The Potential of Hydroponic Seed Minituber Enrichment with the Endophyte Bacillus subtilis for Improving the Yield Components and Quality of Potato (Solanum tuberosum L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains and Inoculum Preparation
2.2. Plant Material
2.3. Potato Seed Minitubers Treatment and Growth Conditions
2.4. Potato Seed Minitubers and Sprouts Colonization Assay
2.5. Bacterial DNA Extraction
2.6. Plant Growth Parameters and Tubers Yield Components
2.7. Photosynthetic Pigments and Total Leaf Area
2.8. Proline
2.9. Total Anthocyanins
2.10. Macro- and Microelements
2.11. Tubers’ Quality Parameters
2.12. Statistical Analysis
3. Results
3.1. Potato Minituber Seed Treatment with Endophytic B. subtilis Allows Establishing Close Microbe–Plant Relationships and Has the Potential to Modulate Plant Growth
3.1.1. Bacterial Colonization
3.1.2. Morphological Parameters of Plants Grown from Endophyte-Colonized Seed Minitubers
3.2. Photosynthetic Pigments and Total Leaf Area
3.3. Proline
3.4. Tubers’ Yield Parameters
3.5. Tubers’ Quality Parameters
3.6. Macro- and Microelements Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. World Food and Agriculture—Statistical Yearbook 2022. Available online: https://www.fao.org/3/cc2211en/cc2211en.pdf (accessed on 21 June 2023).
- Zia, M.A.B.; Demirel, U.; Nadeem, M.A.; Ali, F.; Dawood, A.; Ijaz, M.; Caliskan, M.E. Genome-Wide Association Studies (GWAS) Revealed a Genetic Basis Associated with Floral Traits in Potato Germplasm. Turk. J. Agric. For. 2022, 46, 90–103. [Google Scholar] [CrossRef]
- Kordabovskiy, V.Y. Biochemical Composition of Potato Tubers of Magadan Selection. Int. Res. J. 2017, 5, 208–209. [Google Scholar] [CrossRef]
- Shen, C.; Sun, J.B.; Wu, J.Z.; Zhou, X.Y. World Potato Production, Consumption and Trade Pattern and Evolution Analysis. Shandong Agric. Sci. 2021, 2, 127–132. [Google Scholar] [CrossRef]
- Ishibwela Obedi, N. Production of Potato Quality Seeds in Mountainous Region of Central Africa. In Advances in Root Vegetables Research; Kaushik, P., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Tkachenko, O.V.; Evseeva, N.V.; Boikova, N.V.; Matora, L.Y.; Burygin, G.L.; Lobachev, Y.V.; Shchyogolev, S.Y. Improved Potato Microclonal Reproduction with the Plant Growth-Promoting Rhizobacteria Azospirillum. Agron. Sustain. Dev. 2015, 35, 1167–1174. [Google Scholar] [CrossRef]
- Burygin, G.L.; Kargapolova, K.Y.; Kryuchkova, Y.V.; Avdeeva, E.S.; Gogoleva, N.E.; Ponomaryova, T.S.; Tkachenko, O.V. Ochrobactrum cytisi IPA7.2 Promotes Growth of Potato Microplants and Is Resistant to Abiotic Stress. World J. Microbiol. Biotechnol. 2019, 35, 55. [Google Scholar] [CrossRef]
- Tkachenko, O.V.; Evseeva, N.V.; Terentyeva, E.V.; Burygin, G.L.; Shirokov, A.A.; Burov, A.M.; Matora, L.Y.; Shchyogolev, S.Y. Improved Production of High-Quality Potato Seeds in Aeroponics with Plant Growth-Promoting Rhizobacteria. Potato Res. 2021, 64, 55–66. [Google Scholar] [CrossRef]
- Tomilova, O.G.; Kryukova, N.A.; Efimova, M.V.; Kovtun, I.S.; Kolomeichuk, L.V.; Kryukov, V.Y.; Glupov, V.V. Early Physiological Response of Potato Plants to Entomopathogenic Fungi under Hydroponic Conditions. Horticulturae 2021, 7, 217. [Google Scholar] [CrossRef]
