Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = mmWave radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2525 KiB  
Article
mmHSE: A Two-Stage Framework for Human Skeleton Estimation Using mmWave FMCW Radar Signals
by Jiake Tian, Yi Zou and Jiale Lai
Appl. Sci. 2025, 15(15), 8410; https://doi.org/10.3390/app15158410 - 29 Jul 2025
Viewed by 151
Abstract
We present mmHSE, a two-stage framework for human skeleton estimation using dual millimeter-Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radar signals. To enable data-driven model design and evaluation, we collect and process over 30,000 range–angle maps from 12 users across three representative indoor environments using [...] Read more.
We present mmHSE, a two-stage framework for human skeleton estimation using dual millimeter-Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radar signals. To enable data-driven model design and evaluation, we collect and process over 30,000 range–angle maps from 12 users across three representative indoor environments using a dual-node radar acquisition platform. Leveraging the collected data, we develop a two-stage neural architecture for human skeleton estimation. The first stage employs a dual-branch network with depthwise separable convolutions and self-attention to extract multi-scale spatiotemporal features from dual-view radar inputs. A cross-modal attention fusion module is then used to generate initial estimates of 21 skeletal keypoints. The second stage refines these estimates using a skeletal topology module based on graph convolutional networks, which captures spatial dependencies among joints to enhance localization accuracy. Experiments show that mmHSE achieves a Mean Absolute Error (MAE) of 2.78 cm. In cross-domain evaluations, the MAE remains at 3.14 cm, demonstrating the method’s generalization ability and robustness for non-intrusive human pose estimation from mmWave FMCW radar signals. Full article
Show Figures

Figure 1

16 pages, 2943 KiB  
Article
Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone
by Yun Seop Yu, Seongjo Wie, Hojin Lee, Jeongwoo Lee and Nam Ho Kim
Appl. Sci. 2025, 15(15), 8381; https://doi.org/10.3390/app15158381 - 28 Jul 2025
Viewed by 227
Abstract
In this study, four types of fall detection systems for seniors living alone using x-y scatter and Doppler range images measured from frequency-modulated continuous wave (FMCW) millimeter-wave (mmWave) sensors were introduced. Despite advancements in fall detection, existing long short-term memory (LSTM)-based approaches often [...] Read more.
In this study, four types of fall detection systems for seniors living alone using x-y scatter and Doppler range images measured from frequency-modulated continuous wave (FMCW) millimeter-wave (mmWave) sensors were introduced. Despite advancements in fall detection, existing long short-term memory (LSTM)-based approaches often struggle with effectively distinguishing falls from similar activities of daily living (ADLs) due to their uniform treatment of all time steps, potentially overlooking critical motion cues. To address this limitation, an attention mechanism has been integrated. Data was collected from seven participants, resulting in a dataset of 669 samples, including 285 falls and 384 ADLs with walking, lying, inactivity, and sitting. Four LSTM-based architectures for fall detection were proposed and evaluated: Raw-LSTM, Raw-LSTM-Attention, HOG-LSTM, and HOG-LSTM-Attention. The histogram of oriented gradient (HOG) method was used for feature extraction, while LSTM networks captured temporal dependencies. The attention mechanism further enhanced model performance by focusing on relevant input features. The Raw-LSTM model processed raw mmWave radar images through LSTM layers and dense layers for classification. The Raw-LSTM-Attention model extended Raw-LSTM with an added self-attention mechanism within the traditional attention framework. The HOG-LSTM model included an additional preprocessing step upon the RAW-LSTM model where HOG features were extracted and classified using an SVM. The HOG-LSTM-Attention model built upon the HOG-LSTM model by incorporating a self-attention mechanism to enhance the model’s ability to accurately classify activities. Evaluation metrics such as Sensitivity, Precision, Accuracy, and F1-Score were used to compare four architectural models. The results showed that the HOG-LSTM-Attention model achieved the highest performance, with an Accuracy of 95.3% and an F1-Score of 95.5%. Optimal self-attention configuration was found at a 2:64 ratio of number of attention heads to channels for keys and queries. Full article
Show Figures

Figure 1

19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 277
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 978
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

