Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = mineral pigment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 306
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 456
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 347
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 332
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

32 pages, 19967 KiB  
Article
A Comprehensive Study on Gravlax: A Multidimensional Evaluation of Gravlax Produced from Different Fish Species and Herbs
by Can Okan Altan
Foods 2025, 14(14), 2465; https://doi.org/10.3390/foods14142465 - 14 Jul 2025
Viewed by 375
Abstract
In this study, gravlax, a niche Scandinavian delicacy, was comprehensively investigated by producing it with combinations of two different fish species (tub gurnard (Chelidonichthys lucerna Linnaeus, 1758) and garfish (Belone belone Linnaeus, 1761)) and five herbs (dill (Anethum graveolens Linnaeus, [...] Read more.
In this study, gravlax, a niche Scandinavian delicacy, was comprehensively investigated by producing it with combinations of two different fish species (tub gurnard (Chelidonichthys lucerna Linnaeus, 1758) and garfish (Belone belone Linnaeus, 1761)) and five herbs (dill (Anethum graveolens Linnaeus, 1753), sage (Salvia officinalis Linnaeus, 1753), mint (Mentha piperita Linnaeus, 1753), sweet (Ocimum basilicum Linnaeus, 1754), and purple basil (Ocimum basilicum var. purpurascens Bentham, 1830)). The nutritional composition, amino acids, color parameters, mineral substances, and heavy metal content, as well as physical characteristics, texture profile analysis, and extensive sensory analyses, were conducted, and the results were thoroughly evaluated using multivariate statistical methods. The influence of using different herbs on nutritional composition was found to be significant in gravlax made from both fish species (p < 0.05). Sensory analyses revealed that panelists identified mint as enhancing aroma and umami sensations, while dill improved overall acceptance. Gravlax with sage exhibited softer textures, but lower general acceptance due to perceived high saltiness. Color analyses revealed that purple basil transferred distinct pigments, causing darkening, whereas sweet basil had a brightening effect. Amino acid analyses revealed higher umami and sweet-tasting amino acids in herb-free gravlax, whereas proteolytic activity appeared to slow down in herb-containing gravlax samples. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

27 pages, 3569 KiB  
Article
Impact of a Soil Cyanobacteria Consortium-Based Bioinoculant on Tomato Growth, Yield, and Fruit Quality
by Zineb Hakkoum, Farah Minaoui, Zakaria Tazart, Amer Chabili, Mountasser Douma, Khadija Mouhri and Mohammed Loudiki
Plants 2025, 14(13), 2034; https://doi.org/10.3390/plants14132034 - 2 Jul 2025
Viewed by 479
Abstract
Cyanobacteria-based bioinoculants represent a sustainable solution for enhancing soil fertility and crop productivity. This research assessed the biofertilizing potential of two indigenous nitrogen-fixing cyanobacteria strains (Nostoc punctiforme Har. and Anabaena cylindrica Lemmerm.) on tomato growth and yield. A greenhouse experiment was conducted [...] Read more.
Cyanobacteria-based bioinoculants represent a sustainable solution for enhancing soil fertility and crop productivity. This research assessed the biofertilizing potential of two indigenous nitrogen-fixing cyanobacteria strains (Nostoc punctiforme Har. and Anabaena cylindrica Lemmerm.) on tomato growth and yield. A greenhouse experiment was conducted to study their effects on soil properties, plant growth and physiology, and fruit yield/quality. The strains were applied individually, as a consortium, or combined with organic or mineral fertilizers at half the standard dose (50%). All bioinoculants improved soil fertility, plant growth, and fruit yield/quality compared to the control. The most significant improvement was observed in the consortium amended with 50% of conventional fertilizer (compost or NPK), compared with individual strains. Correlation analysis revealed strong positive associations between photosynthetic pigments, plant productivity, and fruit biochemical traits, indicating coordinated physiological responses under the applied treatments. The results demonstrated that the consortium of diazotrophic terrestrial cyanobacteria possesses tomato biofertilizer properties that can be efficiently used in crop production. These findings suggest that such formulations offer a cost-effective approach to tomato cultivation and present a sustainable alternative for integrated and optimized fertilizer management. Full article
Show Figures