- Oswald, A.; Calvo, V.P.; Davila, D.Z.; Pineda, J.A. Evaluating Soil Rhizobacteria for Their Ability to Enhance Plant Growth and Tuber Yield in Potato. Ann. Appl. Biol. 2010, 157, 259–271. [Google Scholar] [CrossRef]
- Naqqash, T.; Hameed, S.; Imran, A.; Hanif, M.K.; Majeed, A.; van Elsas, J.D. Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. Front. Plant Sci. 2016, 7, 144. [Google Scholar] [CrossRef]
- Devi, A.R.; Kotoky, R.; Pandey, P.; Sharma, G.D. Application of Bacillus spp. for Sustainable Cultivation of Potato (Solanum tuberosum L.) and the Benefits. In Bacilli and Agrobiotechnology Cham; Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 185–211. [Google Scholar] [CrossRef]
- Song, J.; Kong, Z.-Q.; Zhang, D.-D.; Chen, J.-Y.; Dai, X.-F.; Li, R. Rhizosphere Microbiomes of Potato Cultivated under Bacillus subtilis Treatment Influence the Quality of Potato Tubers. Int. J. Mol. Sci. 2021, 22, 12065. [Google Scholar] [CrossRef]
- Belimov, A.A.; Dodd, I.C.; Safronova, V.I.; Shaposhnikov, A.I.; Azarova, T.S.; Makarova, N.M.; Davies, W.J.; Tikhonovich, I.A. Rhizobacteria That Produce Auxins and Contain 1-Amino-Cyclopropane1-Carboxylic Acid Deaminase Decrease Amino Acid Concentrations in the Rhizosphere and Improve Growth and Yield of Well-Watered and Water-Limited Potato (Solanum tuberosum). Ann. Appl. Biol. 2015, 167, 11–25. [Google Scholar] [CrossRef]
- Santiago, C.D.; Yagi, S.; Ijima, M.; Nashimoto, T.; Sawada, M.; Ikeda, S.; Asano, K.; Orikasa, Y.; Ohwada, T. Bacterial Compatibility in Combined Inoculations Enhances the Growth of Potato Seedlings. Microbes Environ. 2017, 32, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Soumare, A.; Diédhiou, A.G.; Arora, N.K.; Al-Ani, L.K.T.; Ngom, M.; Fall, S.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L.; Sy, M.O. Potential Role and Utilization of Plant Growth Promoting Microbes in Plant Tissue Culture. Front. Microbiol. 2021, 12, 649878. [Google Scholar] [CrossRef]
- Oswald, A.; Calvo, P. Using Rhizobacteria to Improve Productivity of Potato. In Proceedings of the 15th Triennial International Society for Tropical Root Crops (ISTRC), Lima, Peru, 2–7 November 2009; pp. 29–33. [Google Scholar]
- Kargapolova, K.Y.; Burygin, G.L.; Tkachenko, O.V.; Evseeva, N.V.; Pukhalskiy, Y.V.; Belimov, A.A. Effectiveness of Inoculation of In Vitro Grown Potato Microplants with Rhizosphere Bacteria of the Genus Azospirillum. Plant Cell Tissue Organ Cult. 2020, 141, 351–359. [Google Scholar] [CrossRef]
- Lastochkina, O.; Pusenkova, L.; Yuldashev, R.; Babaev, M.; Garipova, S.; Blagova, D.; Khairullin, R.; Aliniaeifard, S. Effects of Bacillus subtilis on Some Physiological and Biochemical Parameters of Triticum aestivum L. (Wheat) under Salinity. Plant Physiol. Biochem. 2017, 121, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Aliniaeifard, S.; Garshina, D.; Garipova, S.; Pusenkova, L.; Allagulova, C.; Fedorova, K.; Baymiev, A.; Koryakov, I.; Sobhani, M. Seed Priming with Endophytic Bacillus subtilis Strain-Specifically Improves Growth of Phaseolus vulgaris Plants Under Normal and Salinity Conditions and Exerts Anti-Stress Effect Through Induced Lignin Deposition in Roots and Decreased Oxidative and Osmotic Damages. J. Plant Physiol. 2021, 263, 153462. [Google Scholar] [CrossRef]
