A Comprehensive Study on Gravlax: A Multidimensional Evaluation of Gravlax Produced from Different Fish Species and Herbs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Gravlax Production and Grouping
2.2.2. Analyses
Color Analyses
pH, Water Activity (aw), and Salt Analyses
Nutritional Analyses
Amino Acid Analyses
Sensorial Analyses
Texture Profile Analyses
Mineral Substances and Heavy Metals Analyses
Statistical Analyses
3. Results and Discussion
3.1. Color
3.2. pH, aw, and Salt
3.3. Nutritional Composition
3.4. Amino Acids
3.4.1. Principal Component Analysis of Amino Acid Profiles
3.4.2. Individual Group Distribution and Separation of Amino Acids
3.4.3. Correlation Between Identified Principal Components and Factors of Amino Acids
3.5. Sensorial Analyses
3.6. Texture Profile Analysis (TPA)
3.7. Mineral Substances and Heavy Metals
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namiq, K.F.; Milne, D. Effect of fillet thickness on quality and shelf life of gravlax salmon. J. Aquac. Mar. Biol. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Altan, C.O.; Köstekli, B.; Çorapcı, B.; İpar, M.S.; Kocatepe, D.; Turan, H. The sensory characteristics, nutritional profile and physical changes of the Atlantic bonito (Sarda sarda Bloch, 1793) gravlax: Effect of dill (Anethum graveolens) and garden cress (Lepidium sativum). Int. J. Gastron. Food Sci. 2022, 28, 100490. [Google Scholar] [CrossRef]
- Svenska Akademiens Ordbok. Band X, Sp. 868, Stichwort grava v.3. 1929. Available online: https://svenska.se/saob/?id=G_0669-0266.YBM6#M_G669_214424 (accessed on 29 June 2025).
- Davidson, A.E. Jaine, T., Ed.; The Oxford Companion to Food, 3rd ed.; Oxford University Press: New York, NY, USA, 2014; p. 922. [Google Scholar]
- East Burke Market Blog. The Health Benefits and Preparation Tips for Salmon Gravlax. 2024. Available online: https://eastburkemarketvt.com/the-health-benefits-and-preparation-tips-for-salmon-gravlax/ (accessed on 26 June 2025).
- NutritionValue.org. Gravlax Style, Smoked Atlantic Salmon—Nutritional Value. 2025. Available online: https://www.nutritionvalue.org/Gravlax_style%2C_smoked_atlantic_salmon_1001825_nutritional_value.html (accessed on 27 June 2025).
- Lyu, J.; Li, Q.; Zhang, L.; Zhang, J.; Dong, Z.; Feng, L.; Luo, Y. Changes in quality of rainbow trout (Oncorhynchus mykiss) fillets preserved with salt and sugar at low concentrations and stored at 4 °C. Int. J. Food Prop. 2017, 20, 2286–2298. [Google Scholar] [CrossRef]
- Leisner, J.J.; Millan, J.C.; Huss, H.H.; Larsen, L.M. Production of histamine and tyramine by lactic acid bacteria isolated from vacuum-packed sugar-salted fish. J. Appl. Bacteriol. 1994, 76, 417–423. [Google Scholar] [CrossRef]
- Lyhs, U.; Lahtinen, J.; Fredriksson-Ahomaa, M.; Hyytiä-Trees, E.; Elfing, K.; Korkeala, H. Microbiological quality and shelf-life of vacuum-packaged ‘gravad’ rainbow trout stored at 3 and 8 °C. Int. J. Food Microbiol. 2001, 70, 221–230. [Google Scholar] [CrossRef]
- Wiernasz, N.; Leroi, F.; Chevalier, F.; Cornet, J.; Cardinal, M.; Rohloff, J.; Pilet, M.F. Salmon gravlax biopreservation with lactic acid bacteria: A polyphasic approach to assessing the impact on organoleptic properties, microbial ecosystem and volatilome composition. Front. Microbiol. 2020, 10, 3103. [Google Scholar] [CrossRef]
- Vurat, M.; Kocatepe, D. Characterization of the physicochemical, sensory and microbiological properties of bonito gravlax during storage. Int. J. Gastron. Food Sci. 2023, 32, 100715. [Google Scholar] [CrossRef]
- Polak-Juszczak, L. Total mercury and methylmercury in garfish (Belone belone) of different body weights, sizes, ages, and sexes. J. Trace Elem. Med. Biol. 2023, 79, 127220. [Google Scholar] [CrossRef]
- Serena, F.; Voliani, A.; Auteri, R. Nursery areas and some biological information of tub gurnard (Trigla lucerna L., 1758) off Tuscany coasts (Italy). Rapp. Comm. Int. Mer. Medit. 1998, 35, 482–483. [Google Scholar]
- Hunter, R.S.; Harold, R.W. The Measurement of Appearance, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1987; p. 432. [Google Scholar]
- Bekhit, A.E.D.A.; Morton, J.D.; Bhat, Z.F.; Zequan, X. Melton, L., Shahidi, F., Varelis, P., Eds.; Meat colour: Chemistry and measurement systems. In Encyclopedia of Food Chemistry, 1st ed.; Academic Press, Elsevier Inc.: London, UK, 2019; Volume 2, pp. 211–217. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Škrlep, M.; Čandek-Potokar, M. Pork color measurement as affected by bloom time and measurement location. J. Muscle Foods 2007, 18, 78–87. [Google Scholar] [CrossRef]
- Rhim, J.; Wu, Y.; Weller, C.; Schnepf, M. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. J. Food Sci. 1999, 64, 149–152. [Google Scholar] [CrossRef]
- Boland, F.E.; Lin, R.C.; Mulvaney, T.R.; Mcclure, F.D.; Johnston, M.R. pH Determination in acidified foods: Collaborative study. J. Assoc. Off. Anal. Chem. 1981, 64, 332–336. [Google Scholar] [CrossRef]
- Yoder, L. Adaptation of the Mohr volumetric method to general determinations of chlorine. Ind. Eng. Chem. 1919, 11, 755. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Method references: 925.04, 938.08, 954.01 and 991.36. In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Food Energy—Methods of Analysis and Conversion Factors. In Proceedings of the Report of a Technical Workshop, Rome, Italy, 3–6 December 2002; 2003. FAO Food and Nutrition Paper 77. [Google Scholar]
- Ishida, Y.; Fujita, T.; Asai, K. New detection and separation method for amino acids by high-performance liquid chromatography. J. Chromatogr. A 1981, 204, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Sidel, J.L. Stone, H., Sidel, J.L., Eds.; Affective Testing. In Sensory Evaluation Practices, 3rd ed.; Academic Press, Elsevier Inc.: San Diego, CA, USA, 2004; pp. 247–277. [Google Scholar]
- Barton, A.; Hayward, L.; Richardson, C.D.; McSweeney, M.B. Use of different panellists (experienced, trained, consumers and experts) and the projective mapping task to evaluate white wine. Food Qual. Prefer. 2020, 83, 103900. [Google Scholar] [CrossRef]
- Sallam, K.I.; Ahmed, A.M.; Elgazzar, M.M.; Eldaly, E.A. Chemical quality and sensory attributes of marinated Pacific saury (Cololabis saira) during vacuum-packaged storage at 4 °C. Food Chem. 2007, 102, 1061–1070. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture profile analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- Brookfield CT3 Texture Analyzer Operating Instructions. Manual No: M08-372-G0318; Available online: https://www.brookfieldengineering.com/-/media/ametekbrookfield/product-manuals/ct3-texture-analyzer-operations-manual-m08-372-g0318.pdfAmetek Instrumentation & Specialty Controls Division: Middleboro, MA, USA, 2024; (accessed on 14 December 2024).
- Environmental Protection Agency (EPA). Official Method 200.3, Rev. 5.4. In Determination of Metals, Total Recoverable in Biological Tissues by Inductively Coupled Plasma—Mass Spectrometry; EPA: Cincinnati, OH, USA, 1994. [Google Scholar]
- Milestone SK-10 High Pressure Rotor Application Book (Manual); Available online: https://subitam.sinop.edu.tr/wp-content/uploads/sites/93/2019/12/Mikrodalga.pdfMilestone Technologies Inc.: Shelton, CT, USA, 2025; (accessed on 23 June 2025).
- Ramirez-Navas, J.S.; Rodriguez de Stouvenel, A. Characterization of Colombian quesillo cheese by spectrocolorimetry. Vitae 2012, 19, 178–185. [Google Scholar] [CrossRef]
- Huang, S.; Liu, S.; Wen, P.; Lin, X.; Chen, X.; Su, Y.; Xie, Y.; Zheng, H.; Chen, Y.; Liu, Z. Effects of different water contents on the quality characteristics of roasted large yellow croaker (Larimichthys crocea) fillets. Foods 2025, 14, 1638. [Google Scholar] [CrossRef]
- Erikson, U.; Misimi, E. Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage. J. Food Sci. 2008, 73, C50–C59. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.; Lee, T.C.; Logendra, L.; Janes, H. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef]
- Prieto-Santiago, V.; Cavia, M.M.; Alonso-Torre, S.R.; Carrillo, C. Relationship between color and betalain content in different thermally treated beetroot products. J. Food Sci. Technol. 2020, 57, 3305–3313. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, P.M.; Niemeyer, E.D. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem. 2014, 164, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.H.; Kung, H.F.; Lin, C.S.; Hwang, C.C.; Lou, S.S.; Huang, C.Y.; Lee, Y.C. Combined effect of brine salting and high-hydrostatic-pressure processing to improve the microbial quality and physicochemical properties of milkfish fillet. Int. J. Food Prop. 2022, 25, 872–884. [Google Scholar] [CrossRef]
- Hirschler, R. Caivano, J.L., Buera, M.d.P., Eds.; Whiteness, yellowness, and browning in food colorimetry: A critical review. In Color in Food; CRC Press: Boca Raton, FL, USA, 2012; p. 478. [Google Scholar] [CrossRef]
- Altan, C.O.; Kocatepe, D.; Çorapcı, B.; Köstekli, B.; Turan, H. A comprehensive investigation of tenderization methods: Evaluating the efficacy of enzymatic and non-enzymatic methods in improving the texture of squid mantle—A detailed comparative study. Food Bioprocess Technol. 2024, 17, 3999–4024. [Google Scholar] [CrossRef]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Tönißen, K.; Pfuhl, R.; Franz, G.P.; Dannenberger, D.; Bochert, R.; Grunow, B. Impact of spawning season on fillet quality of wild pikeperch (Sander lucioperca). Eur. Food Res. Technol. 2022, 248, 1277–1285. [Google Scholar] [CrossRef]
- Garfish (Belone belone Linnaeus, 1761). Turkish Food Composition Database (Türkomp Food Code: 04.01.0017). 2025. Available online: https://turkomp.tarimorman.gov.tr/food-97 (accessed on 9 May 2025).
- Duyar, H.A.; Özdemir, S. Nutritional composition and some biological characteristics of the tub gurnard (Chelidonichthys lucerna) captured in the Western Black Sea Coasts of Turkey. Memba Kastamonu Univ. Su Ürün. Fak. Derg. 2022, 8, 75–82. [Google Scholar]
- World Health Organization (WHO). Dietary Reference Intakes for Energy, Carbohydrate, Fibre, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients); WHO Technical Report Series 935; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Kaneko, K.; Shirai, T.; Tanaka, M.; Kamei, M.; Matsumoto, H.; Osako, K. Taste characteristics of the gonad of longspine black urchin Diadema setosum. Nippon Suisan Gakkaishi 2009, 75, 689–694. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, X.; Liu, S.; Hong, P.; Zhou, C.; Zhong, S.; Chen, K. Changes in protein and volatile flavor compounds of low-salt wet-marinated fermented Golden Pomfret during processing. Food Chem. 2024, 456, 140029. [Google Scholar] [CrossRef]
- Tao, Z.; Li, F.; Wei, Z.; Wu, K.; Xie, S.; Li, J.; Duan, X. Effect of salt concentration on free amino acid content and biogenic amines in the dried salted mackerel fishes during the processing and drying process. J. Food Compos. Anal. 2025, 140, 107250. [Google Scholar] [CrossRef]
- Erkan, N.; Özden, Ö.; Ulusoy, Ş. Seasonal micro- and macro-mineral profile and proximate composition of oyster (Ostrea edulis) analyzed by ICP-MS. Food Anal. Methods 2011, 4, 35–40. [Google Scholar] [CrossRef]
- Ouattara, A.A.; Yao, K.M.; Kinimo, K.C.; Trokourey, A. Assessment and bioaccumulation of arsenic and trace metals in two commercial fish species collected from three rivers of Côte d’Ivoire and health risks. Microchem. J. 2020, 154, 104604. [Google Scholar] [CrossRef]
- Gedik, K.; Kongchum, M.; DeLaune, R.D.; Sonnier, J.J. Distribution of arsenic and other metals in crayfish tissues (Procambarus clarkii) under different production practices. Sci. Total Environ. 2017, 574, 322–331. [Google Scholar] [CrossRef]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A.; et al. Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Regional Screening Level (RSL) Summary Table (TR = 1E-06, HQ = 1); U.S. Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://semspub.epa.gov/work/HQ/404057.pdf (accessed on 30 June 2025).
- Lubiński, K.; Lener, M.R.; Marciniak, W.; Pawłowski, J.; Sadzikowska, J.; Kiljańczyk, A.; Matuszczak, M.; Baszuk, P.; Pietrzak, S.; Derkacz, R.; et al. Blood lead (Pb) levels as a possible marker of cancer risk in a prospective cohort of women with non-occupational exposure. Biomedicines 2025, 13, 1587. [Google Scholar] [CrossRef]
- UK Health Security Agency. Lead: Health Effects, Incident Management and Toxicology; Gov. UK: London, UK, 2024. Available online: https://www.gov.uk/government/publications/lead-properties-incident-management-and-toxicology/lead-toxicological-overview (accessed on 30 June 2025).
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R0915 (accessed on 29 June 2025).
- European Food Safety Authority. On the evaluation of a new study related to the bioavailability of aluminium in food. EFSA J. 2011, 9, 2157. [Google Scholar] [CrossRef]
- Jugdaohsingh, R. Silicon and bone health. J. Nutr. Health Aging 2007, 11, 99–110. [Google Scholar]
Base Materials | Groups | Abbreviations | Explanations |
---|---|---|---|
Garfish (Belone belone Linnaeus, 1761) (Groups that are produced with garfish start with “G”) | Fillet | GF | Fresh, non-processed garfish fillet |
Gravlax with only salt, sugar and spices | GX | Garfish gravlax without any herbs | |
Gravlax made with sage | GS | Garfish gravlax made with sage | |
Gravlax made with dill | GD | Garfish gravlax made with dill | |
Gravlax made with sweet basil | GSB | Garfish gravlax made with sweet basil | |
Gravlax made with mint | GM | Garfish gravlax made with mint | |
Gravlax made with purple basil | GPB | Garfish gravlax made with purple basil | |
Tub gurnard (Chelidonichthys lucerna Linnaeus, 1758) (Groups that are produced with tub gurnard start with “S”) | Fillet | SF | Fresh, non-processed tub gurnard fillet |
Gravlax with only salt, sugar and spices | SX | Tub gurnard gravlax without any herbs | |
Gravlax made with sage | SS | Tub gurnard gravlax made with sage | |
Gravlax made with dill | SD | Tub gurnard gravlax made with dill | |
Gravlax made with sweet basil | SSB | Tub gurnard gravlax made with sweet basil | |
Gravlax made with mint | SM | Tub gurnard gravlax made with mint | |
Gravlax made with purple basil | SPB | Tub gurnard gravlax made with purple basil | |
Sage (S. officinalis) | Herbs | S | Analyses conducted solely on the herbs themselves (e.g., color, aw, pH, and sensory analyses) are denoted by the corresponding abbreviation, which also forms the last one or two letters of the gravlax group abbreviations where they are used. |
Dill (A. graveolens) | D | ||
Sweet basil (O. basilicum) | SB | ||
Mint (M. piperita) | M | ||
Purple basil (O. basilicum var. purpurascens) | PB |
Amino Acids | PC 1 | PC 2 | Explanation |
---|---|---|---|
Ala | 0.270 | 0.065 | Both PC1 and PC2 exhibit positive loadings; however, the PC1 component is more dominant. |
Thr | 0.267 | 0.028 | |
Glu | 0.267 | 0.027 | |
Tyr | 0.263 | 0.024 | |
Pro | 0.257 | 0.083 | |
Met | 0.257 | 0.039 | |
Gly | 0.203 | 0.041 | |
Arg | 0.266 | −0.115 | PC1 exhibits a positive loading, while PC2 shows a negative loading; however, the influence of PC2 remains at a low level. |
Lys | 0.262 | −0.096 | |
Asp | 0.257 | −0.067 | |
Leu | 0.265 | −0.066 | |
Phe | 0.269 | −0.018 | |
Ser | 0.250 | 0.223 | Both principal components exhibit positive loadings in a similar direction. |
Orn | 0.071 | 0.050 | The least influential variable in both principal components. |
Cys | 0.121 | 0.501 | The variables with the most substantial positive loadings on PC2 |
His | 0.169 | 0.486 | |
Val | 0.203 | −0.483 | The variables with the most substantial negative loadings on PC2. |
Ile | 0.206 | −0.422 |
GF | GX | GS | GD | GSB | GM | GPB | SF | SX | SS | SD | SSB | SM | SPB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Major
minerals | Ca | 270.40 ± 2.05 c | 70.74 ± 1.46 g | 217.19 ± 3.22 d | 140.58 ± 1.52 f | 297.37 ± 2.05 b | 135.35 ± 0.45 f | 144.07 ± 3.14 f | 225.04 ± 0.15 d | 20.69 ± 0.24 j | 181.67 ± 0.24 e | 30.73 ± 0.20 I, j | 326.46 ± 2.60 a | 33.95 ± 0.88 i | 45.00 ± 0.20 h |
Mg | 59.17 ± 0.56 d | 92.42 ± 0.34 a | 64.20 ± 0.25 b | 54.93 ± 0.29 e | 53.86 ± 0.25 e, f | 60.52 ± 0.34 c, d | 52.49 ± 0.15 f | 46.55 ± 0.27 h | 52.53 ± 0.09 f | 46.48 ± 0.09 h | 41.30 ± 0.52 i | 49.87 ± 0.17 g | 60.99 ± 0.13 c | 46.36 ± 0.40 h | |
Na | 276.14 ± 4.05 k | 7654.75 ± 11.99 a | 5723.93 ± 3.35 e | 6386.11 ± 14.39 b | 5209.19 ± 3.35 f | 5052.90 ± 18.30 g | 6083.08 ± 26.74 c | 312.42 ± 8.37 k | 5843.29 ± 22.75 d | 4050.36 ± 28.31 j | 4994.63 ± 28.31 h | 5677.88 ± 16.48 e | 4104.70 ± 24.04 j | 4582.11 ± 57.76 i | |
K | 638.88 ± 2.67 a | 527.51 ± 4.34 d | 470.51 ± 1.54 e | 435.23 ± 2.59 f | 437.55 ± 1.54 f | 521.74 ± 1.81 d | 441.95 ± 1.06 f | 644.27 ± 4.46 a | 549.25 ± 2.88 c | 574.70 ± 2.88 b | 510.95 ± 2.62 d | 521.69 ± 5.38 d | 550.57 ± 11.03 c | 533.49 ± 3.12 c, d | |
P | 580.79 ± 4.11 a | 529.17 ± 3.74 b | 352.93 ± 5.84 f, g | 434.99 ± 2.51 e | 485.04 ± 1.67 d | 465.35 ± 2.68 d | 422.42 ± 5.04 e | 565.46 ± 1.67 a, b | 425.54 ± 1.87 e | 367.53 ± 1.87 f | 309.20 ± 3.25 h | 504.52 ± 7.33 c | 341.32 ± 4.62 g | 313.82 ± 1.52 h | |
Essential
minerals | Cu | 0.07 ± 0.00 d | 0.13 ± 0.00 a | 0.08 ± 0.00 c, d | 0.06 ± 0.00 e | 0.08 ± 0.00 c, d | 0.07 ± 0.00 d | 0.08 ± 0.00 c | 0.04 ± 0.00 g, h | 0.10 ± 0.00 b | 0.05 ± 0.00 f | 0.05 ± 0.00 f, g | 0.04 ± 0.00 g, h | 0.05 ± 0.00 f | 0.03 ± 0.00 h |
Fe | 0.74 ± 0.00 e, f | 0.75 ± 0.00 e | 0.70 ± 0.00 g | 1.16 ± 0.01 b | 1.26 ± 0.00 a | 0.73 ± 0.00 e, f | 0.76 ± 0.01 d | 0.51 ± 0.00 h | 0.45 ± 0.00 i | 0.71 ± 0.00 f, g | 0.90 ± 0.00 c | 0.90 ± 0.00 c | 0.50 ± 0.00 h | 0.52 ± 0.00 h | |
Mn | 0.06 ± 0.00 i, j | 0.04 ± 0.00 j | 0.26 ± 0.00 b | 0.24 ± 0.00 c | 0.22 ± 0.00 d | 0.14 ± 0.00 g | 0.12 ± 0.00 h | 0.04 ± 0.00 j | 0.06 ± 0.00 i | 0.19 ± 0.00 e | 0.16 ± 0.00 f | 0.36 ± 0.00 a | 0.13 ± 0.00 g, h | 0.20 ± 0.00 e | |
Se | 0.07 ± 0.00 d | 0.12 ± 0.00 a | 0.07 ± 0.00 d | 0.07 ± 0.00 d | 0.07 ± 0.00 d | 0.07 ± 0.00 d | 0.06 ± 0.00 d | 0.11 ± 0.01 a, b | 0.09 ± 0.00 c | 0.09 ± 0.00 c | 0.10 ± 0.00 b, c | 0.09 ± 0.00 c | 0.09 ± 0.00 b, c | 0.09 ± 0.00 c | |
Zn | 3.16 ± 0.04 a | 2.19 ± 0.01 e | 2.48 ± 0.02 c, d | 2.61 ± 0.04 c | 2.90 ± 0.02 b | 2.41 ± 0.02 d | 2.50 ± 0.03 c, d | 0.84 ± 0.00 f | 0.69 ± 0.00 f, g | 0.69 ± 0.01 f, g | 0.59 ± 0.01 g, h | 0.66 ± 0.00 g | 0.71 ± 0.01 f, g | 0.49 ± 0.01 h | |
Heavy
metals | Al | 0.08 ± 0.00 h | 0.19 ± 0.00 d | 0.31 ± 0.00 a | 0.29 ± 0.00 b | 0.29 ± 0.00 b | 0.18 ± 0.00 e | 0.15 ± 0.00 g | 0.20 ± 0.00 d | 0.15 ± 0.00 g | 0.24 ± 0.00 c | 0.20 ± 0.00 d | 0.30 ± 0.00 a, b | 0.17 ± 0.00 f | 0.29 ± 0.00 b |
As | 0.04 ± 0.00 d, e, f | 0.06 ± 0.00 a | 0.05 ± 0.00 b | 0.04 ± 0.00 c, d, e | 0.06 ± 0.00 a | 0.04 ± 0.00 e, f | 0.05 ± 0.00 b, c | 0.04 ± 0.00 d, e, f | 0.04 ± 0.00 c, d, e | 0.04 ± 0.00 f | 0.05 ± 0.00 b, c | 0.04 ± 0.00 b, c, d | 0.04 ± 0.00 f | 0.03 ± 0.00 g | |
Pb | 0.01 ± 0.00 a | 0.01 ± 0.00 b | 0.00 ± 0.00 e, f | 0.01 ± 0.00 d, e | 0.00 ± 0.00 e, f | 0.01 ± 0.00 c | 0.00 ± 0.00 f, g | 0.01 ± 0.00 b | 0.01 ± 0.00 a | 0.00 ± 0.00 f, g | 0.01 ± 0.00 c, d, e | 0.00 ± 0.00 f, g | 0.01 ± 0.00 c, d | 0.00 ± 0.00 g | |
Others | B | 0.12 ± 0.00 a | 0.08 ± 0.00 c | 0.06 ± 0.00 e | 0.07 ± 0.00 d | 0.06 ± 0.00 f, g | 0.05 ± 0.00 h | 0.04 ± 0.00 i | 0.07 ± 0.00 d | 0.05 ± 0.00 i | 0.06 ± 0.00 e, f | 0.06 ± 0.00 e, f | 0.05 ± 0.00 g, h | 0.09 ± 0.00 b | 0.06 ± 0.00 e |
Ba | 0.01 ± 0.00 g | 0.01 ± 0.00 g | 0.03 ± 0.00 b | 0.03 ± 0.00 c | 0.03 ± 0.00 b | 0.02 ± 0.00 f | 0.02 ± 0.00 e, f | 0.01 ± 0.00 g | 0.01 ± 0.00 g | 0.02 ± 0.00 d, e | 0.02 ± 0.00 e, f | 0.04 ± 0.00 b | 0.04 ± 0.00 a | 0.02 ± 0.00 c, d | |
Ni | 0.01 ± 0.00 d | 0.04 ± 0.00 b | 0.01 ± 0.00 e, f | 0.01 ± 0.00 f, g | 0.00 ± 0.00 g | 0.00 ± 0.00 g | 0.00 ± 0.00 g | 0.03 ± 0.00 c | 0.05 ± 0.00 a | 0.01 ± 0.00 e | 0.01 ± 0.00 d | 0.00 ± 0.00 g | 0.01 ± 0.00 f, g | 0.00 ± 0.00 g | |
Rb | 0.07 ± 0.01 f | 0.12 ± 0.00 a, b | 0.07 ± 0.00 e, f | 0.08 ± 0.00 e, f | 0.08 ± 0.00 d, e, f | 0.09 ± 0.00 d, e, f | 0.08 ± 0.00 e f | 0.10 ± 0.00 b, c, d | 0.14 ± 0.00 a | 0.10 ± 0.00 b, c, d, e | 0.09 ± 0.00 c, d, e, f | 0.10 ± 0.00 b, c, d, e | 0.11 ± 0.01 b, c | 0.10 ± 0.00 b, c, d, e | |
Si | 2.67 ± 0.00 b | 2.72 ± 0.00 a | 2.71 ± 0.01 a | 2.50 ± 0.00 d | 2.62 ± 0.01 c | 2.13 ± 0.00 g | 2.04 ± 0.00 h | 2.73 ± 0.01 a | 2.71 ± 0.01 a | 2.70 ± 0.01 a | 2.51 ± 0.01 d | 2.59 ± 0.00 c | 2.18 ± 0.01 f | 2.37 ± 0.01 e | |
Sr | 0.75 ± 0.01 c | 0.24 ± 0.00 f | 0.84 ± 0.01 b | 0.47 ± 0.00 d | 0.85 ± 0.01 b | 0.42 ± 0.00 e | 0.45 ± 0.01 d | 0.09 ± 0.00 i | 0.06 ± 0.00 j | 0.19 ± 0.00 g | 0.13 ± 0.00 h | 0.93 ± 0.00 a | 0.19 ± 0.00 g | 0.19 ± 0.00 g | |
Ti | 0.07 ± 0.00 e, f, g | 0.12 ± 0.01 a, b | 0.12 ± 0.00 a | 0.08 ± 0.00 e, f, g | 0.09 ± 0.00 c, d | 0.08 ± 0.00 e, f, g | 0.08 ± 0.00 d, e, f | 0.07 ± 0.00 f, g | 0.07 ± 0.00 g | 0.09 ± 0.00 d, e | 0.08 ± 0.00 e, f, g | 0.11 ± 0.00 b, c | 0.09 ± 0.00 d, e | 0.08 ± 0.00 e, f, g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altan, C.O. A Comprehensive Study on Gravlax: A Multidimensional Evaluation of Gravlax Produced from Different Fish Species and Herbs. Foods 2025, 14, 2465. https://doi.org/10.3390/foods14142465
Altan CO. A Comprehensive Study on Gravlax: A Multidimensional Evaluation of Gravlax Produced from Different Fish Species and Herbs. Foods. 2025; 14(14):2465. https://doi.org/10.3390/foods14142465
Chicago/Turabian StyleAltan, Can Okan. 2025. "A Comprehensive Study on Gravlax: A Multidimensional Evaluation of Gravlax Produced from Different Fish Species and Herbs" Foods 14, no. 14: 2465. https://doi.org/10.3390/foods14142465
APA StyleAltan, C. O. (2025). A Comprehensive Study on Gravlax: A Multidimensional Evaluation of Gravlax Produced from Different Fish Species and Herbs. Foods, 14(14), 2465. https://doi.org/10.3390/foods14142465