Figure 1

21 pages, 7526 KiB  
Article
Integrated Metabolome and Transcriptome Analysis Reveals the Mechanism of Anthocyanin Biosynthesis in Pisum sativum L. with Different Pod Colors
by Weijun Ye, Zejiang Wu, Dongfeng Tian and Bin Zhou
Agronomy 2025, 15(7), 1609; https://doi.org/10.3390/agronomy15071609 - 30 Jun 2025
Viewed by 340
Abstract
Pea (Pisum sativum L.) is a significant source of dietary protein, starch, fiber, and minerals, offering health benefits and serving as both a green vegetable and dry grain. The pigment contents in pea pods with different colors and related genes are still [...] Read more.
Pea (Pisum sativum L.) is a significant source of dietary protein, starch, fiber, and minerals, offering health benefits and serving as both a green vegetable and dry grain. The pigment contents in pea pods with different colors and related genes are still unclear. We conducted an integrated transcriptome and metabolome analysis on three cultivars, including QiZhen (QZ) with green immature pods, FengMi (FM) with yellow immature pods, and ZiYu (ZY) with purple immature pods, to identify the key genes and metabolites involved in anthocyanin accumulation. ZY showed the highest total anthocyanin content compared with FM and QZ. Subsequent quantification revealed that four metabolites, including Delphinidin-3-O-galactoside, Delphinidin-3-O-(6″-O-xylosyl)glucoside, Cyanidin-3-O-galactoside, and Pelargonidin-3-O-(xylosyl)glucoside, were the most highly accumulated in the ZY cultivar, suggesting their role in the purple pigmentation of ZY pea pods. There were 49 differentially accumulated anthocyanidins in ZY vs. FM, 43 differentially accumulated anthocyanidins in ZY vs. QZ, and 21 differentially accumulated anthocyanidins in FM vs. QZ. These findings highlight the importance of the type and concentration of anthocyanin compounds, especially those based on delphinidin, cyanidin, and pelargonidin, in the development of purple pea pods. The transcriptomic analysis revealed that certain anthocyanin biosynthetic genes were expressed at higher levels in ZY than in FM and QZ. In ZY, the higher expression levels of five key genes (PAL, 4CL, CHS, F3H, and UFGT) resulted in elevated anthocyanin content compared to FM and QZ. Furthermore, the BSA-seq analysis identified a candidate region associated with purple color in pea pods, which is located on chromosome 6 and contains 21 DEGs. Sequence variation in KIW84_061698, which encodes a bHLH transcription factor, was identified as the key candidate gene controlling anthocyanin content. This study clarifies the molecular mechanisms behind pea pod coloration and identifies potential genetic engineering targets for breeding anthocyanin-rich sugar snap peas. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics—2nd Edition)
Show Figures

Figure 1

32 pages, 3592 KiB  
Article
Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens
by Anna D. Kozhevnikova, Alexander V. Kartashov and Ilya V. Seregin
Plants 2025, 14(13), 1975; https://doi.org/10.3390/plants14131975 - 27 Jun 2025
Viewed by 434
Abstract
The aim of this study was to evaluate whether intraspecific differences in zinc (Zn) tolerance and accumulation in the hyperaccumulator Noccaea caerulescens are linked to Zn-induced changes in transpiration and mineral composition. At 500 µM Zn in the nutrient solution, a decrease in [...] Read more.
The aim of this study was to evaluate whether intraspecific differences in zinc (Zn) tolerance and accumulation in the hyperaccumulator Noccaea caerulescens are linked to Zn-induced changes in transpiration and mineral composition. At 500 µM Zn in the nutrient solution, a decrease in the root and shoot biomass, the water content in roots, and the contents of photosynthetic pigments in shoots was observed only in the non-metallicolous population Wilwerwiltz, whereas in the calamine population Prayon, root growth was stimulated. Zinc-induced impairment of mineral nutrition was greater in Wilwerwiltz than in Prayon, which determined the manifestation of Zn toxicity in Wilwerwiltz. The absence of signs of Zn toxicity and the stimulation of root growth in Prayon may be due to lower Zn accumulation in Prayon than in Wilwerwiltz, as well as more effective mechanisms of Zn detoxification. The higher Zn content in the shoots and, in particular, in the water-storage cells of the leaf epidermis in Wilwerwiltz compared to Prayon may be partly due to the higher transpiration rate in Wilwerwiltz, at least at 500 µM Zn. These findings suggest that the metallicolous population maintains better control over Zn accumulation, which may be a part of the adaptive response to Zn-enriched media. Full article
(This article belongs to the Special Issue Heavy Metal Tolerance in Plants and Algae—2nd Edition)
Show Figures