- Garipova, S.R.; Markova, O.V.; Fedorova, K.A.; Dedova, M.A.; Iksanova, M.A.; Kamaletdinova, A.A.; Lastochkina, O.V.; Pusenkova, L.I. Malondialdehyde and Proline Content in Bean Cultivars Following the Inoculation with Endophytic Bacteria. Acta Physiol. Plant. 2022, 44, 89. [Google Scholar] [CrossRef]
- Lastochkina, O.; Aliniaeifard, S.; SeifiKalhor, M.; Bosacchi, M.; Maslennikova, D.; Lubyanova, A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. Horticulturae 2022, 8, 910. [Google Scholar] [CrossRef]
- Lastochkina, O.; Pusenkova, L.; Garshina, D.; Kasnak, C.; Palamutoglu, R.; Shpirnaya, I.; Mardanshin, I.; Maksimov, I. Improving the Biocontrol Potential of Endophytic Bacteria Bacillus subtilis with Salicylic Acid against Phytophthora infestans-Caused Postharvest Potato Tuber Late Blight and Impact on Stored Tubers Quality. Horticulturae 2022, 8, 117. [Google Scholar] [CrossRef]
- Yarullina, L.G.; Tsvetkov, V.O.; Burkhanova, G.F.; Cherepanova, E.A.; Sorokan, A.V.; Zaikina, E.A.; Mardanshin, I.S.; Kalatskaya, J.N.; Balyuk, N.V. Effect of Bacillus subtilis and Signaling Molecules on the State of the Pro/Antioxidant System and the Expression of Protective Protein Genes in Potato Plants Upon Phytophthorosis and a Moisture Deficit. Appl Biochem Microbiol 2021, 57, 760–769. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within Plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R.; Gamalero, E. Recent developments in the study of plant microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef]
- Alaylar, B. Isolation and characterization of culturable endophytic plant growth-promoting Bacillus species from Mentha longifolia L. Turk. J. Agric. For. 2022, 46, 73–82. [Google Scholar] [CrossRef]
- Pusenkova, L.I.; Il’yasova, E.Y.; Lastochkina, O.V.; Maksimov, I.V.; Leonova, S.A. Changes in The Species Composition of The Rhizosphere and Phyllosphere of Sugar Beet Under the Impact of Biological Preparations Based on Endophytic Bacteria and Their Metabolites. Eurasian Soil Sci. 2016, 49, 1136–1144. [Google Scholar] [CrossRef]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient Biotic Strategy to Control Postharvest Diseases of Fruits and Vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Baymiev, A.; Shayahmetova, A.; Garshina, D.; Koryakov, I.; Shpirnaya, I.; Pusenkova, L.; Mardanshin, I.; Kasnak, C.; Palamutoglu, R. Effects of Endophytic Bacillus subtilis and Salicylic Acid on Postharvest Diseases (Phytophthora infestans, Fusarium oxysporum) Development in Stored Potato Tubers. Plants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Pusenkova, L.; Garshina, D.; Yuldashev, R.; Shpirnaya, I.; Kasnak, C.; Palamutoglu, R.; Mardanshin, I.; Garipova, S.; Sobhani, M.; et al. The Effect of Endophytic Bacteria Bacillus subtilis and Salicylic Acid on Some Resistance and Quality Traits of Stored Solanum tuberosum L. Tubers Infected with Fusarium Dry Rot. Plants 2020, 9, 738. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Kiprushkina, E.I. Application of Microbial Preparations in Potato Storage Technologies. Achiev. Sci. Techn. AIC 2015, 29, 33–35. (In Russian) [Google Scholar]