31 pages, 927 KiB  
Article
A Narrative Review on Key Values Indicators of Millimeter Wave Radars for Ambient Assisted Living
by Maria Gardano, Antonio Nocera, Michela Raimondi, Linda Senigagliesi and Ennio Gambi
Electronics 2025, 14(13), 2664; https://doi.org/10.3390/electronics14132664 - 30 Jun 2025
Viewed by 372
Abstract
The demographic shift toward an aging population calls for innovative strategies to ensure independence, health, and quality of life in later years. In this context, Ambient Assisted Living (AAL) solutions, supported by Information and Communication Technologies (ICTs), offer promising advances for non-invasive and [...] Read more.
The demographic shift toward an aging population calls for innovative strategies to ensure independence, health, and quality of life in later years. In this context, Ambient Assisted Living (AAL) solutions, supported by Information and Communication Technologies (ICTs), offer promising advances for non-invasive and continuous support. Commonly, ICTs are evaluated only from the perspectives related to key performance indicators (KPIs); nevertheless, the design and implementation of such technologies must account for important psychological, social, and ethical dimensions. Radar-based sensing systems are emerging as an option due to their unobtrusive nature and capacity to operate without direct user interaction. This work explores how radar technologies, particularly those operating in the millimeter wave (mmWave) spectrum, can provide core key value indicators (KVIs) essential to aging societies, such as human dignity, trustworthiness, fairness, and sustainability. Through a review of key application domains, the paper illustrates the practical contributions of mmWave radar in Ambient Assisting Living (AAL) contexts, underlining how its technical attributes align with the complex needs of elderly care environments and produce value for society. This work uniquely integrates key value indicator (KVI) frameworks with mmWave radar capabilities to address unmet ethical needs in the AAL domain. It advances existing literature by proposing a value-driven design approach that directly informs technical specifications, enabling the alignment of engineering choices with socially relevant values and supporting the development of technologies for a more inclusive and ethical society. Full article
(This article belongs to the Special Issue Assistive Technology: Advances, Applications and Challenges)
Show Figures

Figure 1

2 pages, 148 KiB  
Correction
Correction: Zhang et al. TRANS-CNN-Based Gesture Recognition for mmWave Radar. Sensors 2024, 24, 1800
by Huafeng Zhang, Kang Liu, Yuanhui Zhang and Jihong Lin
Sensors 2025, 25(13), 3941; https://doi.org/10.3390/s25133941 - 25 Jun 2025
Viewed by 256
Abstract
Text Correction [...] Full article
(This article belongs to the Section Radar Sensors)
20 pages, 10112 KiB  
Article
Radomizing an Antenna for a SAR-Based ETA Radar System While Ensuring Imaging Accuracy: A Focus on Phase Shifts
by María Elena de Cos Gómez, Alicia Flórez Berdasco, Jaime Laviada Martínez and Fernando Las-Heras Andrés
Micromachines 2025, 16(6), 720; https://doi.org/10.3390/mi16060720 - 17 Jun 2025
Viewed by 774
Abstract
The impact of radomization on the radiation pattern of a millimeter-wave antenna for an ETA system utilizing synthetic aperture radar (SAR) is examined with special emphasis placed on the phase shift across both the beamwidth and the bandwidth, rather than the amplitude. Three [...] Read more.
The impact of radomization on the radiation pattern of a millimeter-wave antenna for an ETA system utilizing synthetic aperture radar (SAR) is examined with special emphasis placed on the phase shift across both the beamwidth and the bandwidth, rather than the amplitude. Three different radomization approaches, including one based on metasurfaces, are evaluated for a radar antenna operating within the 24.05–24.25 GHz frequency range. Fabricated prototypes, both of the standalone antenna and the radomized version, are tested and compared in terms of electromagnetic image quality. The metasurface-based radome provides the best results among the radomization options analyzed. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Graphical abstract

26 pages, 42046 KiB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 315
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

19 pages, 13655 KiB  
Article
Indoor mmWave Radar Ghost Suppression: Trajectory-Guided Spatiotemporal Point Cloud Learning
by Ruizhi Liu, Zhenhang Qin, Xinghui Song, Lei Yang, Yue Lin and Hongtao Xu
Sensors 2025, 25(11), 3377; https://doi.org/10.3390/s25113377 - 27 May 2025
Viewed by 828
Abstract
Millimeter-wave (mmWave) radar is increasingly used in smart environments for human detection due to its rich sensing capabilities and sensitivity to subtle movements. However, indoor multipath propagation causes severe ghost target issues, reducing radar reliability. To address this, we propose a trajectory-based ghost [...] Read more.
Millimeter-wave (mmWave) radar is increasingly used in smart environments for human detection due to its rich sensing capabilities and sensitivity to subtle movements. However, indoor multipath propagation causes severe ghost target issues, reducing radar reliability. To address this, we propose a trajectory-based ghost suppression method that integrates multi-target tracking with point cloud deep learning. Our approach consists of four key steps: (1) point cloud pre-segmentation, (2) inter-frame trajectory tracking, (3) trajectory feature aggregation, and (4) feature broadcasting, effectively combining spatiotemporal information with point-level features. Experiments on an indoor dataset demonstrate its superior performance compared to existing methods, achieving 93.5% accuracy and 98.2% AUROC. Ablation studies demonstrate the importance of each component, particularly the complementary benefits of pre-segmentation and trajectory processing. Full article
(This article belongs to the Special Issue Radar Target Detection, Imaging and Recognition)
Show Figures