Figure 1

29 pages, 5876 KiB  
Article
Balanced Fertilization with Nitrogen, Molybdenum, and Zinc: Key to Optimizing Pecan Tree Yield and Quality of Western Schley Pecan Tree
by Laura R. Orozco-Meléndez, Linda C. Noperi-Mosqueda, Julio C. Oviedo-Mireles, Nubia G. Torres-Beltrán, Rosa M. Yáñez-Muñoz and Juan M. Soto-Parra
Horticulturae 2025, 11(7), 741; https://doi.org/10.3390/horticulturae11070741 - 27 Jun 2025
Viewed by 251
Abstract
This study evaluated the effect of soil and foliar fertilization with nitrogen (N), molybdenum (Mo), zinc (Zn), and their combination (Zn-Mo) on nutrition, enzymatic activity, photosynthetic pigments, and productive parameters in the Western Schley pecan tree. An orthogonal Taguchi L16 design was used [...] Read more.
This study evaluated the effect of soil and foliar fertilization with nitrogen (N), molybdenum (Mo), zinc (Zn), and their combination (Zn-Mo) on nutrition, enzymatic activity, photosynthetic pigments, and productive parameters in the Western Schley pecan tree. An orthogonal Taguchi L16 design was used with differentiated soil and foliar nitrate concentrations, reaching an average of 1557.7 mg kg−1, and increasing up to 1907 mg kg−1 depending on the fertilization dose. Nitrate reductase activity (NRNO3) significantly increased with N and Mo applications, reaching a maximum of 13.62 µmol. Among photosynthetic pigments, chlorophyll a was the only variable with a significant response, highlighting the role of Mo in its enhancement. Positive effects were also observed on pomological traits such as yield (up to 425 kg ha−1), nut weight, and kernel percentage with increased doses of N and Mo. In conclusion, combined fertilization improved the nutritional status, physiological responses, and productivity of pecan trees, emphasizing the importance of balanced nutrient management to avoid nutritional antagonisms and to optimize both yield and fruit quality. Full article
(This article belongs to the Special Issue Mineral Nutrition of Plants)
Show Figures

