Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = midday stem water potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2543 KiB  
Article
Assessing Plant Water Status and Physiological Behaviour Using Multispectral Images from UAV in Merlot Vineyards in Central Spain
by Luz K. Atencia Payares, Juan C. Nowack, Ana M. Tarquis and Maria Gomez-del-Campo
Remote Sens. 2025, 17(13), 2273; https://doi.org/10.3390/rs17132273 - 2 Jul 2025
Viewed by 269
Abstract
Water status is a key determinant of physiological performance and vineyard productivity. However, its assessment through field measurements is time-consuming and labour-intensive. Remote sensing offers a fast and reliable alternative to traditional in situ methods for the monitoring of the water status in [...] Read more.
Water status is a key determinant of physiological performance and vineyard productivity. However, its assessment through field measurements is time-consuming and labour-intensive. Remote sensing offers a fast and reliable alternative to traditional in situ methods for the monitoring of the water status in vineyards. This study aimed to assess the potential of high-resolution multispectral imagery acquired by UAVs to estimate the vine water status. The research was conducted over two growing seasons (2021 and 2022) in a commercial Merlot vineyard in Yepes (Toledo, Central Spain), under five irrigation regimes designed to generate a range of water statuses. UAV flights were performed at two times of day (09:00 and 12:00 solar time), coinciding with in-field measurements of physiological parameters. Stem water potential (SWP), chlorophyll content, and photosynthesis data were collected. The SWP consistently showed the strongest and most stable associations with vegetation indices (VIs) and the red spectral band at 12:00. A simple linear regression model using the NDVI explained up to 58% of the SWP variability regardless of the time of day or year. Multiple linear regression models incorporating the red and NIR bands yielded even higher predictive power (R2 = 0.62). Stronger correlations were observed at 12:00, especially when combining data from both years, highlighting the importance of midday measurements in capturing water stress effects. These findings demonstrate the potential of UAV-based multispectral imagery as a non-destructive and scalable tool for the monitoring of the vine water status under field conditions. Full article
Show Figures

Figure 1

14 pages, 1284 KiB  
Article
Relationships Between Midday Stem Water Potential and Soil Water Content in Grapevines and Peach and Pear Trees
by José Manuel Mirás-Avalos and Emily Silva Araujo
Agronomy 2025, 15(5), 1257; https://doi.org/10.3390/agronomy15051257 - 21 May 2025
Viewed by 505
Abstract
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates [...] Read more.
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates of θs are, therefore, unreliable. Our objective was to relate the measurements of capacitance probes, without a site-specific calibration, with a reliable indicator of the water status (stem water potential at solar noon (Ψstem)) of rain-fed grapevines grown under contrasting soil management strategies (tillage and spontaneous vegetation) and of irrigated peach and pear trees. During the 2023 growing season, θs was monitored in a peach and a pear orchard and in a vineyard in northeast Spain using capacitance sensors at three depths: 0.15, 0.30, and 0.45 m. Correlation coefficients ranged from 0.75 to 0.87 in peach trees, from 0.53 to 0.56 in pear trees, and from 0.56 to 0.90 in grapevines, depending on soil depth. These relationships were significant for both peach trees and grapevines but not for pear trees. Under the conditions of this study, uncalibrated capacitance measurements of θs could be useful to assess grapevine and peach tree water status in real time but were limited for pear trees. Full article
Show Figures

Figure 1

18 pages, 3277 KiB  
Article
Assessment of Trunk Diameter Fluctuation-Derived Indices for Detecting Water Stress in Sweet Cherry Trees
by Pedro J. Blaya-Ros, Víctor Blanco, Roque Torres-Sánchez, Fulgencio Soto-Valles, Martín E. Espósito and Rafael Domingo
Water 2024, 16(15), 2186; https://doi.org/10.3390/w16152186 - 1 Aug 2024
Viewed by 1611
Abstract
The continuous and reliable assessment of crop water status through water indicators enables the sustainable management of water resources, especially in arid or semi-arid climate scenarios exacerbated by climate change. Therefore, the main objective of this study is to determine and compare the [...] Read more.
The continuous and reliable assessment of crop water status through water indicators enables the sustainable management of water resources, especially in arid or semi-arid climate scenarios exacerbated by climate change. Therefore, the main objective of this study is to determine and compare the sensitivity of indices derived from trunk diameter fluctuations for the accurate and automatic detection of changes in the water status of cherry trees. The water stress indicators examined are maximum daily trunk shrinkage (MDS), trunk growth rate (TGR), early daily trunk shrinkage (EDS), and late daily trunk shrinkage (LDS). During two growing seasons, ‘Lapins’ sweet cherry trees were subjected to different water stress levels: (i) a control treatment irrigated at 115% of crop evapotranspiration demand to ensure non-limiting water conditions, and (ii) a deficit irrigation treatment, with two irrigation withholding cycles. Vegetative growth was affected by water stress. Trunk daily growth rate and late daily trunk shrinkage exhibited a high variability and did not clearly show differences in plant water status. Both EDS and MDS showed a third-degree polynomial relationship with Ψstem. MDS had a lineal relationship with Ψstem of up to −1.4 MPa; however, further decreases in Ψstem did not necessarily lead to increased MDS. In contrast, EDS became non-linear at −1.8 MPa, making it a more useful plant water indicator than MDS for ‘Lapins’ sweet cherry trees when detecting severe water stress conditions. The frequencies of both MDS and EDS decreased from 85% to 35% when water stress increased. Therefore, the information provided by MDS and EDS frequencies, along with their daily values, could be useful as irrigation management tools for sweet cherry trees. Full article
Show Figures

Figure 1

12 pages, 814 KiB  
Article
Physiological and Growth Responses of W. Murcott Tangor Grafted on Four Rootstocks under Water Restriction
by Sophia Tobar, Pilar M. Gil, Bruce Schaffer, Andrés R. Schwember, Ricardo Cautín and Johanna Mártiz
Horticulturae 2024, 10(4), 352; https://doi.org/10.3390/horticulturae10040352 - 2 Apr 2024
Cited by 3 | Viewed by 1644
Abstract
Citrus orchards in semi-arid regions are increasingly exposed to drought conditions due to climate change. This study compared the physiological and growth responses of ‘W. Murcott’ tangor (WM) grafted onto Citrus macrophylla (M), Swingle citrumelo (SC), C-35 citrange (C35), or bitter citrandarin (C22) [...] Read more.
Citrus orchards in semi-arid regions are increasingly exposed to drought conditions due to climate change. This study compared the physiological and growth responses of ‘W. Murcott’ tangor (WM) grafted onto Citrus macrophylla (M), Swingle citrumelo (SC), C-35 citrange (C35), or bitter citrandarin (C22) rootstock subjected to two irrigation treatments: daily irrigation to replace 100% of the water lost daily by evapotranspiration (ET; control treatment) or daily irrigation to replace 75% of the water lost daily by ET (water deficit treatment). For trees in each treatment, leaf gas exchange, relative chlorophyll content, chlorophyll fluorescence, midday stem water potential, trunk cross-sectional area, and shoot length were measured 46 days after treatments were initiated. The results showed that WM on SC or C22 rootstock exhibited isohydric behavior, where decreased stomatal conductance limited transpiration in the water deficit treatment. WM on M rootstock exhibited an anisohydric response in the water deficit treatment, where there was no stomatal control of water loss by transpiration. Among the rootstocks tested for WM, the most tolerant to soil water deficit was SC, whereas trees on M rootstock were the most negatively affected by soil water deficit. Full article
Show Figures

Figure 1

11 pages, 588 KiB  
Article
Technical Feasibility Analysis of Advanced Monitoring with a Thermal Camera on an Unmanned Aerial Vehicle and Pressure Chamber for Water Status in Vineyards
by Gonzalo Esteban-Sanchez, Carlos Campillo, David Uriarte and Francisco J. Moral
Horticulturae 2024, 10(3), 305; https://doi.org/10.3390/horticulturae10030305 - 21 Mar 2024
Cited by 2 | Viewed by 1622
Abstract
Water is a limiting factor and to adopt the most appropriate agronomic strategy it is necessary to know the water status. The objective is (i) analysing of the influence of different agronomic treatments on canopy temperature in vineyards with a thermal camera on [...] Read more.
Water is a limiting factor and to adopt the most appropriate agronomic strategy it is necessary to know the water status. The objective is (i) analysing of the influence of different agronomic treatments on canopy temperature in vineyards with a thermal camera on an unmanned aerial vehicle (UAV), (ii) analysing of the influence of different agronomic treatments on vineyard water potentials with a pressure chamber, (iii) advanced technical feasibility analysis of vineyard crop monitoring. The control treatment (T07) in cv. Grenache consisted of applying 30% of reference evapotranspiration (ETo) with irrigation frequency every seven days and seven different treatments were proposed with different irrigation frequencies, pre-bud irrigation, and vine shoot distribution (T03, T15, T7A, T7V, T7P, T00, and T0P). As a result and in conclusion, the use of thermal cameras in UAVs and mid-day stem water potential allows differentiation between irrigated and unirrigated treatments, but no clear differences were shown between irrigation frequencies, pre-irrigation treatment, or vine shoot distribution. Comparing the thermal camera information in UAV and the stem water potential, certain patterns are identified with significant correlation values, the use of thermal cameras for the evaluation of plant water status is recommended, especially to obtain information in large areas. Full article
Show Figures

Figure 1

18 pages, 5446 KiB  
Article
Hydraulic Traits and Non-Structural Carbon Responses to Drought Stress in Reaumuria soongorica (Pall.) Maxim. and Salsola passerina Bunge
by Hongyong Wang, Jing Ma, Tingting Xie, Furong Niu, Cai He, Yating Shi, Zhengzhong Zhang, Jing Zhang and Lishan Shan
Forests 2024, 15(2), 287; https://doi.org/10.3390/f15020287 - 2 Feb 2024
Cited by 1 | Viewed by 1484
Abstract
Drought-induced plant mortality, resulting from either hydraulic failure or carbon starvation, is hypothesized to be modulated by the drought intensity. However, there is a paucity of research investigating the response strategies in desert shrubs under drought stress with different intensities. We transplanted potted [...] Read more.
Drought-induced plant mortality, resulting from either hydraulic failure or carbon starvation, is hypothesized to be modulated by the drought intensity. However, there is a paucity of research investigating the response strategies in desert shrubs under drought stress with different intensities. We transplanted potted Reaumuria soongorica (Pall.) Maxim. and Salsola passerina Bunge seedlings in the rain-out shelter, and implemented three water treatments: a control (well-watered, CK), a chronic drought (gradually less watered, CD), and a flash drought (not watered, FD). We then quantified plant physiological traits associated with water use and carbon assimilation. Both R. soongorica and S. passerina showed similar changes in water use and carbon characteristics under different drought treatments. Water use efficiency was not significantly changed, but embolism resistance was significantly lower in CD, and leaf specific conductivity and embolism resistance were significantly lower in FD compared to CK. Under the drought treatment, both shrubs had significantly lower hydraulic safety margins than CK, with FD being significantly lower than CD. Notably, FD had lower carbon assimilation and a lower leaf non-structural carbon concentration, but higher stem non-structural carbon concentration. The results of a principal component analysis showed that net photosynthetic rate, sapwood specific conductivity, embolism resistance, midday water potential, and leaf and stem soluble sugar concentration were the main axes of variation for R. soongorica traits. CK had the highest water use efficiency, net photosynthetic rate, and gas exchange rate, while FD had the lowest embolism resistance and highest osmoregulation. Midday water potential, leaf and stem soluble sugar concentration were the main axes of variation for S. passerina traits, and individual distribution under three water treatments was associated with drought tolerance traits. The findings suggest that species exhibit different response strategies for resistance to drought stress, with R. soongorica being drought-avoidant and S. passerina being drought-tolerant. These findings highlight the adaptive capacity of desert shrubs to water deficit and provide insights for assessing hydraulic failure and carbon starvation in desert shrubs. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

18 pages, 1633 KiB  
Article
Obtaining Spatial Variations in Cabernet Sauvignon (Vitis vinifera L.) Wine Flavonoid Composition and Aromatic Profiles by Studying Long-Term Plant Water Status in Hyper-Arid Seasons
by Runze Yu, Nazareth Torres and Sahap Kaan Kurtural
Horticulturae 2024, 10(1), 68; https://doi.org/10.3390/horticulturae10010068 - 9 Jan 2024
Cited by 2 | Viewed by 1696
Abstract
The spatial variability in vineyard soil might negatively affect wine composition, leading to inhomogeneous flavonoid composition and aromatic profiles. In this study, we investigated the spatial variability in wine chemical composition in a Cabernet Sauvignon (Vitis vinifera L.) vineyard in 2019 and [...] Read more.
The spatial variability in vineyard soil might negatively affect wine composition, leading to inhomogeneous flavonoid composition and aromatic profiles. In this study, we investigated the spatial variability in wine chemical composition in a Cabernet Sauvignon (Vitis vinifera L.) vineyard in 2019 and 2020. Because of the tight relationships with soil profiles, mid-day stem water potential integrals (Ψstem Int) were used to delineate the vineyard into two zones, including Zone 1 with relatively higher water stress and Zone 2 with relatively lower water stress. Wine from Zone 2 generally had more anthocyanins in 2019. In 2020, Zone 1 had more anthocyanins and flavonols. Zone 2 had more proanthocyanidin extension and terminal subunits as well as total proanthocyanidins in 2020. According to the Principal Component Analyses (PCA) for berry and wine chemical composition, the two zones were significantly different in the studied wine aromatic compounds. In conclusion, this study provides evidence of the possibility of managing the spatial variability of both wine flavonoid composition and aromatic profiles through connecting vineyard soil variability to grapevine season-long water status. Full article
(This article belongs to the Special Issue Precision Vineyard Management under Climate Change)
Show Figures

Figure 1

16 pages, 2960 KiB  
Article
A Smart Crop Water Stress Index-Based IoT Solution for Precision Irrigation of Wine Grape
by Fernando Fuentes-Peñailillo, Samuel Ortega-Farías, Cesar Acevedo-Opazo, Marco Rivera and Miguel Araya-Alman
Sensors 2024, 24(1), 25; https://doi.org/10.3390/s24010025 - 20 Dec 2023
Cited by 5 | Viewed by 2588
Abstract
The Scholander-type pressure chamber to measure midday stem water potential (MSWP) has been widely used to schedule irrigation in commercial vineyards. However, the limited number of sites that can be evaluated using the pressure chamber makes it difficult to evaluate the spatial variability [...] Read more.
The Scholander-type pressure chamber to measure midday stem water potential (MSWP) has been widely used to schedule irrigation in commercial vineyards. However, the limited number of sites that can be evaluated using the pressure chamber makes it difficult to evaluate the spatial variability of vineyard water status. As an alternative, several authors have suggested using the crop water stress index (CWSI) based on low-cost thermal infrared (TIR) sensors to estimate the MSWP. Therefore, this study aimed to develop a low-cost wireless infrared sensor network (WISN) to monitor the spatial variability of MSWPs in a drip-irrigated Cabernet Sauvignon vineyard under two levels of water stress. For this study, the MLX90614 sensor was used to measure canopy temperature (Tc), and thus compute the CWSI. The results indicated that good performance of the MLX90614 infrared thermometers was observed under laboratory and vineyard conditions with root mean square error (RMSE) and mean absolute error (MAE) values being less than 1.0 °C. Finally, a good nonlinear correlation between the MSWP and CWSI (R2 = 0.72) was observed, allowing the development of intra-vineyard spatial variability maps of MSWP using the low-cost wireless infrared sensor network. Full article
(This article belongs to the Special Issue Sensors in Environmental Engineering)
Show Figures

Figure 1

18 pages, 5870 KiB  
Article
Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques
by Simone Pietro Garofalo, Vincenzo Giannico, Leonardo Costanza, Salem Alhajj Ali, Salvatore Camposeo, Giuseppe Lopriore, Francisco Pedrero Salcedo and Gaetano Alessandro Vivaldi
Agronomy 2024, 14(1), 1; https://doi.org/10.3390/agronomy14010001 - 19 Dec 2023
Cited by 20 | Viewed by 2808
Abstract
Assessing plant water status accurately in both time and space is crucial for maintaining satisfactory crop yield and quality standards, especially in the face of a changing climate. Remote sensing technology offers a promising alternative to traditional in situ measurements for estimating stem [...] Read more.
Assessing plant water status accurately in both time and space is crucial for maintaining satisfactory crop yield and quality standards, especially in the face of a changing climate. Remote sensing technology offers a promising alternative to traditional in situ measurements for estimating stem water potential (Ψstem). In this study, we carried out field measurements of Ψstem in an irrigated olive orchard in southern Italy during the 2021 and 2022 seasons. Water status data were acquired at midday from 24 olive trees between June and October in both years. Reflectance data collected at the time of Ψstem measurements were utilized to calculate vegetation indices (VIs). Employing machine learning techniques, various prediction models were developed by considering VIs and spectral bands as predictors. Before the analyses, both datasets were randomly split into training and testing datasets. Our findings reveal that the random forest model outperformed other models, providing a more accurate prediction of olive water status (R2 = 0.78). This is the first study in the literature integrating remote sensing and machine learning techniques for the prediction of olive water status in order to improve olive orchard irrigation management, offering a practical solution for estimating Ψstem avoiding time-consuming and resource-intensive fieldwork. Full article
Show Figures

Figure 1

28 pages, 2724 KiB  
Article
Can Grapevine Leaf Water Potential Be Modelled from Physiological and Meteorological Variables? A Machine Learning Approach
by Miguel Damásio, Miguel Barbosa, João Deus, Eduardo Fernandes, André Leitão, Luís Albino, Filipe Fonseca and José Silvestre
Plants 2023, 12(24), 4142; https://doi.org/10.3390/plants12244142 - 12 Dec 2023
Cited by 2 | Viewed by 2434
Abstract
Climate change is affecting global viticulture, increasing heatwaves and drought. Precision irrigation, supported by robust water status indicators (WSIs), is inevitable in most of the Mediterranean basin. One of the most reliable WSIs is the leaf water potential ( [...] Read more.
Climate change is affecting global viticulture, increasing heatwaves and drought. Precision irrigation, supported by robust water status indicators (WSIs), is inevitable in most of the Mediterranean basin. One of the most reliable WSIs is the leaf water potential (Ψleaf), which is determined via an intrusive and time-consuming method. The aim of this work is to discern the most effective variables that are correlated with plants’ water status and identify the variables that better predict Ψleaf. Five grapevine varieties grown in the Alentejo region (Portugal) were selected and subjected to three irrigation treatments, starting in 2018: full irrigation (FI), deficit irrigation (DI), and no irrigation (NI). Plant monitoring was performed in 2023. Measurements included stomatal conductance (gs), predawn water potential Ψpd, stem water potential (Ψstem), thermal imaging, and meteorological data. The WSIs, namely Ψpd and gs, responded differently according to the irrigation treatment. Ψstem measured at mid-morning (MM) and mid-day (MD) proved unable to discern between treatments. MM measurements presented the best correlations between WSIs. gs showed the best correlations between the other WSIs, and consequently the best predictive capability to estimate Ψpd. Machine learning regression models were trained on meteorological, thermal, and gs data to predict Ψpd, with ensemble models showing a great performance (ExtraTrees: R2=0.833, MAE=0.072; Gradient Boosting: R2=0.830; MAE=0.073). Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 3215 KiB  
Article
Field-Measured Hydraulic Traits and Remotely Sensed NDVI of Four Subtropical Tree Species Showed Transient Declines during the Drought–Heatwave Event
by Yongkang Wang and Jia Song
Forests 2023, 14(7), 1420; https://doi.org/10.3390/f14071420 - 11 Jul 2023
Cited by 2 | Viewed by 1872
Abstract
Unpredictable drought–heatwave events occur frequently worldwide, causing low water availability (drought) and high temperatures (hot), with consequences for forest decline and mortality. Our knowledge of the potential instantaneous reactions and subsequent recovery of water-related physiological processes and vegetation indices in hot drought events [...] Read more.
Unpredictable drought–heatwave events occur frequently worldwide, causing low water availability (drought) and high temperatures (hot), with consequences for forest decline and mortality. Our knowledge of the potential instantaneous reactions and subsequent recovery of water-related physiological processes and vegetation indices in hot drought events remains unclear. Here, we investigated how the 2022 summer drought–heatwave event in the subtropical regions of China affected hydraulic traits and NDVI values in the forests of four common subtropical tree species. During the hot drought, the NDVI values of all four forests decreased (−31%~−23%), accompanied by leaf scorch and tree crown dieback. Among the four species, a hot drought event caused an instantaneous descent in hydraulic conductivity (Ks, −72%~−31%), stomatal conductance (gs, −94%~−50%), and midday water potential (−40%~−169%), with severe drought-induced stem xylem embolism. A trade-off was found between resistance and resilience in hot-drought-induced hydraulic dysfunction, as species with lower declines in Ks and gs during the hot drought had a shorter recovery in the post-stress phase. This study highlights that the 2022 hot drought event had severe negative instantaneous impacts on the forests of four subtropical tree species, which were reflected both in water-related physiological processes in the field and in remote sensing data from satellites. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

9 pages, 1660 KiB  
Article
Hydric Behavior: Insights into Primary Metabolites in Leaves and Roots of Cabernet Sauvignon and Grenache Grapevine Varieties under Drought Stress
by Miguel Tamayo, Laura Sepúlveda, Excequel Ponce Guequen, Pablo Saavedra, Romina Pedreschi, Alejandro Cáceres-Mella, Juan E. Alvaro and Italo F. Cuneo
Horticulturae 2023, 9(5), 566; https://doi.org/10.3390/horticulturae9050566 - 10 May 2023
Cited by 5 | Viewed by 2573
Abstract
The classification of grapevine cultivars into isohydric and anisohydric categories depends on their ability to close stomata under conditions of low soil water availability or high atmospheric demand. This study aimed to compare the responses of Grenache, classified as isohydric, and Cabernet Sauvignon, [...] Read more.
The classification of grapevine cultivars into isohydric and anisohydric categories depends on their ability to close stomata under conditions of low soil water availability or high atmospheric demand. This study aimed to compare the responses of Grenache, classified as isohydric, and Cabernet Sauvignon, classified as anisohydric, both grafted onto Richter 110 rootstock, and subjected to severe drought stress. Three cycles of drought stress were applied, followed by watering, while a well-watered treatment served as the control. Stomatal conductance and stem water potential were measured at predawn and midday during the drought cycles, and primary metabolites were analyzed in leaves and roots using gas chromatography. We found that Grenache had significantly higher stomatal conductance than Cabernet Sauvignon under both well-watered and water-stressed conditions. There were no significant differences in stem water potential between the two varieties, but the control treatment maintained a higher stem water potential at predawn and midday for both varieties. Primary metabolite analysis showed that both varieties accumulated sugars and polyols in their leaves and roots under drought stress, while organic acids were more abundant in leaves than in roots. Overall, the results suggest that the hydric behavior of grapevines depends on the intensity and duration of drought stress. In this study, both varieties exhibited near-isohydric behavior by regulating stomatal closure under drought stress. The metabolites identified in this study may serve as potential biomarkers of water drought stress in Grenache and Cabernet Sauvignon grapevines under the conditions of this experiment. Full article
(This article belongs to the Special Issue Advances in Berry Crops Production, Genomics and Breeding)
Show Figures

Figure 1

14 pages, 5647 KiB  
Article
Managing Water Stress in Olive (Olea europaea L.) Orchards Using Reference Equations for Midday Stem Water Potential
by Marta Sánchez-Piñero, Mireia Corell, Alfonso Moriana, Pedro Castro-Valdecantos and María-José Martin-Palomo
Horticulturae 2023, 9(5), 563; https://doi.org/10.3390/horticulturae9050563 - 9 May 2023
Cited by 3 | Viewed by 3011
Abstract
The irrigation surface of olive orchards has increased over recent decades. In zones affected, deficit irrigation scheduling is a must. The aim of this work was to study water stress management based on reference equations for midday stem water potential. An experiment was [...] Read more.
The irrigation surface of olive orchards has increased over recent decades. In zones affected, deficit irrigation scheduling is a must. The aim of this work was to study water stress management based on reference equations for midday stem water potential. An experiment was conducted over three seasons in Seville (Spain) from 2020 to 2022. A young hedgerow olive orchard (cv Manzanilla de Sevilla) was irrigated using three different treatments: Control (full irrigated), RDI, and Rainfed, in a completely randomized design (six replications). The midday stem water potential and leaf conductance were measured throughout the three seasons. Stem water potential was more sensitive to water stress than leaf conductance and showed a clearer impact and rehydration. Individual data of stem water potential were grouped according to leaf conductance reduction. The relationship of these stem water potentials and temperature or vapor pressure deficit was significant, linear, and aligned to published baselines. Scattering in these equations increased when the leaf conductance reduction was greater. These reference equations would be useful to define moderate water stress conditions in the most sensitive processes, such as vegetative or fruit growth. Definition of severe water stress conditions would be better established with constant values. Full article
Show Figures

Figure 1

16 pages, 3678 KiB  
Article
Assessing Grapevine Water Status by Integrating Vine Transpiration, Leaf Gas Exchanges, Chlorophyll Fluorescence and Sap Flow Measurements
by Fadwa Benyahia, Flávio Bastos Campos, Ahmed Ben Abdelkader, Boris Basile, Massimo Tagliavini, Carlo Andreotti and Damiano Zanotelli
Agronomy 2023, 13(2), 464; https://doi.org/10.3390/agronomy13020464 - 4 Feb 2023
Cited by 12 | Viewed by 3567
Abstract
A precise knowledge of the grapevine responses to increasing level of water stress is of the utmost relevance for an effective application of deficit irrigation strategies in viticulture. Against this background, a study was conducted on potted grapevines subjected to two ten-day drought [...] Read more.
A precise knowledge of the grapevine responses to increasing level of water stress is of the utmost relevance for an effective application of deficit irrigation strategies in viticulture. Against this background, a study was conducted on potted grapevines subjected to two ten-day drought cycles to assess their water status by integrating the information derived from different physiological indexes including whole-plant transpiration (measured gravimetrically and with sap flow sensors), leaf gas exchanges and chlorophyll fluorescence. When soil water availability was not limited, vine transpiration rate was determined mainly by environmental factors and ranged between 0.5 and 2 L day−1 m−2 of leaf surface. Transpiration was affected by the soil water availability only when water stress became evident (midday stem water potential < −1 MPa), with vines showing a strong limitation of the stomata functioning (stomatal conductance < 0.05 mol m−2 s−1) and, consequently, low transpiration rates (<0.5 L m−2 d−1). Transpiration rates measured with the sap flow sensors were correlated with those measured gravimetrically, showing daily patterns that were highly affected by the intensity of the water stress. Nevertheless, these sensors highly underestimated actual transpiration rates, limiting their reliability for vineyard irrigation management. At the end of the second drought cycle, vines showed very limited responses to daily changes in environmental conditions (same photosynthetic rate and stomatal conductance at morning, midday and afternoon), likely reflecting a carryover stress effect from the first drought cycle and an incomplete physiological recovery before the beginning of the second. Evidence of the severe water stress reached by vines was also given by the high value of the quantum yield of nonregulated energy dissipation (Y(NO) higher than 0.4) found at the end of the first drought cycle. Taken together, the obtained results integrate the current knowledge on water stress development in grapevine, also highlighting the relevance of specific physiological indexes that could be used effectively for the correct management of deficit strategies in viticulture. Full article
(This article belongs to the Special Issue Progress in Viticulture)
Show Figures

Figure 1

12 pages, 3063 KiB  
Article
Comparative Apparent Hydraulic Conductance, Leaf Gas Exchange, and Water Resource Partitioning of Populus euphratica Trees and Saplings
by Yapeng Chen, Xingming Hao and Chenggang Zhu
Forests 2022, 13(12), 1982; https://doi.org/10.3390/f13121982 - 24 Nov 2022
Cited by 1 | Viewed by 1747
Abstract
Water acquisition via the root system of woody species is a key factor governing plant physiology. In order to compare the impact of water acquisition on the hydraulic and photosynthetic characteristics of different-sized Populus euphratic, which is a desert riparian tree species, we [...] Read more.
Water acquisition via the root system of woody species is a key factor governing plant physiology. In order to compare the impact of water acquisition on the hydraulic and photosynthetic characteristics of different-sized Populus euphratic, which is a desert riparian tree species, we quantified leaf hydraulic conductance (KL), stomatal conductance (gs), net photosynthetic rate (PN), predawn and midday leaf water potential (Ψ), and the stem δ18O of the saplings and mature trees. The results showed that the saplings had a lower predawn leaf water potential (Ψpd) and soil-to-leaf water potential gradient (ΔΨ) and a higher KL than the mature trees but had a similar gs and PN to the mature trees. In arid zones, probably due to root limitation, the saplings were more likely to use unreliable topsoil water (<80 cm), whereas the mature trees typically uptake reliable deep soil water (>80 cm) and groundwater due to having deeper root systems. The unreliability of the water supply might make saplings hold a higher hydraulic conductance to ensure that the water is transported efficiently to the leaves and to satisfy their transpiration need. In contrast, the mature trees, which uptake the more reliable deeper water resources, had a relatively low leaf-specific hydraulic conductance because of the increased path length versus the saplings. However, adult trees can maintain stomatal conductance by upregulating ΔΨ, thereby facilitating their ability to maintain a carbon assimilation rate similar to that of the saplings. This regulating behavior benefits mature trees’ net carbon gain, but it comes at the expense of an increased risk of hydraulic failure. These results imply that the top priority for saplings should be to maintain hydraulic system functioning, whereas, for mature trees, the priority is to assure stable net carbon gain for their growth. Full article
(This article belongs to the Topic Plant Ecophysiology)
Show Figures

Figure 1

Back to TopTop