- Leelasuphakul, W.; Sivanunsakul, P.; Phongpaichit, S. Purification, Characterization and Synergistic Activity of B1,3-Glucanase and Antibiotic Extract from An Antagonistic Bacillus subtilis NSRS 89-24 Against Rice Blast and Sheath Blight Pathogens. Enzyme Microb. Technol. 2006, 38, 990–997. [Google Scholar] [CrossRef]
- Pandey, P.K.; Singh, M.C.; Singh, S.S.; Kumar, A.K.; Pathak, M.M.; Shakywar, R.C.; Pandey, A.K. Inside the plants: Endophytic Bacteria and Their Functional Attributes for Plant Growth Promotion. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 11–21. [Google Scholar] [CrossRef]
- Kandel, S.L.; Joubert, P.M.; Doty, S.L. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms 2017, 25, 77. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Charles, T.C.; Glick, B.R. Amelioration of High Salinity Stress Damage by Plant Growth-Promoting Bacterial Endophytes That Contain ACC Deaminase. Plant Physiol. Biochem. 2014, 80, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Chebotar, V.; Zaplatkin, A.; Komarova, O.; Baganova, M.; Chizhevskaya, E.; Polunin, N.; Balakina, S. Endophytic Bacteria for Development of Microbiological Preparations for Increasing Productivity and Protection of New Potato Varieties. Res. Crops 2021, 22, 104–107. [Google Scholar] [CrossRef]
- Pusenkova, L.I.; Garipova, S.R.; Lastochkina, O.V.; Fedorova, K.A.; Mardanshin, I.S. Influence of Endophytic Bacteria Bacillus subtilis on Harvest, Quality of Tubes and Post-Harvest Diseases of Potato. Agrochem. Her. J. 2021, 5, 73–79. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Zaplatkin, A.N.; Balakina, S.V.; Gadzhiev, N.M.; Lebedeva, V.A.; Khiutti, A.V.; Chizhevskaya, E.P.; Filippova, P.S.; Keleinikova, O.V.; Baganova, M.E.; et al. The Effect of Endophytic Bacteria Bacillus thuringiensis W65 and B. amyloliquefaciens P20 on the Yield and the Incidence of Potato Rhizoctoniosis and Late Blight. Agricul. Biol. 2023, 58, 429–446. [Google Scholar] [CrossRef]
- Mokronosova, A.T. Small Workshop on Plant Physiology; Moscow State University: Moscow, Russia, 1994; p. 184. [Google Scholar]
- Jeffrey, S.; Humphrey, G. New Spectrophotometric Equations for Determining Chlorophylls A, B, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pfl. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldern, R.P.; Teare, D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Islam, M.Z.; Lee, Y.-T.; Mele, M.A.; Choi, I.-L.; Kang, H.-M. The Effect of Phosphorus and Root Zone Temperature on Anthocyanin of Red Romaine Lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef]
- GOST 13496.4-93. Methods of Nitrogen and Crude Protein Determination. Izdatelstvo Standartov. 1993. Available online: https://docs.cntd.ru/document/1200024323 (accessed on 23 January 2023).
- GOST 26657-97. Methods for Determination of Phosphorus Content. Izdatelstvo Standartov. 1997. Available online: https://docs.cntd.ru/document/1200024370 (accessed on 23 January 2023).
- GOST 30504-97. Flame Photometric Method for Determination of Potassium Content. Izdatelstvo Standartov. 1997. Available online: https://docs.cntd.ru/document/1200024417 (accessed on 23 January 2023).
- GOST 56372-2015. Determination of Mass Fraction of Iron, Manganese, Zinc, Cobalt, Copper, Molybdenum and Selenium by Atomic Absorption Spectroscopy Method. Izdatelstvo Standartov. 2016. Available online: https://docs.cntd.ru/document/1200119647 (accessed on 23 January 2023).
