Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = mini-tubers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13481 KiB  
Article
Design and Experiment of Air-Suction Roller-Type Minituber Seed-Metering Device Based on CFD-DEM
by Jicheng Li, Haiqin Ma, Yuxuan Chen, Xiaoxin Zhu, Yu Qi, Qiang Gao and Jinqing Lyu
Agriculture 2025, 15(15), 1652; https://doi.org/10.3390/agriculture15151652 - 31 Jul 2025
Viewed by 134
Abstract
Aiming at the problems of the high multiple- and missed-seeding index and low operation efficiency of current mechanical potato seed-meters in minituber sowing, this study designed an air-suction roller-type minituber seed-metering device for minitubers (mass between 2 and 4 g) in accordance with [...] Read more.
Aiming at the problems of the high multiple- and missed-seeding index and low operation efficiency of current mechanical potato seed-meters in minituber sowing, this study designed an air-suction roller-type minituber seed-metering device for minitubers (mass between 2 and 4 g) in accordance with the agronomic standards for potato cultivation in the single-cropping area of northern China. An account of the device’s structure and operational principle was made, its working process was theoretically analysed, and the three main factors affecting the airflow suction were determined: the seed roller speed, the suction seeding hole diameter, and the air inlet negative pressure. This study adopted the fluid dynamics simulation method and determined that the ideal location of the air inlet was 30° for horizontal inclination and 60° for vertical inclination. Then, based on the CFD-DEM fluid-structure coupling simulation method, the impact of a range of factors on the functionality of the seed-metering device under different conditions was studied and verification tests were carried out. Design-Expert was used to analyse test results. The results showed that when the pressure at the air inlet was −7000 Pa, the speed of the seeding roller was 40.2 r·min−1, the suction seeding hole diameter was 10.37 mm, and the performance was optimal: the qualified index was 92.95%, the multiple-seeding index was 4.16%, and the missed-seeding index was 2.89%. The research results show that the seed-metering device developed under this scheme exhibited satisfactory seeding performance during operation and was able to meet the demands of minituber sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 6058 KiB  
Article
Influence of Nutrient Medium Components on In Vitro Tuberization of Solanum tuberosum L. and Subsequent Minituber Production in Aeroponic and Greenhouse Conditions
by Gayane Hrant Melyan, Yuri Tsatur Martirosyan, Aghvan Jumshud Sahakyan, Hovik Yakshibek Sayadyan, Andreas Shmavon Melikyan, Andranik Hakob Barseghyan, Arayik Sajan Vardanyan, Hamlet Sargis Martirosyan, Margarita Gurgen Harutyunyan, Anzhela Liparit Mkrtchyan, Inna Lendrush Hakobjanyan, Kima Seryozha Dangyan, Khachik Harut Terteryan, Kamo Atam Khazaryan and Meruzhan Haykaram Galstyan
Life 2025, 15(2), 241; https://doi.org/10.3390/life15020241 - 5 Feb 2025
Cited by 1 | Viewed by 1100
Abstract
Potatoes, a vital global food crop, have shown remarkable adaptability, significantly contributing to food security. Technological advancements now enable their cultivation from soil-based systems to liquid synthetic nutrient media, even in artificial closed environments without natural light or fertile soil. This study examined [...] Read more.
Potatoes, a vital global food crop, have shown remarkable adaptability, significantly contributing to food security. Technological advancements now enable their cultivation from soil-based systems to liquid synthetic nutrient media, even in artificial closed environments without natural light or fertile soil. This study examined the effects of Benzylaminopurine (BAP) and Kinetin (Kin) at concentrations ranging from 0 to 5 mg/L and sucrose concentrations ranging from 20 to 120 g/L on in vitro tuberization, focusing on microtuber size, weight, and tuberization rate. Nodal segments from virus-free ‘Red Scarlet’ in vitro potato plantlets were used as explants. These explants were cultured on Murashige and Skoog (MS) medium solidified with 0.5% agar. The study also compared minituber production efficiency under soil-based greenhouse and aeroponic conditions. The highest in vitro potato tuberization rate (90%) was achieved with 80 g/L sucrose and 3.0 mg/L BAP. After induction, virus-free microtubers were transferred to both greenhouse conditions and aeroponic systems for further assessment of minituber production and biochemical composition. These findings demonstrate the potential of aeroponics as a superior method for producing high-quality, pathogen-free minitubers. Aeroponics resulted in significantly higher minituber yields compared to soil-based greenhouse systems, offering a scalable and efficient solution for seed production. Full article
(This article belongs to the Special Issue Plant Functional Genomics and Breeding)
Show Figures