Figure 1

18 pages, 3317 KiB  
Article
A Novel High-Precision Imaging Radar for Quality Inspection of Building Insulation Layers
by Dandan Cheng, Zhaofa Zeng, Wei Ge, Yuemeng Yin, Chenghao Wang and Shaolong Li
Appl. Sci. 2025, 15(11), 5991; https://doi.org/10.3390/app15115991 - 26 May 2025
Viewed by 340
Abstract
In recent years, the building insulation layer peeling caused by quality problems has brought about safety hazards to human life. Existing means of non-destructive testing of building insulation layers, including laser scanning, infrared thermal imaging, ultrasonic testing, acoustic emission, ground-penetrating radar, etc., are [...] Read more.
In recent years, the building insulation layer peeling caused by quality problems has brought about safety hazards to human life. Existing means of non-destructive testing of building insulation layers, including laser scanning, infrared thermal imaging, ultrasonic testing, acoustic emission, ground-penetrating radar, etc., are unable to simultaneously guarantee the detection depth and resolution of the insulation layer defects, not to mention high-precision imaging of the insulation layer structure. A new type of high-precision imaging radar is specifically designed for the quantitative quality inspection of external building insulation layers in this paper. The center frequency of the radar is 8800 MHz and the −10 dB bandwidth is 3100 MHz, which means it can penetrate the insulated panel not less than 48.4 mm thick and catch the reflected wave from the upper surface of the bonding mortar. When the bonding mortar is 120 mm away from the radar, the radar can achieve a lateral resolution of about 45 mm (capable of distinguishing two parties of bonding mortar with a 45 mm gap). Furthermore, an ultra-wideband high-bunching antenna is designed in this paper combining the lens and the sinusoidal antenna, taking into account the advantages of high directivity and ultra-wideband. Finally, the high-precision imaging of data collected from multiple survey lines can visually reveal the distribution of bonded mortar and the bonding area. This helps determine whether the bonding area meets construction standards and provides data support for evaluating the quality of the insulation layer. Full article
Show Figures

Figure 1

20 pages, 6160 KiB  
Article
A Computational Approach to Increasing the Antenna System’s Sensitivity in a Doppler Radar Designed to Detect Human Vital Signs in the UHF-SHF Frequency Ranges
by David Vatamanu and Simona Miclaus
Sensors 2025, 25(10), 3235; https://doi.org/10.3390/s25103235 - 21 May 2025
Viewed by 944
Abstract
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, [...] Read more.
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, especially when obstacles interfere with the attempt to detect the presence of life. The sensitivity of a measurement system’s perception of vital signs is highly dependent on the monitoring systems and antennas that are used. The current work proposes a computational approach that aims to extract an empirical law of the dependence of the phase shift of the transmission coefficient (S21) on the sensitivity at reception, based upon a set of four parameters. These variables are as follows: (a) the frequency of the continuous wave utilized; (b) the antenna type and its gain/directivity; (c) the electric field strength distribution on the chest surface (and its average value); and (d) the type of material (dielectric properties) impacted by the incident wave. The investigated frequency range is (1–20) GHz, while the simulations are generated using a doublet of dipole or gain-convenient identical Yagi antennas. The chest surface is represented by a planar rectangle that moves along a path of only 3 mm, with a step of 0.3 mm, mimicking respiration movement. The antenna–target system is modeled in the computational space in each new situation considered. The statistics illustrate the multiple regression function, empirically extracted. This enables the subsequent building of a continuous-wave bio-radar Doppler system with controlled and improved sensitivity. Full article
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 707
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