- Vasanthan, T.; Bergthaller, W.; Driedger, D.; Yeung, J.; Sporus, P. Starch from Alberta Potatoes: Wet Isolation and Some Physicochemical Proprieties. Food Res. Int. 1999, 32, 355–365. [Google Scholar] [CrossRef]
- Widmann, N.; Goian, M.; Ianculov, I.; Dumbravă, D.; Moldovan, C. Method to Starch Content Determination from Plants by Specific Weight. Sci. Papers Zootech. Biotech. 2008, 41, 814–818. [Google Scholar]
- GOST 24556-89. Products of Fruits and Vegetables Processing. Methods for Determination of Vitamin C. Izdatelstvo Standartov. 2003. Available online: http://docs.cntd.ru/document/gost-24556-89 (accessed on 23 January 2023).
- Sorokan, A.; Burkhanova, G.; Gordeev, A.; Maksimov, I. Exploring the Role of Salicylic Acid in Regulating the Colonization Ability of Bacillus subtilis 26D in Potato Plants and Defense against Phytophthora infestans. Int. J. Plant Biol. 2023, 14, 242–253. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant Growth-Promoting Bacterial Endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Truyens, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Bacterial Seed Endophytes: Genera, Vertical Transmission and Interaction with Plants. Environ. Microbiol. Rep. 2015, 7, 40–50. [Google Scholar] [CrossRef]
- Nelson, E.B. The Seed microbiome: Origins, Interactions, and Impacts. Plant Soil 2017, 422, 7–34. [Google Scholar] [CrossRef]
- Shade, A.; Jacques, M.A.; Barret, M. Ecological Patterns of Seed Microbiome Diversity, Transmission, and Assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.; Saldierna Guzmán, J.; Shay, J. Transmission of Bacterial Endophytes. Microorganisms 2017, 5, 70. [Google Scholar] [CrossRef]
- De Almeida, C.V.; Andreote, F.D.; Yara, R.; Tanaka, F.A.O.; Azevedo, J.L.; de Almeida, M. Bacteriosomes in Axenic Plants: Endophytes as Stable Endosymbionts. World J. Microbiol. Biotechnol. 2009, 25, 1757–1764. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J. Auxin and Plant-Microbe Interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, 1–13. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Mechanisms Used by Plant Growth-Promoting Bacteria. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, D.K.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 17–47. [Google Scholar]
- Ahmed, E.; Holmström, S.J.M. Siderophores in Environmental Research: Roles and Applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Joe, M.M.; Devaraj, S.; Benson, A.; Sa, T. Isolation of Phosphate Solubilizing Endophytic Bacteria from Phyllanthus amarus Schum & Thonn: Evaluation of Plant Growth Promotion and Antioxidant Activity Under Salt Stress. J. Appl. Res. Med. Aromat. Plants. 2016, 3, 71–77. [Google Scholar] [CrossRef]
- Derevyagina, М.К.; Vasil’eva, S.V.; Zejruk, V.N.; Belov, G.L. Biological and Chemical Protection of Potato from Diseases. Agrochem. Herald 2018, 5, 65–68. (In Russian) [Google Scholar]
- Sánchez-Rodríguez, A.R.; del Campillo, M.C.; Quesada-Moraga, E. Beauveria bassiana: An Entomopathogenic Fungus Alleviates Fe Chlorosis Symptoms in Plants Grown on Calcareous Substrates. Sci. Hortic. 2015, 197, 193–202. [Google Scholar] [CrossRef]