Figure 1

20 pages, 5882 KiB  
Article
Contact Parameter Calibration for Discrete Element Potato Minituber Seed Simulation
by Kai Chen, Xiang Yin, Wenpeng Ma, Chengqian Jin and Yangyang Liao
Agriculture 2024, 14(12), 2298; https://doi.org/10.3390/agriculture14122298 - 14 Dec 2024
Cited by 6 | Viewed by 1355
Abstract
The discrete element method (DEM) has been widely applied as a vital auxiliary technique in the design and optimization processes of agricultural equipment, especially for simulating the behavior of granular materials. In this study, the focus is placed on accurately calibrating the simulation [...] Read more.
The discrete element method (DEM) has been widely applied as a vital auxiliary technique in the design and optimization processes of agricultural equipment, especially for simulating the behavior of granular materials. In this study, the focus is placed on accurately calibrating the simulation contact parameters necessary for the V7 potato minituber seed DEM simulation. Firstly, three mechanical tests are conducted, and through a combination of actual tests and simulation tests, the collision recovery coefficient between the seed and rubber material is determined to be 0.469, the static friction coefficient is 0.474, and the rolling friction coefficient is 0.0062. Subsequently, two repose angle tests are carried out by employing the box side plates lifting method and the cylinder lifting method. With the application of the response surface method and a search algorithm based on Matlab 2019, the optimal combination of seed-to-seed contact parameters, namely, the collision recovery coefficient, static friction coefficient, and rolling friction coefficient, is obtained, which are 0.500, 0.476, and 0.043, respectively. Finally, the calibration results are verified by a seed-falling device that combines collisions and accumulation, and it is shown that the relative error between the simulation result and the actual result in the verification test is small. Thus, the calibration results can provide assistance for the design and optimization of the potato minituber seed planter. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

