Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = mitochondrial membrane permeabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9190 KB  
Article
Targeting Glycolysis with 2-Deoxy-D-Glucose and Lysosomal Integrity with L-Leucyl-L-Leucine Methyl Ester as Antimelanoma Strategy
by Milica Kosic, Mihajlo Bosnjak, Milos Mandic, Ljubica Vucicevic, Maja Misirkic Marjanovic, Sofie Espersen Poulsen and Ljubica Harhaji-Trajkovic
Pharmaceutics 2025, 17(10), 1312; https://doi.org/10.3390/pharmaceutics17101312 - 9 Oct 2025
Viewed by 276
Abstract
Background/Objectives: Melanoma cells enhance glycolysis and expand lysosomes to support energy metabolism, proliferation, and metastasis. However, lysosomal membrane permeabilization (LMP) causes cathepsin leakage into cytosol triggering cytotoxicity. This study investigated the antimelanoma effect of 2-deoxy-D-glucose (2DG), an inhibitor of glycolytic enzyme hexokinase-2, [...] Read more.
Background/Objectives: Melanoma cells enhance glycolysis and expand lysosomes to support energy metabolism, proliferation, and metastasis. However, lysosomal membrane permeabilization (LMP) causes cathepsin leakage into cytosol triggering cytotoxicity. This study investigated the antimelanoma effect of 2-deoxy-D-glucose (2DG), an inhibitor of glycolytic enzyme hexokinase-2, in combination with cathepsin C-dependent LMP inducer L-leucyl-L-leucine methyl ester (LLOMe) and cathepsin C-independent LMP-inducers mefloquine and siramesine. Methods: The viability of A375 and B16 melanoma cells and primary fibroblasts was measured by crystal violet. Apoptosis, necrosis, and LMP were assessed by flow cytometry; caspase activation, mitochondrial depolarization, superoxide production, and energy metabolism were analyzed by fluorimetry, and expression of cathepsins and hexokinase-2 was evaluated by immunoblot. Appropriate inhibitors, antioxidant, and energy boosters were used to confirm cell death type and mechanism. Results: LLOMe triggered LMP, mitochondrial depolarization, and mitochondrial superoxide production, while suppressing oxidative phosphorylation. 2DG suppressed glycolysis and, together with LLOMe, synergized in ATP depletion, caspase activation, and mixed apoptosis and necrosis in A375 cells. Inhibitors of lysosomal acidification, cysteine cathepsins, and caspases, as well as antioxidant and energy boosters, reduced 2DG+LLOMe-induced toxicity. Cathepsins B, C, and D were lower, while hexokinase-2 was higher in A375 cells than fibroblasts. Accordingly, 2DG exhibited lower while LLOMe exhibited higher toxicity against fibroblasts than A375 and B16 cells. However, mefloquine and siramesine induced stronger LMP in A375 cells than in fibroblasts and showed melanoma-selective toxicity when combined with 2DG. Conclusions: 2DG-mediated glycolysis inhibition in combination with lysosomal destabilization induced by mefloquine and siramesine, but not with non-selectively toxic LLOMe, may be promising antimelanoma strategy. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