Figure 1

16 pages, 1240 KiB  
Article
The Effect of Zinc Oxide Nanoparticles on the Quantitative and Qualitative Traits of Scutellaria baicalensis Georgi in In Vitro Culture
by Anna Krzepiłko, Roman Prażak, Agata Święciło and Jacek Gawroński
Int. J. Mol. Sci. 2025, 26(12), 5836; https://doi.org/10.3390/ijms26125836 - 18 Jun 2025
Viewed by 329
Abstract
Zinc oxide nanoparticles (ZnONPs) are increasingly used in agriculture to stimulate plant growth and development, including under in vitro culture conditions. However, there is limited data on the effects of ZnONPs on the micropropagation of Scutellaria baicalensis Georgi. The pharmacological properties of this [...] Read more.
Zinc oxide nanoparticles (ZnONPs) are increasingly used in agriculture to stimulate plant growth and development, including under in vitro culture conditions. However, there is limited data on the effects of ZnONPs on the micropropagation of Scutellaria baicalensis Georgi. The pharmacological properties of this species make it a valuable medicinal plant. In Poland, it does not occur naturally but is cultivated for the production of herbal material. In vitro micropropagation is an effective method for obtaining genetically uniform plantlets. The aim of this study was to evaluate the effects of various concentrations of ZnONPs on growth parameters and the content of mineral nutrients, phenolic compounds, antioxidants, and photosynthetic pigments in Scutellaria baicalensis cultured in vitro. Shoot tip explants were cultured on MS medium supplemented with 1.0 mg dm−3 BA and 0.1 mg dm−3 IBA, together with ZnONPs at concentrations of 0 (control), 10, 20, 30, and 40 mg dm−3. The results showed that ZnONPs at concentrations of 10–20 mg dm−3 had no statistically significant effect on shoot or root development or on fresh weight gain. However, higher concentrations (30 and 40 mg dm−3) had a significantly negative impact on the number and length of shoots and roots, as well as on biomass accumulation. ZnONPs at 10–20 mg dm−3 significantly increased the content of potassium, calcium, magnesium, iron, and zinc in regenerated multi-shoot plantlets. A strong positive correlation (r = 0.951) was observed between ZnONP concentration and zinc accumulation in the plantlets. The levels of manganese and copper were not significantly different from the control. Plantlets treated with 30–40 mg dm−3 ZnONPs had significantly lower levels of calcium, iron, manganese, and copper. Those grown at 30 mg dm−3 had the highest potassium and magnesium levels, while plantlets exposed to 40 mg dm−3 had the highest zinc content. The total phenolic content and antioxidant activity (measured using ABTS and DPPH assays) were significantly higher in ZnONP-treated plantlets compared to the control. In contrast, the levels of chlorophyll a, chlorophyll b, total chlorophyll (a + b), and carotenoids were significantly lower in plants treated with ZnONPs. A strong negative correlation was found between ZnONP concentration and photosynthetic pigment content, while the ZnONP concentration was positively correlated with total phenolic content and antioxidant activity (ABTS+ and DPPH). Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles)
Show Figures

Figure 1

18 pages, 9843 KiB  
Article
Study on the Surface Coating Techniques of Furniture in the Long’en Hall of Qing Changling Mausoleum
by Qirong Li, Fan Zhang, Wei Jia and Yifan Guo
Coatings 2025, 15(6), 712; https://doi.org/10.3390/coatings15060712 - 13 Jun 2025
Viewed by 639
Abstract
As a core structure within the Qing Changling Mausoleum, a UNESCO World Cultural Heritage site, Long’en Hall preserves a relatively complete set of Qing dynasty imperial lacquered furniture. These furnishings provide critical physical evidence for studying Qing dynasty sacrificial rituals and the craftsmanship [...] Read more.
As a core structure within the Qing Changling Mausoleum, a UNESCO World Cultural Heritage site, Long’en Hall preserves a relatively complete set of Qing dynasty imperial lacquered furniture. These furnishings provide critical physical evidence for studying Qing dynasty sacrificial rituals and the craftsmanship of court lacquerware. However, limited research has been conducted on the surface finishing techniques of such furnishings, posing challenges to their conservation and accurate restoration. This study focuses on representative furnishings from Long’en Hall—including an offering table, an incense pavilion, a throne, and a poke lamp—and employed a multi-method analytical approach comprising fluorescence microscopy (FM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy. The analysis was conducted on the following two levels: the lacquer layer structure and material composition. The results show that the furnishings in the Long’en Hall adopt the typical structure of “lacquer ash layer–color lacquer layer”, and the color lacquer layer is composed of raw lacquer, tung oil, animal glue, and other natural organic ingredients as film-forming materials, supplemented with inorganic mineral pigments such as red lead (Pb3O4) and Au metal, which constitutes a stable organic–inorganic composite structure with the lacquer ash layer. The multi-analysis results show a good complementary and cross-corroboration relationship, providing the necessary technical support and a theoretical reference for Qing dynasty palace lacquer wood furniture as cultural relics worthy of scientific protection and imitation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

22 pages, 5277 KiB  
Article
Cesium Accumulation Patterns and Stress Response in Hydroponic Radish (Raphanus sativus L.): A Physiological–Transcriptomic Study
by Yu-Han Wen, Xi Chen, Ming Sun, Chao-Hui Yang, Meng-Yuan Xu, Feng-Xiang Lai, Si-Qi Fu, Yu-Meng Fan, Xin-Peng Guo, Qun Li and Guo Wu
Plants 2025, 14(12), 1802; https://doi.org/10.3390/plants14121802 - 12 Jun 2025
Viewed by 1128
Abstract
The present study systematically investigated the cesium (Cs) enrichment characteristics and physiological responses to Cs exposure in radish (Raphanus sativus L.) seedlings under hydroponic conditions through integrated physiological, biochemical, and transcriptome analyses. The results showed that the Cs content in radish roots, [...] Read more.
The present study systematically investigated the cesium (Cs) enrichment characteristics and physiological responses to Cs exposure in radish (Raphanus sativus L.) seedlings under hydroponic conditions through integrated physiological, biochemical, and transcriptome analyses. The results showed that the Cs content in radish roots, stems, and cotyledons increased progressively with rising Cs concentrations (0.25–2 mM), and Cs mainly accumulated in the cotyledon. The transfer factor (TF) increased by 63.29% (TF = 3.87) as the Cs concentration increased from 0.25 to 2 mM, while the biological concentration factor (BCF) decreased by 72.56% (BCF = 14.87). Severe growth inhibition was observed at 2 mM Cs stress, with biomass reduction reaching 29.73%. The carotenoid content decreased by 11.92%; however, the total chlorophyll content did not change significantly, and the photosynthesis of radish was not affected. In addition, Cs exposure disrupted mineral nutrient homeostasis, decreasing potassium (K), sodium (Na), magnesium (Mg), and iron (Fe) content. The superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, reactive oxygen species (ROS), and malondialdehyde (MDA) content increased under the different Cs treatments, which indicated that Cs exposure induced oxidative stress response in radish seedlings. Transcriptome analysis detected a total of 4326 differentially expressed genes (DEGs), in which altered expression patterns in genes associated with mineral transport, antioxidant systems, and carotenoid biosynthesis pathways in radish under 2 mM Cs treatment were observed. In conclusion, this study comprehensively investigated the physiological and molecular responses of radish to Cs stress, revealing that Cs accumulation exhibited site-specific preference and concentration dependence and induced physiological disturbances, including growth inhibition and photosynthetic pigment metabolism alterations. At the transcription level, Cs activated the enzymatic antioxidant system, related genes, and stress-response pathways. Notably, this study is the first to demonstrate that Cs disrupts plant mineral nutrition homeostasis and inhibits carotenoid biosynthesis. These findings establish a crucial theoretical foundation for utilizing radish in Cs-contaminated phytoremediation strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Responses to Heavy Metal Stress)
Show Figures

Graphical abstract

17 pages, 6311 KiB  
Article
Automated Wall Moisture Detection in Heritage Sites Based on Convolutional Neural Network (CNN) for Infrared Imagery
by Yu-Chieh Chu, Ya-Yun Huang, Chen-Yu Ye and Shih-Lun Chen
Appl. Sci. 2025, 15(12), 6495; https://doi.org/10.3390/app15126495 - 9 Jun 2025
Viewed by 460
Abstract
Infrared thermography (IRT), a widely used nondestructive testing method, is commonly employed to identify moisture in historic walls. However, its reliance on manual interpretation by experts makes the process both time-consuming and costly. This study addresses the challenge of detecting wall moisture; this [...] Read more.
Infrared thermography (IRT), a widely used nondestructive testing method, is commonly employed to identify moisture in historic walls. However, its reliance on manual interpretation by experts makes the process both time-consuming and costly. This study addresses the challenge of detecting wall moisture; this issue is closely linked to the deterioration of cultural heritage structures. This study focuses on the brick walls of the Tainan Confucian Temple, the oldest Confucian temple in Taiwan. The targeted are walls coated with lime plaster mixed with red mineral pigments, a traditional finish that gives the temple its distinctive red appearance. This study proposes a system to automatically identify wall areas, mark low-temperature zones, and determine the presence and distribution of moisture. Visible and infrared thermal images of these walls are captured and preprocessed to normalize the size and enhance the features. Finally, two convolutional neural network (CNN) models are trained in this study: one for identifying wall regions and the other for detecting low-temperature areas. The proposed method achieves an accuracy of 91.18% in detecting wall moisture, representing a 24.05% improvement over conventional object recognition techniques, the accuracy of which is 73.5%. In addition, this method requires only 3 s to detect the wall moisture, representing a 99.92% reduction in processing time compared to the conventional manual method. This method not only provides a fast and objective method for assessing moisture in lime-plastered heritage walls but also significantly enhances the efficiency of restoration efforts. This method can be applied to similar wall structures in other Confucian temples, offering broad potential for heritage conservation. Full article
(This article belongs to the Special Issue Convolutional Neural Networks and Computer Vision)
Show Figures