28 pages, 2541 KiB  
Review
Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach
by Lingdi Tang, Ain-ul-Abad Syed, Ali Raza Otho, Abdul Rahim Junejo, Mazhar Hussain Tunio, Li Hao, Mian Noor Hussain Asghar Ali, Sheeraz Aleem Brohi, Sohail Ahmed Otho and Jamshed Ali Channa
Agronomy 2024, 14(10), 2289; https://doi.org/10.3390/agronomy14102289 - 5 Oct 2024
Cited by 5 | Viewed by 3456
Abstract
Various rapid propagation strategies have been discovered, which has facilitated large-scale plant reproduction and cultivar development. These methods, in many plant species, are used to rapidly generate large quantities (900 mini-tubers/m2) of high-quality propagule (free from contamination) at a relatively low [...] Read more.
Various rapid propagation strategies have been discovered, which has facilitated large-scale plant reproduction and cultivar development. These methods, in many plant species, are used to rapidly generate large quantities (900 mini-tubers/m2) of high-quality propagule (free from contamination) at a relatively low cost in a small space. They are also used for plant preservation. This review article aims to provide potential applications for regeneration and clonal propagation. Plant propagation using advanced agrotechnology, such as aeroponics, is becoming increasingly popular among academics and industrialists. The advancement of asexual aeroponic propagation has been achieved through advancements in monitoring and control systems using IoT and smart sensor technology. New sensor technology systems have gained substantial interest in agriculture in recent years. It is used in agriculture to precisely arrange various operations and objectives while harnessing limited resources with minimal human intervention. Modern intelligent technologies and control systems simplify sensor data collection, making it more efficient than manual data collection, which can be slow and prone to errors. Specific ambient variables like temperature, humidity, light intensity, stock solution concentrations (nutrient water), EC (electrical conductivity), pH values, CO2 content, and atomization parameters (frequency and interval) are collected more effectively through these systems. The use of intelligent technologies provides complete control over the system. When combined with IoT, it aids in boosting crop quality and yield while also lowering production costs and providing data directly to tablets and smartphones in aeroponic propagation systems. It can potentially increase the system’s productivity and usefulness compared to the older manual monitoring and operating methods. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 3358 KiB  
Article
Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds
by Haydee Peña, Mila Santos, Beatriz Ramírez, José Sulbarán, Karen Arias, Victoria Huertas and Fernando Diánez
Sustainability 2024, 16(19), 8552; https://doi.org/10.3390/su16198552 - 1 Oct 2024
Cited by 1 | Viewed by 1689
Abstract
The sustainability of the primary sector is closely linked to meeting the demand for seeds using agro-industrial waste and bioresidues. Sustainability is a multidimensional concept focused on achieving environmental health, social justice, and economic viability. To this end, an experiment was designed based [...] Read more.
The sustainability of the primary sector is closely linked to meeting the demand for seeds using agro-industrial waste and bioresidues. Sustainability is a multidimensional concept focused on achieving environmental health, social justice, and economic viability. To this end, an experiment was designed based on a combination of biotechnological strategies accessible to many individuals. The first strategy involves the use of compost and vermicompost as cultivation substrates; the second is the in vitro acclimatization of potato plants to these substrates; and the third is the incorporation of Trichoderma asperellum into these substrates to determine the synergistic effect of both. The compost used in this work came from sewage sludge from an agri-food company (Cp); a dining room and pruning waste from a university campus (Cu); and vermicomposted coffee pulp waste (Cv). Each sample was mixed with coconut fiber (Fc) in proportions of 100, 75, 50, and 25%. In the resulting mixtures, María Bonita variety vitroplants were planted and placed in a greenhouse. The biometric response in the three cases indicated a dependence on the type of compost and the proportion of the coconut fiber mixture. The inoculation of Trichoderma asperellum with sewage sludge compost increased stem thickness (42.58%) and mini-tuber weight (6.74%). In contrast, uninoculated treatments showed the best performance in terms of the number of mini-tubers. A 50:50 mixture of sewage sludge compost with coconut fiber and without inoculation of Trichoderma asperellum was the best treatment for the production of pre-basic seeds of the María Bonita potato variety. The use of composted agricultural waste and bioresidues is shown as a valid and low-cost alternative for the sector, even independently of the incorporation of additional inoculants. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

41 pages, 12106 KiB  
Article
Effect of Drought and Seed Tuber Size on Agronomical Traits of Potato (Solanum tuberosum L.) under In Vivo Conditions
by Alexandra Hanász, László Zsombik, Katalin Magyar-Tábori and Nóra Mendler-Drienyovszki
Agronomy 2024, 14(6), 1131; https://doi.org/10.3390/agronomy14061131 - 26 May 2024
Cited by 2 | Viewed by 2157
Abstract
Drought may considerably decrease the growth and yield of potatoes. Small tubers may have lower performance and be more sensitive to abiotic stresses than larger tubers. Since an increase in drought areas may be expected, the development of potato varieties with drought tolerance [...] Read more.
Drought may considerably decrease the growth and yield of potatoes. Small tubers may have lower performance and be more sensitive to abiotic stresses than larger tubers. Since an increase in drought areas may be expected, the development of potato varieties with drought tolerance has become necessary. Two-year greenhouse experiments were conducted to test the drought tolerance of potato breeding lines (C103, C107, C20) with great osmotic stress tolerance. Minitubers with diameters of 25–35, 20–24, 15–19 and 10–14 mm were planted. Treatments were the optimal irrigated control (100%) and moderate and severe drought (60% and 20% of optimum water supply). To study the after-effects of drought, tubers from different treatments were planted separately the following year because seed tuber priming may increase drought tolerance. Seed tubers (25–35 mm), two irrigation treatments (control and severe drought), and two control cultivars were used in the second year. We observed the rate of emergence from day-after-planting (DAP) 20 to 30 and flowering from 48 to 54. NDVI measurements were performed on the DAP35-45-75. Plant height and fresh weight of aboveground biomass (AGB) were recorded on DAP76. Harvested tubers were counted, weighed, and size-categorized, and then the number and fresh tuber yield per plant (TN and TY) were calculated. Stress indices (SI) were calculated as percentages of the results of control plots to compare the responses of genotypes to drought stress. We found that each breeding line showed adequate drought tolerance, although only the C103 and C107 breeding lines were stable in in vivo conditions. SI values for tuber number/tuber yield were 103/57; 102/63; 83/52; 80/58 and 55/41 in C103, C107, C20, ‘Boglárka’ and ‘Desiree’ (the last two were control varieties), respectively. The size of the seed tuber significantly affected each character, and usually minitubers larger than 20 mm performed better than smaller ones. No significant after-effect of drought stress on the next generation was found. Although we found a positive correlation (r = 0.83) between NDVI values and yield parameters, the correlations in our study were not consistent in all genotypes and water treatments. Full article
(This article belongs to the Special Issue Crop Biology and Breeding under Environmental Stress)
Show Figures