30 pages, 3013 KB  
Review
Inter-Organelle Crosstalk in Oxidative Distress: A Unified TRPM2-NOX2 Mediated Vicious Cycle Involving Ca2+, Zn2+, and ROS Amplification
by Esra Elhashmi Shitaw, Maali AlAhmad and Asipu Sivaprasadarao
Antioxidants 2025, 14(7), 776; https://doi.org/10.3390/antiox14070776 - 24 Jun 2025
Cited by 1 | Viewed by 1123
Abstract
Reactive oxygen species (ROS) are critical signalling molecules, but their overproduction leads to oxidative stress (OS), a common denominator in the pathogenesis of numerous non-communicable diseases (NCDs) and aging. General antioxidant therapies have largely been unsuccessful, highlighting the need for a deeper understanding [...] Read more.
Reactive oxygen species (ROS) are critical signalling molecules, but their overproduction leads to oxidative stress (OS), a common denominator in the pathogenesis of numerous non-communicable diseases (NCDs) and aging. General antioxidant therapies have largely been unsuccessful, highlighting the need for a deeper understanding of ROS amplification mechanisms to develop targeted interventions. This review proposes a unified, self-amplifying “vicious cycle” of inter-organelle crosstalk that drives pathological ROS elevation and cellular damage. We outline a pathway initiated by extracellular stressors that co-activate plasma membrane TRPM2 channels and NADPH oxidase-2. This synergy elevates cytoplasmic Ca2+, leading to lysosomal dysfunction and permeabilization, which in turn releases sequestered Zn2+. Mitochondrial uptake of this labile Zn2+ impairs electron transport chain function, particularly at Complex III, resulting in mitochondrial fragmentation, loss of membrane potential and a burst of mitochondrial ROS (mtROS). These mtROS diffuse to the nucleus, activating PARP-1 and generating ADPR, which further stimulates TRPM2, thereby perpetuating the cycle. This “circular domino effect” integrates signals generated across the plasma membrane (Ca2+), lysosomes (Zn2+), mitochondria (ROS) and nucleus (ADPR), leading to progressive organelle failure, cellular dysfunction, and ultimately cell death. Understanding and targeting specific nodes within this TRPM2-NOX2-Ca2+-Zn2+-mtROS-ADPR axis offers novel therapeutic avenues for NCDs by selectively disrupting pathological ROS amplification while preserving essential physiological redox signalling. Full article
Show Figures

Figure 1

18 pages, 2965 KB  
Article
Direct Effects of Clinically Relevant Antibiotics on Mitochondrial Respiration
by Judith Sailer, Sabine Schmitt, Hans Zischka and Erich Gnaiger
Int. J. Mol. Sci. 2025, 26(11), 5379; https://doi.org/10.3390/ijms26115379 - 4 Jun 2025
Viewed by 1453
Abstract
Antibiotics are indispensable in medical patient care, yet they may elicit off-target effects, particularly by affecting mitochondrial function. This study investigates three commonly used antibiotics, gentamicin, ciprofloxacin, and amoxicillin, for their direct effects on mitochondrial respiration and membrane potential. Using high-resolution respirometry, we [...] Read more.
Antibiotics are indispensable in medical patient care, yet they may elicit off-target effects, particularly by affecting mitochondrial function. This study investigates three commonly used antibiotics, gentamicin, ciprofloxacin, and amoxicillin, for their direct effects on mitochondrial respiration and membrane potential. Using high-resolution respirometry, we show that gentamicin and ciprofloxacin markedly increase mitochondrial leak respiration in permeabilized human embryonic kidney cells, suggesting alterations in the mitochondrial inner membrane. This is supported by a gentamicin-induced decrease in mitochondrial membrane potential. Especially gentamicin, but also ciprofloxacin, dose- and time-dependently inhibit oxidative phosphorylation and the mitochondrial electron transfer capacity, pronouncedly in the NADH-linked but also in the succinate-linked pathway. Furthermore, gentamicin decreases Complex IV (CIV) activity in a time-dependent fashion. In contrast, amoxicillin has no significant effect on mitochondrial respiration. These findings emphasize the importance of evaluating the potential direct toxicity of antibiotics on mitochondria, as they are most critical off-target sites. High-resolution respirometry provides a powerful approach to characterize such effects early in the drug development process. Full article
(This article belongs to the Special Issue Mitochondrial Respiration and Energy Metabolism in Cancer Cells)
Show Figures

Figure 1

17 pages, 2921 KB  
Article
Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides
by Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia and Neville Vassallo
Membranes 2025, 15(5), 148; https://doi.org/10.3390/membranes15050148 - 13 May 2025
Viewed by 1331
Abstract
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide [...] Read more.
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer’s disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

