, and dual-polarized/full-coverage radiation. Furthermore, it achieves low ECC (Envelope Correlation Coefficient) and TARC (Total Active Reflection Coefficient) values, measuring better than 0.005 and −20 dB, respectively. With its compact and planar configuration, quite broad bandwidth, acceptable SAR (Specific Absorption Rate) and excellent radiation characteristics, this suggested MIMO antenna array design shows good promise for integration into 5G hand-portable devices. Furthermore, a compact phased-array millimeter-wave (mmWave) antenna with broad bandwidth is introduced as a proof of concept for higher frequency antenna integration. This design underscores the potential to support future 5G and 6G applications, enabling advanced connectivity in smartphones. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

Back to TopTop