Figure 1

15 pages, 2315 KiB  
Article
Effect of Light Quality on Seed Potato (Solanum tuberose L.) Tuberization When Aeroponically Grown in a Controlled Greenhouse
by Md Hafizur Rahman, Md. Jahirul Islam, Umma Habiba Mumu, Byeong Ryeol Ryu, Jung-Dae Lim, Md Obyedul Kalam Azad, Eun Ju Cheong and Young-Seok Lim
Plants 2024, 13(5), 737; https://doi.org/10.3390/plants13050737 - 6 Mar 2024
Cited by 5 | Viewed by 2713
Abstract
A plant factory equipped with artificial lights is a comparatively new concept when growing seed potatoes (Solanum tuberosum L.) for minituber production. The shortage of disease-free potato seed tubers is a key challenge to producing quality potatoes. Quality seed tuber production all [...] Read more.
A plant factory equipped with artificial lights is a comparatively new concept when growing seed potatoes (Solanum tuberosum L.) for minituber production. The shortage of disease-free potato seed tubers is a key challenge to producing quality potatoes. Quality seed tuber production all year round in a controlled environment under an artificial light condition was the main purpose of this study. The present study was conducted in a plant factory to investigate the effects of distinct spectrum compositions of LEDs on potato tuberization when grown in an aeroponic system. The study was equipped with eight LED light combinations: L1 = red: blue: green (70 + 25 + 5), L2 = red: blue: green (70 + 20 + 10), L3 = red: blue: green (70 + 15 + 15), L4 = red: blue: green (70 + 10 + 20), L5 = red: blue: far-red (70 + 25 + 5), L6 = red: blue: far-red (70 + 20 + 10), L7 = red: blue: far-red (70 + 15 + 15), L8 = red: blue: far-red (70 + 10 + 20), and L9 = natural light with 300 µmol m−2 s−1 of irradiance, 16/8 h day/night, 65% relative humidity, while natural light was used as the control treatment. According to the findings, treatment L4 recorded a higher tuber number (31/plant), tuber size (>3 g); (9.26 ± 3.01), and GA3 content, along with better plant growth characteristics. Moreover, treatment L4 recorded a significantly increased trend in the stem diameter (11.08 ± 0.25), leaf number (25.32 ± 1.2), leaf width (19 ± 0.81), root length (49 ± 2.1), and stolon length (49.62 ± 2.05) compared to the control (L9). However, the L9 treatment showed the best performance in plant fresh weight (67.16 ± 4.06 g) and plant dry weight (4.46 ± 0.08 g). In addition, photosynthetic pigments (Chl a) (0.096 ± 0.00 mg g−1, 0.093 ± 0.00 mg g−1) were found to be the highest in the L1 and L2 treatments, respectively. However, Chl b and TCL recorded the best results in treatment L4. Finally, with consideration of the plant growth and tuber yield performance, treatment L4 was found to have the best spectral composition to grow quality seed potato tubers. Full article
(This article belongs to the Special Issue Light and Its Influence on the Growth and Quality of Plants)
Show Figures