23 pages, 14743 KB  
Article
Mechanistic Insights into Sphingomyelin Nanoemulsions as Drug Delivery Systems for Non-Small Cell Lung Cancer Therapy
by Emma Ramos Docampo, Jenifer García-Fernández, Inés Mármol, Irene Morín-Jiménez, Maria Iglesias Baleato and María de la Fuente Freire
Pharmaceutics 2025, 17(4), 461; https://doi.org/10.3390/pharmaceutics17040461 - 2 Apr 2025
Cited by 2 | Viewed by 1248
Abstract
Sphingomyelin nanoemulsions (SNs) are promising drug delivery systems with potential for treating challenging tumors, including non-small cell lung cancer (NSCLC), which has a poor prognosis and a 5-year survival rate below 5%. Understanding the toxicity mechanisms and intracellular behavior of SNs is crucial [...] Read more.
Sphingomyelin nanoemulsions (SNs) are promising drug delivery systems with potential for treating challenging tumors, including non-small cell lung cancer (NSCLC), which has a poor prognosis and a 5-year survival rate below 5%. Understanding the toxicity mechanisms and intracellular behavior of SNs is crucial for optimizing their therapeutic application. This study aims to investigate the interaction between SNs and A549 lung adenocarcinoma cells, focusing on their cytotoxic effects and mechanisms of cellular toxicity. SNs were synthesized and characterized for size, surface charge, and stability. A549 cells were treated with varying concentrations of SNs, and cellular uptake pathways were assessed using inhibitors of energy-dependent processes. Cytotoxicity was evaluated through an alamarBlue assay to determine the IC50 value after 24 h. Mechanisms of toxicity, including lysosomal and mitochondrial involvement, were examined using co-localization studies, mitochondrial membrane potential assays, and markers of apoptosis. SNs exhibited rapid cellular uptake via energy-dependent pathways. The IC50 concentration for A549 cells was 0.89 ± 0.15 mg/mL, suggesting favorable cytocompatibility compared to other nanocarriers. At IC50, SNs induced apoptosis characterized by lysosomal damage, mitochondrial membrane permeabilization, and the release of apoptotic factors. These effects disrupted autophagic flux and contributed to cell death, demonstrating potential for overcoming drug resistance. Resveratrol-loaded SNs showed enhanced cytotoxicity, supporting their application as targeted drug delivery vehicles. This study highlights the potential of SNs as efficient drug delivery systems for NSCLC therapy, offering insights into their cellular interactions and toxicity mechanisms. These findings pave the way for the rational design of SN-based therapeutic platforms for cancer and other mitochondria-related diseases. Full article
(This article belongs to the Special Issue New Nano-Systems for Imaging, Diagnostics, and Drug Delivery)
Show Figures