17 pages, 1577 KiB  
Article
A Novel Algorithm for Adaptive Detection and Tracking of Extended Targets Using Millimeter-Wave Imaging Radar
by Ge Zhang, Weimin Shi, Xiaofeng Shen, Qilong Miao, Chenfei Xie and Lu Chen
Sensors 2025, 25(10), 3029; https://doi.org/10.3390/s25103029 - 11 May 2025
Viewed by 520
Abstract
A high-resolution imaging radar is exceptionally well-suited for the detection and perception of extended targets (ETs), as it provides a comprehensive representation of the spatial distribution of target scattering characteristics. In this work, we propose an adaptive detection and tracking framework for non-cooperative [...] Read more.
A high-resolution imaging radar is exceptionally well-suited for the detection and perception of extended targets (ETs), as it provides a comprehensive representation of the spatial distribution of target scattering characteristics. In this work, we propose an adaptive detection and tracking framework for non-cooperative ETs based on radar imaging. The framework leverages the statistical properties of ETs in radar imaging to construct a target distribution model and introduces an adaptive ET detection and tracking algorithm based on Scattering Point Shift (SPS). This algorithm is designed to track ETs with internal motion characterized by multiple scattering points. The initial target distribution is estimated using two-dimensional kernel density estimation (2D-KDE). Compared to existing ET tracking algorithms, the proposed SPS method demonstrates superior universality in accommodating diverse scattering point distributions and integrates detection and tracking into a unified process, thereby significantly improving information utilization efficiency. The effectiveness of the algorithm is validated through extensive simulations and real-world data collected using a millimeter-wave (mmWave) imaging radar operating in the Linear Frequency Modulated Continuous Wave (LFMCW) mode. Full article
(This article belongs to the Special Issue Computer Vision Recognition and Communication Sensing System)
Show Figures

Figure 1

22 pages, 849 KiB  
Article
Moving-Least-Squares-Enhanced 3D Object Detection for 4D Millimeter-Wave Radar
by Weigang Shi, Panpan Tong and Xin Bi
Remote Sens. 2025, 17(8), 1465; https://doi.org/10.3390/rs17081465 - 20 Apr 2025
Viewed by 1000
Abstract
Object detection is a critical task in autonomous driving. Currently, 3D object detection methods for autonomous driving primarily rely on stereo cameras and LiDAR, which are susceptible to adverse weather conditions and low lighting, resulting in limited robustness. In contrast, automotive mmWave radar [...] Read more.
Object detection is a critical task in autonomous driving. Currently, 3D object detection methods for autonomous driving primarily rely on stereo cameras and LiDAR, which are susceptible to adverse weather conditions and low lighting, resulting in limited robustness. In contrast, automotive mmWave radar offers advantages such as resilience to complex weather, independence from lighting conditions, and a low cost, making it a widely studied sensor type. Modern 4D millimeter-wave (mmWave) radar can provide spatial dimensions (x, y, z) as well as Doppler information, meeting the requirements for 3D object detection. However, the point cloud density of 4D mmWave radar is significantly lower than that of LiDAR in the case of short distances, and existing point cloud object detection methods struggle to adapt to such sparse data. To address this challenge, we propose a novel 4D mmWave radar point cloud object detection framework. First, we employ moving least squares (MLS) to densify multi-frame fused point clouds, effectively increasing the point cloud density. Next, we construct a 3D object detection network based on point pillar encoding and utilize an SSD detection head for detection on feature maps. Finally, we validate our method on the VoD dataset. Experimental results demonstrate that our proposed framework outperforms comparative methods, and the MLS-based point cloud densification method significantly enhances the object detection performance. Full article
Show Figures

Figure 1

28 pages, 3675 KiB  
Review
Advancements in Millimeter-Wave Radar Technologies for Automotive Systems: A Signal Processing Perspective
by Boxun Yan and Ian P. Roberts
Electronics 2025, 14(7), 1436; https://doi.org/10.3390/electronics14071436 - 2 Apr 2025
Cited by 1 | Viewed by 3121
Abstract
This review paper provides a comprehensive examination of millimeter-wave radar technologies in automotive systems, reviewing their advancements through signal processing innovations. The evolution of radar systems, from conventional platforms to mmWave technologies, has significantly enhanced capabilities such as high-resolution imaging, real-time tracking, and [...] Read more.
This review paper provides a comprehensive examination of millimeter-wave radar technologies in automotive systems, reviewing their advancements through signal processing innovations. The evolution of radar systems, from conventional platforms to mmWave technologies, has significantly enhanced capabilities such as high-resolution imaging, real-time tracking, and multi-object detection. Signal processing advancements, including constant false alarm rate detection, multiple-input–multiple-output systems, and machine learning-based techniques, are explored for their roles in improving radar performance under dynamic and challenging environments. The integration of mmWave radar with complementary sensing technologies such as LiDAR and cameras facilitates robust environmental perception essential for advanced driver-assistance systems and autonomous vehicles. This review also calls attention to key challenges, including environmental interference, material penetration, and sensor fusion, while addressing innovative solutions such as adaptive signal processing and sensor integration. Emerging applications of joint communication–radar systems further presents the potential of mmWave radar in autonomous driving and vehicle-to-everything communications. By synthesizing recent developments and identifying future directions, this review stresses the critical role of mmWave radar in advancing vehicular safety, efficiency, and autonomy. Full article
Show Figures

Figure 1

Back to TopTop