- Raya-Díaz, S.; Sánchez-Rodríguez, A.R.; Segura-Fernández, J.M.; Campillo, M.D.C.D.; Quesada-Moraga, E. Entomopathogenic Fungi-Based Mechanisms for Improved Fe Nutrition in Sorghum Plants Grown on Calcareous Substrates. PLoS ONE 2017, 12, e0185903. [Google Scholar] [CrossRef]
- Guler, N.S.; Pehlivan, N.; Karaoglu, S.A.; Guzel, S.; Bozdeveci, A. Trichoderma atroviride ID20G Inoculation Ameliorates Drought Stress-Induced Damages by Improving Antioxidant Defence in Maize Seedlings. Acta Physiol. Plant. 2016, 38, 132. [Google Scholar] [CrossRef]
- Racić, G.; Vukelić, I.; Prokić, L.; Ćurčić, N.; Zorić, M.; Jovanović, L.; Panković, D. The Influence of Trichoderma brevicompactum Treatment and Drought on Physiological Parameters, Abscisic Acid Content and Signalling Pathway Marker Gene Expression in Leaves and Roots of Tomato. Ann. Appl. Biol. 2018, 173, 213–221. [Google Scholar] [CrossRef]
- Kolupaev, Y.E.; Vayner, A.A.; Yastreb, T.O. Proline: Physiological Functions and Regulation of Content in Plants under Stress Conditions. Bull Kharkiv National Univ 2014, 32, 6–22. [Google Scholar]
- Gupta, A.; Bano, A.; Rai, S.; Kumar, M.; Ali, J.; Sharma, S.; Pathak, N. ACC Deaminase Producing Plant Growth Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Pisum sativum. Biotech. 2021, 11, e514. [Google Scholar] [CrossRef]
- Gerrits, N.; Turk, S.; van Dun, K.; Hulleman, S.; Visser, R.; Weisbeek, P.J.; Smeekens, S.C.M. Sucrose Metabolism in Plastids. Plant Physiol 2001, 125, 926–934. [Google Scholar] [CrossRef]
- Torikov, V.E.; Kotikov, M.V.; Bogomaz, O.A. Evaluation of Tubers of Different Varieties of Potatoes for Suitability for Processing inro French Fries and Chips. Vest. Bryansk State Agric. Acad. 2008, 3, 34–40. (In Russian) [Google Scholar]
- Vershinina, Y.A.; Anoshkina, L.S. Original Material for Potato Breeding to Suitability for Industrial Processing to Chips, Starch and Alcohol. Achiev. Sci. Techn. AIC 2009, 9, 15–17. [Google Scholar]
- Abong, G.O.; Okoth, M.W.; Imungi, J.K.; Kabira, J.N. Evaluation of Selected Kenyan Potato Cultivars for Processing into French Fries. Agric. Biol. J. North America 2010, 1, 886–893. [Google Scholar] [CrossRef]
- Nezakonova, L.V.; Pingol, A.P. Improving the Effectiveness of the Selection of Potato Genotypes for Their Suitability for Processing into Crispy Potatoes at the Early Stages of Breeding. Potato Protection 2011, 1, 8–13. (In Russian) [Google Scholar]
- Molyavko, A.A.; Marukhlenko, A.V.; Erenkova, L.A.; Borisova, N.P.; Belous, N.M.; Torikov, V.E. The Quality of Potatoes and Potato Products Depends on The Mineral Nutrition. Vest. Bryansk State Agric. Academy 2019, 5, 10–15. (In Russian) [Google Scholar]
- Cherezov, S.N.; Gizatullina, A.T.; Stashevsky, Z. Evaluation of Potato Breeding Material: Determination of the Suitability of Tubers for Industrial Processing. Sci. Notes Kazan Univ. 2010, 152, 207–216. (In Russian) [Google Scholar]
- Rommens, C.M.; Shakya, R.; Heap, M.; Fessenden, K. Tastier and Healthier Alternatives to French Fries. J. Food Sci. 2010, 75, H109–H115. [Google Scholar] [CrossRef] [PubMed]