Figure 1

16 pages, 3697 KB  
Article
D-M159 Synergistically Induces Apoptosis in HeLa Cells Through Endoplasmic Reticulum Stress and Mitochondrial Dysfunction
by Yuanyuan Li, Dingding Li, Zonghan Jiang, Zhihang Yuan, Zhiliang Sun and Leisheng Sun
Int. J. Mol. Sci. 2025, 26(7), 3172; https://doi.org/10.3390/ijms26073172 - 29 Mar 2025
Cited by 1 | Viewed by 1161
Abstract
Pore-forming peptides are promising antimicrobial and anticancer agents due to their membrane selectivity and biodegradability. Our prior work identified peptide M159, which permeabilized synthetic phosphatidylcholine liposomes without mammalian cell toxicity. Here, we report that the D-type variant (D-M159) induces apoptosis in HeLa cells [...] Read more.
Pore-forming peptides are promising antimicrobial and anticancer agents due to their membrane selectivity and biodegradability. Our prior work identified peptide M159, which permeabilized synthetic phosphatidylcholine liposomes without mammalian cell toxicity. Here, we report that the D-type variant (D-M159) induces apoptosis in HeLa cells under starvation. To explore its anticancer mechanism, we analyzed D-M159 cytotoxicity, intracellular uptake, and apoptotic pathways via flow cytometry, confocal microscopy, and Western blot. Calcium dynamics and mitochondrial function were examined via specific labeling and functional assays. Results revealed that D-M159 exhibited starvation-dependent, dose-responsive cytotoxicity and triggered apoptosis in HeLa cells. Mechanistic studies indicated that D-M159 entered the cells via caveolin-dependent and caveolae-dependent endocytosis pathways and induced endoplasmic reticulum stress in HeLa cells by up-regulating proteins such as ATF6, p-IRE1, PERK, GRP78, and CHOP. Meanwhile, D-M159 promoted the expression of IP3R1, GRP75, and VDAC1, which led to mitochondrial calcium iron overload, decreased mitochondrial membrane potential, and increased reactive oxygen species (ROS) generation, thereby activating the mitochondrial apoptotic pathway and inducing the aberrant expression of Bax, Bcl-2, Caspase-9, and Caspase-3. This study showed that D-M159 synergistically induced apoptosis in starved HeLa cells through endoplasmic reticulum stress and mitochondrial dysfunction, demonstrating its potential as a novel anticancer agent. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

13 pages, 9327 KB  
Article
BCL-B Promotes Lung Cancer Invasiveness by Direct Inhibition of BOK
by Palaniappan Ramesh, Amal R. Al Kadi, Gaurav M. Borse, Maximilian Webendörfer, Gregor Zaun, Martin Metzenmacher, Fabian Doerr, Servet Bölükbas, Balazs Hegedüs, Smiths S. Lueong, Joelle Magne, Beiyun Liu, Greisly Nunez, Martin Schuler, Douglas R. Green and Halime Kalkavan
Cells 2025, 14(4), 246; https://doi.org/10.3390/cells14040246 - 9 Feb 2025
Cited by 1 | Viewed by 1672
Abstract
Expression of BCL-B, an anti-apoptotic BCL-2 family member, is correlated with worse survival in lung adenocarcinomas. Here, we show that BCL-B can mitigate cell death initiation through interaction with the effector protein BOK. We found that this interaction can promote sublethal mitochondrial [...] Read more.
Expression of BCL-B, an anti-apoptotic BCL-2 family member, is correlated with worse survival in lung adenocarcinomas. Here, we show that BCL-B can mitigate cell death initiation through interaction with the effector protein BOK. We found that this interaction can promote sublethal mitochondrial outer membrane permeabilization (MOMP) and consequently generate apoptosis-flatliners, which represent a source of drug-tolerant persister cells (DTPs). The engagement of endothelial-mesenchymal-transition (EMT) further promotes cancer cell invasiveness in such DTPs. Our results reveal that BCL-B fosters cancer cell aggressiveness by counteracting complete MOMP. Full article
Show Figures