Figure 1

21 pages, 4681 KiB  
Article
Best Morpho-Physiological Parameters to Characterize Seed-Potato Plant Growth under Aeroponics: A Pilot Study
by Jaime Barros Silva Filho, Paulo C. R. Fontes, Jorge Freire da Silva Ferreira, Paulo R. Cecon and Marllon Fernando Soares dos Santos
Agronomy 2024, 14(3), 517; https://doi.org/10.3390/agronomy14030517 - 2 Mar 2024
Cited by 4 | Viewed by 2917
Abstract
Although plant characterization under the International Potato Center’s (CIP’s) aeroponic system requires many morpho-physiological parameters to evaluate a cultivar, there is no method to evaluate the best parameters or the most suitable cultivation time. Thus, several morpho-physiological parameters were compared under a modified [...] Read more.
Although plant characterization under the International Potato Center’s (CIP’s) aeroponic system requires many morpho-physiological parameters to evaluate a cultivar, there is no method to evaluate the best parameters or the most suitable cultivation time. Thus, several morpho-physiological parameters were compared under a modified aeroponic system, using different statistical tools, to determine the best parameters and most efficient time to characterize seed-potato plants. We evaluated 21 parameters for cv. Agata under a randomized complete block design with weekly harvests for 9 weeks. The best parameters for growth characterization were selected based on multivariate statistical approaches involving correlation plots, similarity clusters (dendrograms), and principal component analysis. The best parameters for seed potato characterization were as follows, in order of importance: main stem diameter, leaf number, the length of the fourth leaf, leaf area, number of mini-tubers, mini-tuber fresh weight, root dry weight, and total dry weight. The days after transplanting (DAT) significantly affected the morpho-physiological parameters, with 45 DAT being the best cultivation time to estimate mini-tuber yield, and the data for bi-weekly harvests were as reliable as for weekly harvests. Our results, applied to either the CIP or to our modified aeroponics method, will be valuable in streamlining the characterization of other seed potato cultivars used by certified producers. Full article
(This article belongs to the Special Issue New Trends in Crop Production Management Practices)
Show Figures

Figure 1

10 pages, 575 KiB  
Article
Influence of Hydroponics Nutrient Solution on Quality of Selected Varieties of Potato Minitubers
by Winnie Chebet Wambugu, Anthony M. Kibe, Arnold M. Opiyo, Stephen Githeng’u and Thomas Odong
Horticulturae 2024, 10(2), 126; https://doi.org/10.3390/horticulturae10020126 - 29 Jan 2024
Viewed by 1969
Abstract
Addressing poor seed quality is pivotal for increased potato yields in Kenya. For this to be realized there is a need for nutrient optimization in the hydroponic system. The objective of this study was to examine the effects of nutrient stock solution concentrations [...] Read more.
Addressing poor seed quality is pivotal for increased potato yields in Kenya. For this to be realized there is a need for nutrient optimization in the hydroponic system. The objective of this study was to examine the effects of nutrient stock solution concentrations on the quality of minitubers produced under a hydroponic system. Two greenhouse experiments were set up at Egerton University, Kenya in 2022. The treatments included three nutrient solution concentrations: 75% (N75), 100% (N100) and 125% (N125) and four potato varieties (Wanjiku, Unica, Shangi and Nyota) grown in a cocopeat substrate hydroponic system. The results indicated that the application of N125 produced minitubers that had significantly higher specific gravity, dry matter, starch, ash and sugar content. Crude protein and phosphorus did not differ significantly with the application of varying nutrient concentrations. The varieties did not differ significantly in the quality parameters except for total sugars where Unica was significantly different from Nyota and Wanjiku while Shangi did not differ from all varieties. Therefore, it will be advisable to apply 125% of the ADC-Molo recommended nutrient stock formulation which should be considered as an effective method of increasing minitubers quality under a hydroponic system. Full article
(This article belongs to the Special Issue Horticultural Plant Nutrition, Fertilization, Soil Management)
Show Figures