- Gaizatullin, A.S.; Mityushkin, A.V.; Zhuravlev, A.A.; Mityushkin, A.V.; Salyukov, S.S.; Ovechkin, S.V.; Simakov, E.A. Selection and Evaluation of the Source Material in Potato Breeding for Suitability for Processing. Potatoes Veget. 2019, 7, 36–40. (In Russian) [Google Scholar]
- Wang-Pruski, G.; Nowak, J. Potato After-Cooking Darkening. Amer. J. Potato Res. 2004, 81, 7–16. [Google Scholar] [CrossRef]
- Pshechenkov, K.A.; Maltsev, S.V. Evaluation of Potato Varieties of VNIIKH Selection for Suitability for Industrial Processing. Potato Prot. 2011, 1, 38–40. (In Russian) [Google Scholar]
- Davidenko, A.; Podpryatov, G.; Shevchenko, A. The Influence of Tuber Conditioning Modes on the Quality of Chips. Modern Sci. 2017, 4, 158–165. (In Russian) [Google Scholar]
- Rubtsov, S.L.; Bakunov, A.L.; Milekhin, A.V.; Dmitrieva, N.N. Analysis of Biochemical Parameters of Potato Minitubers Grown on Various Biotechnological Installations. Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk. 2017, 19, 648–649. (In Russian) [Google Scholar]
- Simakov, E.A.; Mityushkin, L.V.; Mitryushkin, A.V.; Zhuravlev, A.A. Modern Requirements for Potato Varieties of Various Intended Use. Achiev. Sci. Techn. Agric. 2016, 30, 45–48. (In Russian) [Google Scholar]
- Serderov, V.K.; Alilov, M.M.; Khanbabaev, T.G. Selection of Potato Varieties for Industrial Processing. Bull. Sci. Practice 2018, 4, 144–148. [Google Scholar]
- Zarzecka, K.; Gugała, M. Changes in the Content of Glycoalkaloids in Potato Tubers According to Soil Tillage and Weed Control Methods. Plant Soil Environ. 2007, 53, 247–251. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Gins, E.M. Antioxidant Activity of Potatoes (Solanum tuberosum L.) and Anthocyanin Content, its Biosynthesis and Physiological Role. Veg. Crops Russ. 2019, 6, 84–90. (In Russian) [Google Scholar] [CrossRef]
- Guo, J.; Han, W.; Wang, M.H. Ultraviolet and Environmental Stresses Involved in the Induction and Regulation of Anthocyanin Biosynthesis: A Review. Afr. J. Biotechnol. 2008, 7, 4966–4972. [Google Scholar]
- Wegener, C.B.; Jansen, G. Soft-rot Resistance of Coloured Potato Cultivars (Solanum tuberosum L.): The Role of Anthocyanins. Potato Res. 2007, 50, 31–44. [Google Scholar] [CrossRef]
- Jiao, Y.; Jiang, Y.; Zhai, W.; Yang, Z. Studies on Antioxidant Capacity of Anthocyanin Extract from Purple Sweet Potato (Ipomoea batatas L.). Afr. J. Biotechnol. 2012, 11, 7046–7054. [Google Scholar] [CrossRef]
- Brown, C.R.; Durst, R.W.; Wrolstad, R.; De Jong, W. Variability of Phytonutrient Content of Potato in Relation to Growing Location and Cooking Method. Potato Res. 2008, 51, 259–270. [Google Scholar] [CrossRef]
- Lee, G.B.; Park, H.J.; Cheon, C.G.; Choi, J.G.; Seo, J.H.; Im, J.S.; Park, Y.E.; Cho, J.H.; Chang, D.C. Effect of Plant Container Type on Seed Potato (Solanum tuberosum L.) Growth and Yield in Substrate Culture. Potato Res. 2022, 65, 105–117. [Google Scholar] [CrossRef]
Treatment | Number of Plants (%) | ||
---|---|---|---|
Leaf Development | Budding | Flowering | |
Control | 83 ± 4 a | 17 ± 5 b | 0 b |
10-4 | 17 ± 2 b | 33 ± 6 b | 50 ± 4 a |
26D | 0 c | 50 ± 3 a | 50 ± 6 a |
Treatment | Plant Height (cm) | Number of Tubers per Plant | Weight of Tubers (g per Plant) | Weight of Aboveground (g per Plant) | Weight of Stolons (g per Plant) | Yield of Tuber (g per Square Meter) |
---|---|---|---|---|---|---|
Control | 42.3 ± 1.5 a | 2.8 ± 0.8 b | 59.8 ± 3.7 c | 55.8 ± 12.4 a | 3.2 ± 1.2 b | 1196 ± 55 b |
10-4 | 41.8 ± 1.2 a | 3.8 ± 1.2 a | 71.9 ± 4.4 b | 55.2 ± 17.2 a | 3.9 ± 0.8 a | 1438 ± 66 a |
26D | 41.5 ± 0.9 a | 4.0 ± 1.1 a | 76.3 ± 4.2 a | 52.3 ± 10.7 ab | 3.7 ± 0.6 a | 1526 ± 63 a |
Treatment | Tuber Fractions (%) | ||
---|---|---|---|
Small (<35 mm) | Average (35–45 mm) | Large (45–55 mm) | |
Control | 28.6 ± 1.1 a | 38.1 ± 2.1 a | 33.3 ± 2.2 c |
10-4 | 20.0 ± 1.3 b | 35.0 ± 1.5 b | 45.0 ± 0.8 b |
26D | 13.6 ± 1.9 c | 31.8 ± 1.7 c | 54.5 ± 1.2 a |
Treatment | Total Dry Matter (%) | Starch (%) | Reducing Sugars (%) | Vitamin C (mg %) | Total Anthocyanins (mg %) |
---|---|---|---|---|---|
Control | 21.8 ± 0.9 a | 16.1 ± 0.7 a | 0.19 ± 0.02 a | 14.3 ± 0.9 c | 3.00 ± 0.07 b |
10-4 | 21.3 ± 0.7 a | 15.5 ± 0.4 a | 0.17 ± 0.01 b | 15.3 ± 0.5 b | 3.36 ± 0.03 a |
26D | 21.5 ± 0.6 a | 15.7 ± 0.6 a | 0.16 ± 0.02 b | 16.6 ± 0.7 a | 3.32 ± 0.08 a |
Treatment | Mn (mg kg−1 DW) | Cu (mg kg−1 DW) | Zn (mg kg−1 DW) | Fe (mg kg−1 DW) | Co (mg kg−1 DW) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves | Tubers | Leaves | Tubers | Leaves | Tubers | Leaves | Tubers | Leaves | Tubers | |
Control | 4.32 ± 0.21 b | 4.32 ± 0.22 a | 1.65 ± 0.01 b | 1.59 ± 0.09 c | 15.55 ± 0.48 c | 15.97 ± 0.29 a | 0.45 ± 0.06 a | 0.48 ± 0.02 c | 0.0183 ± 0.0049 a | 0.0201 ± 0.0059 a |
10-4 | 4.53 ± 0.34 a | 4.33 ± 0.18 a | 1.87 ± 0.06 a | 1.80 ± 0.05 a | 18.35 ± 0.28 a | 15.16 ± 0.19 a | 0.40 ± 0.05 b | 0.53 ± 0.01 a | 0.0186 ± 0.0054 a | 0.0196 ± 0.0058 a b |
26D | 4.24 ± 0.25 c | 4.13 ± 0.22 b | 1.68 ± 0.01 b | 1.70 ± 0.02 b | 16.54 ± 0.13 b | 15.78 ± 0.24 a | 0.46 ± 0.03 a | 0.50 ± 0.03 b | 0.0159 ± 0.0046 b | 0.0181 ± 0.0053 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusenkova, L.; Lastochkina, O.; Ercişli, S. The Potential of Hydroponic Seed Minituber Enrichment with the Endophyte Bacillus subtilis for Improving the Yield Components and Quality of Potato (Solanum tuberosum L.). Agriculture 2023, 13, 1626. https://doi.org/10.3390/agriculture13081626
Pusenkova L, Lastochkina O, Ercişli S. The Potential of Hydroponic Seed Minituber Enrichment with the Endophyte Bacillus subtilis for Improving the Yield Components and Quality of Potato (Solanum tuberosum L.). Agriculture. 2023; 13(8):1626. https://doi.org/10.3390/agriculture13081626
Chicago/Turabian StylePusenkova, Liudmila, Oksana Lastochkina, and Sezai Ercişli. 2023. "The Potential of Hydroponic Seed Minituber Enrichment with the Endophyte Bacillus subtilis for Improving the Yield Components and Quality of Potato (Solanum tuberosum L.)" Agriculture 13, no. 8: 1626. https://doi.org/10.3390/agriculture13081626