Figure 1

28 pages, 2017 KiB  
Article
Valorization Diagnosis of Roasted Pyrite Ashes Wastes from the Iberian Pyrite Belt
by Juan Antonio Ramírez-Pérez, Manuel Jesús Gázquez-González and Juan Pedro Bolívar
Recycling 2025, 10(3), 112; https://doi.org/10.3390/recycling10030112 - 4 Jun 2025
Viewed by 1534
Abstract
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this [...] Read more.
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this study. Polymetallic mining is also classified as a NORM (naturally occurring radioactive material) activity, thus the main objective of this work was to develop a radiological and physicochemical characterization of this waste (mineral phases, elemental and radionuclide concentrations) in order to perform a valorization diagnosis of this material. The composition of this waste strongly depends on its origin (mine), and is mainly formed by iron oxides (hematite, Fe₂O₃) and heavy metals and metalloids such as As, Pb, Zn, and Cu, in levels 2–4 orders of magnitude higher than those of undisturbed soils, depending on each particular element. However, the average natural radionuclide levels are similar to those of unperturbed soils (around 30 Bqkg−1 of 238U-series, 50 Bqkg−1 of 232Th, and 70 Bqkg−1 for 40K), thus they are below the limits established by European Union regulations to require radiological control during their future valorization. As the main potential applications of roasted pyrite ash, the valorization diagnosis indicates that it can be used as a source of Fe (FeCl₃ or FeSO₄), or an additive in the manufacturing of cements, pigments, etc. Full article
Show Figures

Figure 1

24 pages, 305 KiB  
Article
Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments
by Kamil Misiak, Maciej Bosiacki and Magda Formela-Luboińska
Agronomy 2025, 15(5), 1018; https://doi.org/10.3390/agronomy15051018 - 24 Apr 2025
Viewed by 599
Abstract
Understanding soil properties that govern physicochemical and biological processes is essential for achieving high crop quality and yield. Organic matter is an important element of soil fertility and fertility in vegetable cultivation. In the process of decomposition of organic matter in the soil, [...] Read more.
Understanding soil properties that govern physicochemical and biological processes is essential for achieving high crop quality and yield. Organic matter is an important element of soil fertility and fertility in vegetable cultivation. In the process of decomposition of organic matter in the soil, humus of various quality is formed. The quality of humus depends on the content of individual acids (fulvic, humic and hymatomalanic acids) in it, which can affect the binding–chelation of heavy metals, limiting their availability to plants. The conducted studies determined the effect of adding organic matter (high peat, brown coal and wheat straw) to mineral soil on nickel detoxification in radish, its yield, nitrogen management and chloroplast pigments. The studies were conducted for three years in a greenhouse in a container system. The tested substrates were contaminated with nickel in the amount of 50, 75 and 100 mg dm−3. It was found that introducing organic matter into mineral soil can affect the reduction as well as the increase in nickel content in edible parts of radish. The type of organic material introduced into mineral soil as a source of organic matter has a significant impact on nickel content in radish. It was shown that nitrate reductase activity (NR) depends to a large extent on the substrate in which the plants are grown as well as on the applied dose of nickel. A similar relationship was demonstrated in the case of changes in the level of chloroplast pigments (chlorophyll a, chlorophyll b and carotenoids). Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Back to TopTop