Graphical abstract

12 pages, 1253 KB  
Communication
Effects of Nicotinamide Riboside Supplementation on Postmortem Mitochondrial Functionality and Apoptotic Activation
by Chen Zhu, Luke A. Whitcomb, Adam J. Chicco, Morgan E. Gravely, Hanna M. Alcocer, Daniela A. Alambarrio, John M. Gonzalez, Colton L. Smith, Mahesh N. Nair, Huey Yi Loh, Terry E. Engle, Arya Niraula and Chaoyu Zhai
Metabolites 2025, 15(1), 31; https://doi.org/10.3390/metabo15010031 - 8 Jan 2025
Cited by 1 | Viewed by 1366
Abstract
Background/Objectives: Early postmortem mitochondrial function and apoptotic activation affect meat quality development. Nicotinamide riboside (NR) supplementation to pigs prior to harvest can improve pork color stability, but its mechanism remains unclear. This study aimed to evaluate the impact of NR supplementation on early [...] Read more.
Background/Objectives: Early postmortem mitochondrial function and apoptotic activation affect meat quality development. Nicotinamide riboside (NR) supplementation to pigs prior to harvest can improve pork color stability, but its mechanism remains unclear. This study aimed to evaluate the impact of NR supplementation on early postmortem mitochondrial functionality and apoptosis. Methods: Sixteen pigs (N = 16) were individually fed a control or NR-supplemented diet (30 mg·kg body weight−1·d−1) for 10 days prior to harvest. Longissimus dorsi muscle samples were collected at 45 min and 24 h postmortem and analyzed for mitochondrial functionality using high-resolution respirometry and apoptotic protein abundance (apoptosis regulator Bcl-2-associated X (BAX), apoptotic inducing factor (AIF), and caspase 3 (CASP3)) via immunoblotting. Results: NR-supplemented muscle exhibited lower proton leak-associated respiration at 45 min postmortem (p < 0.05), followed by a slower accumulation of mitochondrial outer membrane permeabilization (MOMP; p < 0.05) and a slower loss of mitochondrial integral function (p < 0.05) from 45 min to 24 h postmortem. NR supplementation decreased BAX abundance at 45 min postmortem but increased mature AIF abundance (62 kDa) at 24 h postmortem (p < 0.05). The abundance of CASP3 fragments (~29 kDa) decreased from 45 min to 24 h postmortem, independent of treatment (p < 0.05). Conclusions: NR supplementation demonstrated the potential to protect mitochondrial integral function and alleviate apoptotic activation in early postmortem porcine skeletal muscle, which might contribute to a higher meat color stability in NR-supplemented pork during retail display. Full article
(This article belongs to the Special Issue Unlocking the Mysteries of Muscle Metabolism in the Animal Sciences)
Show Figures

Figure 1

13 pages, 2145 KB  
Article
Effect of Metformin on Meibomian Gland Epithelial Cells: Implications in Aging and Diabetic Dry Eye Disease
by Leon Rescher, Swati Singh, Ingrid Zahn, Friedrich Paulsen and Martin Schicht
Life 2024, 14(12), 1682; https://doi.org/10.3390/life14121682 - 18 Dec 2024
Cited by 4 | Viewed by 1741
Abstract
Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, [...] Read more.
Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h. The assessed outcomes were cell proliferation assays, lipid production, ultrastructural changes, levels of IGF-1, Nrf2, HO-1, apoptosis-inducing factor 1 (AIF1) at the protein level, and the expression of oxidative stress factors (matrix metallopeptidase 9, activating transcription factor 3, CYBB, or NADPH oxidase 2, xanthine dehydrogenase). Results: Morphological studies showed increased lipid production, the differentiation of hMGECs after stimulation with metformin, and the differentiation effects of undifferentiated hMGECs. Proliferation tests showed a reduction in cell proliferation with increasing concentrations over time. AIF1 apoptosis levels were not significantly regulated, but morphologically, the dying cells at a higher concentration of 5-10 mM showed a rupture and permeabilization of the plasma membrane, a swelling of the cytoplasm, and vacuolization after more than 48 h. The IGF-1 ELISA showed an irregular expression, which mostly decreased over time. Only at 72 h and 10 mM did we have a significant increase. Mitochondrial metabolic markers such as Nrf2 significantly increased over time, while HO-1 decreased partially. The RT-PCR showed a significant increase in MMP9, CYBB, XDH, and ATF with increasing time and metformin concentrations, indicating cell stress. Conclusions: Our results using a cell line suggest that metformin affects the cellular physiology of meibomian gland epithelial cells and induces cell stress in a dose- and duration-dependent manner, causing changes in their morphology and ultrastructure. Full article
(This article belongs to the Special Issue Eye Diseases: Diagnosis and Treatment, 3rd Edition)
Show Figures