Figure 1

14 pages, 1863 KiB  
Article
The Postharvest Application of Carvone, Abscisic Acid, Gibberellin, and Variable Temperature for Regulating the Dormancy Release and Sprouting Commencement of Mini-Tuber Potato Seeds Produced under Aeroponics
by Tiandi Zhu, Huaidi Pei, Zhongwang Li, Minmin Zhang, Chen Chen and Shouqiang Li
Plants 2023, 12(23), 3952; https://doi.org/10.3390/plants12233952 - 24 Nov 2023
Cited by 3 | Viewed by 2084
Abstract
This study investigated the efficacy of carvone, abscisic acid (ABA), gibberellin (GA3), and variable temperature in managing dormancy and sprouting in aeroponically grown mini-tuber potato (Solanum tuberosum L.) seeds. The results showed that carvone treatment effectively reduced the weight loss rate by [...] Read more.
This study investigated the efficacy of carvone, abscisic acid (ABA), gibberellin (GA3), and variable temperature in managing dormancy and sprouting in aeroponically grown mini-tuber potato (Solanum tuberosum L.) seeds. The results showed that carvone treatment effectively reduced the weight loss rate by 12.25% and decay rate by 3.33% at day 25 compared to control. ABA treatment significantly enhanced the germination rate, increasing it to 97.33%. GA3 treatment resulted in the longest sprouts of 14.24 mm and reduced the MDA content by 23.08% at day 30, indicating its potential in shortening dormancy and maintaining membrane integrity. The variable-temperature treatment demonstrated a balanced performance in reducing weight loss and maintaining a lower relative conductivity, indicating less cellular damage. The enzymatic activities of α-amylase, CAT, and SOD were modulated by the treatments, ensuring a balanced enzymatic environment for seed vitality. These results establish a solid basis for improving postharvest management strategies to optimize germination uniformity and preserve the quality of aeroponic potato seeds during extended dormancy, promising enhanced yield and productivity in potato cultivation. Full article
(This article belongs to the Special Issue Mechanisms of Seed Dormancy and Germination)
Show Figures

Figure 1

23 pages, 2503 KiB  
Article
Enhancing Seed Potato Production from In Vitro Plantlets and Microtubers through Biofertilizer Application: Investigating Effects on Plant Growth, Tuber Yield, Size, and Quality
by Hiba Boubaker, Wassim Saadaoui, Hayriye Yildiz Dasgan, Neji Tarchoun and Nazim S. Gruda
Agronomy 2023, 13(10), 2541; https://doi.org/10.3390/agronomy13102541 - 2 Oct 2023
Cited by 12 | Viewed by 4234
Abstract
Seed potato production often relies on mineral fertilizers. However, biofertilizers offer an eco-friendly, cost-effective means to enhance nutrient uptake, plant growth, yields, and quality while bolstering stress resilience. Two cultivars (‘Spunta’ and ‘Russet’), two in vitro materials as microtubers and plantlets, and four [...] Read more.
Seed potato production often relies on mineral fertilizers. However, biofertilizers offer an eco-friendly, cost-effective means to enhance nutrient uptake, plant growth, yields, and quality while bolstering stress resilience. Two cultivars (‘Spunta’ and ‘Russet’), two in vitro materials as microtubers and plantlets, and four bio-fertilizers were used to produce seed minitubers. These bio-fertilizers included mycorrhiza (T2), microalgae (T3), beneficial bacteria (PGPR) (T4), and vermicompost (T5). Treatment T1, which received 100% mineral nutrients, was used as the control, while the bio-fertilizers were given 40% of the mineral nutrition relative to the control. The study clearly demonstrated the effectiveness of the biofertilizers used in improving plant growth parameters, particularly highlighting the efficacy of vermicompost. The highest seed tuber yield of 173.12 g was obtained from the combination of ‘Spunta’ + microtuber + vermicompost’. In both varieties, in vitro microtubers led to a higher seed yield than in vitro plantlets. In terms of tuber diameter, tuber weight, and tuber number, the performance of the ‘Spunta’ cultivar was significantly higher than that of the ‘Russet’ cultivar. Seed tubers derived from in vitro microtubers had a larger diameter and were heavier than those derived from in vitro plantlets. However, seed tubers produced from in vitro plantlets were of a smaller size but more in number. In in vitro potato seed tuber production, we recommend the use of ‘Spunta’ cultivar and in vitro microtuber, supplementing with vermicompost to enhance yield, size, number curbing costs, and eco-friendliness. Full article
Show Figures

Figure 1

24 pages, 7390 KiB  
Article
The Potential of Hydroponic Seed Minituber Enrichment with the Endophyte Bacillus subtilis for Improving the Yield Components and Quality of Potato (Solanum tuberosum L.)
by Liudmila Pusenkova, Oksana Lastochkina and Sezai Ercişli
Agriculture 2023, 13(8), 1626; https://doi.org/10.3390/agriculture13081626 - 18 Aug 2023
Cited by 7 | Viewed by 2373
Abstract
This study examined the potential of using the endophytic bacteria Bacillus subtilis (10-4 and 26D) to enrich hydroponically grown potato seed minitubers (Solanum tuberosum L. cv. Bashkirsky) to improve plant growth, photosynthetic pigments, yield, and quality parameters, including nutritional value (i.e., macro-/microelements, [...] Read more.
This study examined the potential of using the endophytic bacteria Bacillus subtilis (10-4 and 26D) to enrich hydroponically grown potato seed minitubers (Solanum tuberosum L. cv. Bashkirsky) to improve plant growth, photosynthetic pigments, yield, and quality parameters, including nutritional value (i.e., macro-/microelements, vitamin C, anthocyanins). Potato seed minitubers, obtained from in-vitro-grown microplants in a hydroponic system, were inoculated with endophytic B. subtilis and subsequently grown in pots under controlled conditions. The results demonstrated the successful colonization of seed minitubers by B. subtilis, with subsequent distribution into growing plants (roots, shoots). The endophytes accelerated the plant’s phenological shifts, resulting in earlier emergence of sprouts, budding, and flowering compared with control plants. They also had increased leaf photosynthetic pigments (chlorophyll (Chl) a, Chl b, and carotenoids), total leaf area, and positively influenced leaf proline contents. The height of plants and number of stems per plant did not change significantly upon endophyte treatment, but improved root growth was observed throughout the experiment. As a result of endophyte application, there was an increase in stolon weight, number and size of tubers, and overall tuber yield. There were no significant differences in terms of total dry matter and starch content of the tubers compared to the control group, but the sugar levels decreased and the size of the starch grains was larger in endophyte-treated tubers. Furthermore, endophyte treatment resulted in an increased accumulation of nutrients including N, P, K, Cu, and Fe, as well as vitamin C and anthocyanins in harvested tubers. These findings indicate that colonization of hydroponically grown potato seed minitubers with endophytic B. subtilis (10-4 and 26D) before planting has great potential as an eco-friendly approach to obtain higher-quality seeds and to increase tuber yield and nutritional value in field conditions. Full article
(This article belongs to the Special Issue Applications of Plant Growth-Promoting Bacteria in Crop Production)
Show Figures

Figure 1

16 pages, 2935 KiB  
Article
The Indirect Antiglobulin (Coombs’) Test Is Specific but Less Sensitive Than the Direct Antiglobulin Test for Detecting Anti-Erythrocytic Autoantibodies and Thereby Immune-Mediated Hemolytic Anemia in Dogs
by Nadine Idalan, Elisabeth Müller and Urs Giger
Vet. Sci. 2023, 10(7), 415; https://doi.org/10.3390/vetsci10070415 - 26 Jun 2023
Cited by 1 | Viewed by 6755
Abstract
The immunodiagnostic assessment of dogs suspected of having immune-mediated hemolytic anemia (IMHA) is based on persistent autoagglutination of erythrocytes (after three saline washes), marked spherocytosis, and a positive direct antiglobulin (Coombs’) test (DAT). However, the value of using the indirect antiglobulin test (IAT) [...] Read more.
The immunodiagnostic assessment of dogs suspected of having immune-mediated hemolytic anemia (IMHA) is based on persistent autoagglutination of erythrocytes (after three saline washes), marked spherocytosis, and a positive direct antiglobulin (Coombs’) test (DAT). However, the value of using the indirect antiglobulin test (IAT) for the detection of anti-erythrocytic autoantibodies in serum from dogs suspected of having IMHA is unclear. To evaluate the IAT, leftover serum samples from a large cohort of 94 dogs suspected of having IMHA and for which DAT results were known were incubated with DAT− erythrocytes, and five IAT techniques were performed (in part with different reagents and temperatures): microtiter plate (MICRO), microcapillary, laboratory gel column, gel minitube kit (GEL KIT), and immunochromatographic strip kit. Two IAT techniques (MICRO at 37 °C and GEL KIT with rabbit anti-dog polyvalent reagent) detected autoantibodies against erythrocytes in serum from 53% and 57% of DAT+ dogs, respectively, while other IATs performed less well. Moreover, while the analytic specificity of the IAT methods compared to the DAT ranged from 96–100%, the sensitivity range was only 9–57%. Thus, we still recommend DAT for diagnosis and monitoring of IMHA in dogs but conclude that a positive IAT result may aid diagnostically when serum is available, but fresh red blood cells are not. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

11 pages, 1628 KiB  
Communication
Glycerol-Free Equilibration with the Addition of Glycerol Shortly before the Freezing Procedure: A Perspective Strategy for Cryopreservation of Wallachian Ram Sperm
by Anežka Málková, Filipp Georgijevič Savvulidi, Martin Ptáček, Karolína Machová, Martina Janošíková, Szabolcs Nagy and Luděk Stádník
Animals 2023, 13(7), 1200; https://doi.org/10.3390/ani13071200 - 29 Mar 2023
Cited by 3 | Viewed by 2217
Abstract
This study investigated the effect of glycerol added in different phases of sperm equilibration on CASA and flow cytometry parameters of thawed ram spermatozoa. Sperm was collected from adult Wallachian rams. The freezing extender was glycerol-free ANDROMED® (Minitub GmbH, Tiefenbach, Germany) supplied [...] Read more.
This study investigated the effect of glycerol added in different phases of sperm equilibration on CASA and flow cytometry parameters of thawed ram spermatozoa. Sperm was collected from adult Wallachian rams. The freezing extender was glycerol-free ANDROMED® (Minitub GmbH, Tiefenbach, Germany) supplied by 6% exogenous glycerol at different stages of the cryopreservation process. The purpose of this study was to compare two strategies of glycerol addition for sperm cryopreservation. The first strategy included the use of a glycerol-free extender for the procedure of glycerol-free equilibration and chilling, with the glycerolation of the extender by 6% glycerol shortly before sperm slow freezing (GFA). The second strategy included the use of a freezing extender already glycerolated by 6% glycerol before the equilibration and chilling of sperm and following slow freezing (GA). Sperm samples were analyzed after equilibration (but before freezing) and after thawing (at T0, T1 h, and T2 h time points). iSperm® mCASA (Aidmics Biotechnology Co., LTD., Taipei, Taiwan) was used for the evaluation of sperm kinematics. Flow cytometry was used to measure sperm viability (plasma membrane/acrosome intactness) and mitochondrial membrane potential. The obtained results significantly demonstrated that the glycerol-free equilibration with the addition of glycerol shortly before freezing is a perspective strategy for cryopreservation of Wallachian ram sperm. Full article
Show Figures

Figure 1

11 pages, 6884 KiB  
Article
Analysis of the Potato Vegetation Stages Based on the Dynamics of Water Consumption in the Closed Urban Vertical Farm with Automated Microclimate Control
by Boris Rumiantsev, Sofya Dzhatdoeva, Vasily Zotov and Azret Kochkarov
Agronomy 2023, 13(4), 954; https://doi.org/10.3390/agronomy13040954 - 23 Mar 2023
Cited by 3 | Viewed by 3251
Abstract
One of the promising trends in modern agronomy is the development of automated closed urban vertical farms with controlled environmental conditions, which can improve dynamics of the crop vegetation process. In the frame of this work, the analysis of the vegetative stages of [...] Read more.
One of the promising trends in modern agronomy is the development of automated closed urban vertical farms with controlled environmental conditions, which can improve dynamics of the crop vegetation process. In the frame of this work, the analysis of the vegetative stages of potato seed material (minitubers and microplants) grown in the conditions of the automated vertical farm was conducted. The study was performed at the vertical farm of the Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences by the analysis of water consumption dynamics. It was established that the 20-day reduction in the vegetative period of the vertical-farm-grown potatoes in comparison with the field-grown ones occurred due to the reduction in the final stage of vegetation (mass gain of newly formed tubers) under the minitubers planting. The same reduction occurred due to both final and initial vegetative stage (absence of tubers germination) under the planting of microplants. The obtained result shed new light on the vegetation dynamics of potato grown under controlled conditions of the urban vertical farms and demonstrated a possibility to perform the study of plant development process using automated diagnostics systems of vertical farms. Full article
(This article belongs to the Topic Crop Ecophysiology: From Lab to Field)
Show Figures

Figure 1

Back to TopTop