Figure 1

16 pages, 6101 KB  
Article
Enhancing the Cytotoxicity and Apoptotic Efficacy of Parasporin-2-Derived Variants (Mpp46Aa1) on Cancer Cell Lines
by Juan S. Alarcón-Aldana, Lydia Visser, Nohora J. Rueda-Forero, Efraín H. Pinzón-Reyes, Paola Rondón-Villarreal and Miguel O. Suárez-Barrera
Toxins 2024, 16(10), 415; https://doi.org/10.3390/toxins16100415 - 25 Sep 2024
Viewed by 2124
Abstract
Parasporin PS2Aa1, recently renamed Mpp46Aa1, is an anti-cancer protein known for its selectivity against various human cancer cell lines. We genetically modified native PS2Aa1 to create a library of approximately 100 mutants. From this library, we selected promising mutants based on their half-maximal [...] Read more.
Parasporin PS2Aa1, recently renamed Mpp46Aa1, is an anti-cancer protein known for its selectivity against various human cancer cell lines. We genetically modified native PS2Aa1 to create a library of approximately 100 mutants. From this library, we selected promising mutants based on their half-maximal inhibitory concentration (IC50) and sequence variations. In this study, Variant 3–35, with the G257V substitution, demonstrated increased cytotoxicity and selectivity against the colon cancer cell line SW480. Conversely, Variant N65, featuring substitutions N92D, K175R, and S218G, yielded the most favorable results against the cancer cell lines SW-620, MOLT-4, and Jurkat. The caspase 3/7 and 9, Annexin V-Cy3 and 6-GFDA activities, and, most notably, mitochondrial membrane permeabilization assays confirmed the apoptotic marker elevation. These findings indicate that residues 92, 175, 218, and 257 may play a critical role in the cytotoxic activity and selectivity. We successfully obtained genetically improved variants with substitutions at these key amino acid positions. Additionally, we conducted molecular dynamic simulations to explore the potential interactions between PS2Aa1 and the CD59 GPI-anchored protein. The simulation results revealed that residues 57, 92, and 101 were consistently present, suggesting their possible significance in the interactions between parasporin and the CD59 protein. Full article
Show Figures

Figure 1

21 pages, 2964 KB  
Article
Melatonin Alleviates Liver Mitochondrial Dysfunction in Leptin-Deficient Mice
by Beatriz de Luxán-Delgado, Yaiza Potes, Adrian Rubio-González, Juan José Solano, José Antonio Boga, Eduardo Antuña, Cristina Cachán-Vega, Juan Carlos Bermejo-Millo, Nerea Menéndez-Coto, Claudia García-González, Gonçalo C. Pereira, Beatriz Caballero, Ana Coto-Montes and Ignacio Vega-Naredo
Int. J. Mol. Sci. 2024, 25(16), 8677; https://doi.org/10.3390/ijms25168677 - 8 Aug 2024
Cited by 1 | Viewed by 1913
Abstract
Despite efforts to elucidate the cellular adaptations induced by obesity, cellular bioenergetics is currently considered a crucial target. New strategies to delay the onset of the hazardous adaptations induced by obesity are needed. Therefore, we evaluated the effects of 4 weeks of melatonin [...] Read more.
Despite efforts to elucidate the cellular adaptations induced by obesity, cellular bioenergetics is currently considered a crucial target. New strategies to delay the onset of the hazardous adaptations induced by obesity are needed. Therefore, we evaluated the effects of 4 weeks of melatonin treatment on mitochondrial function and lipid metabolism in the livers of leptin-deficient mice. Our results revealed that the absence of leptin increased lipid storage in the liver and induced significant mitochondrial alterations, which were ultimately responsible for defective ATP production and reactive oxygen species overproduction. Moreover, leptin deficiency promoted mitochondrial biogenesis, fusion, and outer membrane permeabilization. Melatonin treatment reduced the bioenergetic deficit found in ob/ob mice, alleviating some mitochondrial alterations in the electron transport chain machinery, biogenesis, dynamics, respiration, ATP production, and mitochondrial outer membrane permeabilization. Given the role of melatonin in maintaining mitochondrial homeostasis, it could be used as a therapeutic agent against adipogenic steatosis. Full article
Show Figures

Figure 1

21 pages, 3554 KB  
Article
The Antimicrobial Activity of Human Defensins at Physiological Non-Permeabilizing Concentrations Is Caused by the Inhibition of the Plasma Membrane H+-ATPases
by María T. Andrés, Patricia Fierro, Victoria Antuña and José F. Fierro
Int. J. Mol. Sci. 2024, 25(13), 7335; https://doi.org/10.3390/ijms25137335 - 4 Jul 2024
Cited by 4 | Viewed by 1977
Abstract
Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and β-defensins showed microbicidal activity [...] Read more.
Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and β-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1449 KB  
Review
Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways
by Emanuele Marzetti, Riccardo Calvani, Francesco Landi, Helio José Coelho-Júnior and Anna Picca
Int. J. Mol. Sci. 2024, 25(13), 7305; https://doi.org/10.3390/ijms25137305 - 3 Jul 2024
Cited by 7 | Viewed by 2878
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This [...] Read more.
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 11304 KB  
Article
Osthole Suppresses Cell Growth of Prostate Cancer by Disrupting Redox Homeostasis, Mitochondrial Function, and Regulation of tiRNAHisGTG
by Jisoo Song, Jiyeon Ham, Gwonhwa Song and Whasun Lim
Antioxidants 2024, 13(6), 669; https://doi.org/10.3390/antiox13060669 - 30 May 2024
Cited by 4 | Viewed by 1726
Abstract
Prostate cancer remains a significant global health concern, posing a substantial threat to men’s well-being. Despite advancements in treatment modalities, the progression of prostate cancer still presents challenges, warranting further exploration of novel therapeutic strategies. In this study, osthole, a natural coumarin derivative, [...] Read more.
Prostate cancer remains a significant global health concern, posing a substantial threat to men’s well-being. Despite advancements in treatment modalities, the progression of prostate cancer still presents challenges, warranting further exploration of novel therapeutic strategies. In this study, osthole, a natural coumarin derivative, inhibited cell viability in cancer cells but not in the normal prostate cell line. Moreover, osthole disrupted cell cycle progression. Furthermore, osthole reduces mitochondrial respiration with mitochondrial membrane potential (ΔΨm) depolarization and reactive oxygen species (ROS) generation, indicating mitochondrial dysfunction. In particular, osthole-induced ROS generation was reduced by N-acetyl-L-cysteine (NAC) in prostate cancer. In addition, using calcium inhibitors (2-APB and ruthenium red) and endoplasmic reticulum (ER) stress inhibitor (4-PBA), we confirmed that ER stress-induced calcium overload by osthole causes mitochondrial dysfunction. Moreover, we verified that the osthole-induced upregulation of tiRNAHisGTG expression is related to mechanisms that induce permeabilization of the mitochondrial membrane and calcium accumulation. Regarding intracellular signaling, osthole inactivated the PI3K and ERK pathways while activating the expression of the P38, JNK, ER stress, and autophagy-related proteins. In conclusion, the results suggest that osthole can be used as a therapeutic or adjuvant treatment for the management of prostate cancer. Full article
Show Figures

Figure 1

30 pages, 2609 KB  
Review
Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy
by Ryungsa Kim, Takanori Kin and William T. Beck
Cancers 2024, 16(5), 984; https://doi.org/10.3390/cancers16050984 - 28 Feb 2024
Cited by 29 | Viewed by 10504
Abstract
Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 [...] Read more.
Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer cells treated with anticancer drugs undergo c-Jun/AP-1–mediated apoptotic death and are involved in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c) and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related signaling pathways and their alterations during anticancer drug treatment and discuss potential strategies to enhance treatment efficacy. Full article
(This article belongs to the Special Issue Feature Review for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop