Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Climatic Conditions
2.2. Irrigation Management and Plant Water Status Determination
2.3. Satellite Data, Image Processing, and Vegetation Indices
2.4. Statistical Analysis and Machine Learning
Data Handling
- (1)
- A dataset containing the PBs reflectance value for each sample tree.
- (2)
- A dataset containing the VIs value calculated for each sample tree.
3. Results
3.1. Stem Water Potential of Olive Trees
3.2. Multispectral Planet Band Reflectance Value and Vegetation Indices
3.3. Evaluation of Ψstem Prediction Performance
3.3.1. Dataset Combination Approach
Random Forest
Support Vector Machine
Multiple Linear Regression
Stem Water Potential Predictive Map
3.3.2. One-Year Models’ Training and Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostelenos, G.; Kiritsakis, A. Olive tree history and evolution. In Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Uylaşer, V.; Yildiz, G. The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Crit. Rev. Food Sci. Nutr. 2014, 54, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Grigg, D. Olive oil, the Mediterranean and the world. GeoJournal 2001, 53, 163–172. [Google Scholar] [CrossRef]
- IOOC. International Olive Oil Council. 2011. Available online: http://www.internationaloliveoil.org/noticias (accessed on 15 February 2023).
- Scortichini, M. The Multi-Millennial Olive Agroecosystem of Salento (Apulia, Italy) Threatened by Xylella Fastidiosa Subsp Pauca: A Working Possibility of Restoration. Sustainability 2020, 12, 6700. [Google Scholar] [CrossRef]
- Loumou, A.; Giourga, C. Olive groves: The life and identity of the Mediterranean. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Orgaz, F.; Fereres, E. Viability in Adaptative Mechanisms to Water Deficits in Annual and Perennial Crop Plants. Bull. Société Bot. Fr. Actual. Bot. 1984, 131, 17–32. [Google Scholar] [CrossRef]
- Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; De Miguel, E.; Villalobos, F.J. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 2006, 136, 31–44. [Google Scholar] [CrossRef]
- Lopriore, G.; Tarantino, A. Irrigation of intensive olive groves in the Mediterranean environment with different water regimes on two different soils: Effects on carpological parameters and technological and qualitative characteristics of the oils. Acta Hortic. 2022, 1335, 549–556. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Vivaldi, G.A.; Nicolás, E.N.; Paduano, A.; Salcedo, F.P.; Camposeo, S. Ripening Indices, Olive Yield and Oil Quality in Response to Irrigation With Saline Reclaimed Water and Deficit Strategies. Front. Plant Sci. 2019, 10, 1243. [Google Scholar] [CrossRef]
- Scalisi, A.; Marino, G.; Marra, F.P.; Caruso, T.; Lo Bianco, R. A Cultivar-Sensitive Approach for the Continuous Monitoring of Olive (Olea europaea L.) Tree Water Status by Fruit and Leaf Sensing. Front. Plant Sci. 2020, 11, 340. [Google Scholar] [CrossRef]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sensing 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Govender, M.; Dye, P.J.; Weiersbye, I.M.; Witkowski, E.T.F.; Ahmed, F. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA 2009, 35, 741–752. [Google Scholar] [CrossRef]
- Dzikiti, S.; Verreynne, J.S.; Stuckens, J.; Strever, A.; Verstraeten, W.W.; Swennen, R.; Coppin, P. Determining the water status of Satsuma mandarin trees [Citrus Unshiu Marcovitch] using spectral indices and by combining hyperspectral and physiological data. Agric. For. Meteorol. 2010, 150, 369–379. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv. French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Naor, A.; Gal, Y.; Peres, M. The inherent variability of water stress indicators in apple, nectarine and pear orchards, and the validity of a leaf-selection procedure for water potential measurements. Irrigiation Sci. 2006, 8, 129–135. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Berni, J.A.J.; González-Dugo, V.; Fereres, E. August. Orchard Water Stress detection using high-resolution imagery. Acta Hortic. 2011, 922, 35–39. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Tozzini, L.; Gucci, R. Using VIsible and Thermal Images by an Unmanned Aerial Vehicle to Monitor the Plant Water Status, Canopy Growth and Yield of Olive Trees (cvs. Frantoio and Leccino) under Different Irrigation Regimes. Agronomy 2022, 12, 1904. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S.; Retamales, J.B. Yield and water productivity responses to irrigation cut-off strategies after fruit set using stem water potential thresholds in a super-high density olive orchard. Front. Plant Sci. 2017, 8, 1280. [Google Scholar] [CrossRef]
- Lopriore, G.; Caliandro, A. Irrigation of intensive olive groves in the Mediterranean environment with different water regimes on two different soils: Effects on yields, water use efficiency, vegetative behaviour and water status of the crop. Acta Hortic. 2022, 1335, 541–548. [Google Scholar] [CrossRef]
- Lopriore, G.; Gatta, G.; Scelsa, D.; Lo Storto, M.C.; Abatantuono, I.A.; Pati, S. Water Stress, Yield and Oil Characteristics Of PRD And Deficit Irrigated Very-High Density Olive Orchard (Olea europaea L. cv. ‘Arbequina’). Acta Hortic. 2016, 1112, 87–94. [Google Scholar] [CrossRef]
- Caruso, G.; Zarco-Tejada, P.J.; González-Dugo, V.; Moriondo, M.; Tozzini, L.; Palai, G.; Rallo, G.; Hornero, A.; Primicerio, J.; Gucci, R. High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive trees under different irrigation regimes. PLoS ONE 2019, 14, e0210804. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Planet Imagery Product Specifications. 2022. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 23 January 2023).
- QGIS.org. QGIS Geographic Information System. QGIS Association. 2023. Available online: http://www.qgis.org (accessed on 31 March 2023).
- Regione Puglia—Disciplinare di Produzione Integrata—Anno 2020. Legge Regionale n. n. 22 del 20 Febbraio 2020, 11, Bollettino Ufficiale della Regione Puglia (Guidelines for the Sustainable Crop Production of the Apulian Region). Available online: https://www.regione.puglia.it/documents/42866/197836/Disciplinare+Produzione+Integrata+-+Sezione+Agronomica+-+2020.pdf/a0218c6a-c24e-31fc-4f3e-2add98fcf64c?t=1585737261315 (accessed on 3 March 2023).
- Climate Data. 2023. Available online: https://it.climate-data.org/europa/italia/puglia/gallipoli-14072/ (accessed on 23 January 2023).
- Regione Puglia. Available online: https://protezionecivile.puglia.it/rete-di-monitoraggio-e-dati-meteo-idrometrici) (accessed on 23 January 2023).
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Pedrero, F.; Grattan, S.; Ben-Gal, A.; Vivaldi, G.A. Opportunities for expanding the use of wastewaters for irrigation of olives. Agric. Water Manag. 2020, 241, 106333. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A technical review of planet smallsat data: Practical considerations for processing and using planetscope imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef]
- Rouse, W.; Haas, R.H.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Third ERTS Symposium (NASA SP-351); NASA: Washington, DC, USA, 1974; Volume 1. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. 1996. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrating hyperspectral vegetation indices for accurate predictions of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; p. 18. [Google Scholar]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. Lect. Notes Comput. Sci. 2012, 7473, 246–252. [Google Scholar] [CrossRef]
- Janitza, S.; Strobl, C.; Boulesteix, A.L. An AUC-based permutation variable importance measure for random forests. BMC Bioinform. 2013, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Shackel, K.; Moriana, A.; Marino, G.; Corell, M.; Pérez-López, D.; Martin-Palomo, M.J.; Caruso, T.; Marra, F.P.; Agüero Alcaras, L.M.; Milliron, L.; et al. Establishing a reference baseline for midday stem water potential in olive and its use for plant-based irrigation management. Front. Plant Sci. 2021, 12, 791711. [Google Scholar] [CrossRef] [PubMed]
- Marino, G.; Pernice, F.; Marra, F.P.; Caruso, T. Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.). Agric. Water Manag. 2016, 177, 298–307. [Google Scholar] [CrossRef]
- Giorio, P.; Sorrentino, G.; d’Andria, R. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ. Exp. Bot. 1999, 42, 95–104. [Google Scholar] [CrossRef]
- Fernández, J.E.; Rodriguez-Dominguez, C.M.; Perez-Martin, A.; Zimmermann, U.; Rüger, S.; Martín-Palomo, M.J.; Torres-Ruiz, J.M.; Cuevas, M.V.; Sann, C.; Ehrenberger, W.; et al. Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe. Agric. Water Manag. 2011, 100, 25–35. [Google Scholar] [CrossRef]
- Ehrenberger, W.; Rüger, S.; Rodríguez-Domínguez, C.M.; Díaz-Espejo, A.; Fernández, J.E.; Moreno, J.; Zimmermann, D.; Sukhorukov, V.L.; Zimmermann, U. Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state. Plant Biol. 2012, 14, 666–674. [Google Scholar] [CrossRef]
- Alcaras, L.M.A.; Rousseaux, M.C.; Searles, P.S. Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling. Agric. Water Manag. 2016, 171, 10–20. [Google Scholar] [CrossRef]
- Catal, C.; Diri, B. Investigating the Effect of Dataset Size, Metrics Sets, and Feature Selection Techniques on Software Fault Prediction Problem. Inf. Sci. 2009, 179, 1040–1058. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Rallo, G.; Minacapilli, M.; Ciraolo, G.; Provenzano, G. Detecting crop water status in mature olive groves using vegetation spectral measurements. Biosyst. Eng. 2014, 128, 52–68. [Google Scholar] [CrossRef]
- Goel, P.K.; Prasher, S.O.; Landry, J.A.; Patel, R.M.; Viau, A.A.; Miller, J.R. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Trans. ASAE 2003, 46, 1235. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. Int. J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suarez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A.D.; Rousseau, J.; Cheret, V.; Clenet, H. Towards vine water status monitoring on a large scale using sentinel-2 images. Remote Sens. 2021, 13, 1837. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Schena, L.; Nigro, F.; Sergeeva, V.; Ippolito, A.; Salerno, M.G. Abiotic Diseases of Olive. J. Plant Pathol. 2012, 94, 469–491. Available online: http://www.jstor.org/stable/45156275 (accessed on 30 April 2023).
- Olorunwa, O.J.; Shi, A.; Barickman, T.C. Varying drought stress induces morpho-physiological changes in cowpea (Vigna unguiculata (L.) genotypes inoculated with Bradyrhizobium japonicum. Plant Stress 2021, 2, 100033. [Google Scholar] [CrossRef]
- Rienth, M.; Scholasch, T. State-of-the-art of tools and methods to assess vine water status. OENO One 2019, 53, 639–659. [Google Scholar] [CrossRef]
- Cohen, Y.; Gogumalla, P.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Lenski, I.; Michael, Y.; Helman, D. Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision Agriculture; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; Volume 19, pp. 445–451. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J. Neurosci. Methods 2013, 220, 85–91. [Google Scholar] [CrossRef]
- Arbia, G.; Griffith, D.A.; Haining, R.P. Spatial error propagation when computing linear combinations of spectral bands: The case of vegetation indices. Environ. Ecol. Stat. 2003, 10, 375–396. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Fernandes, R.D.M.; Cuevas, M.V.; Hernandez-Santana, V.; Rodriguez-Dominguez, C.M.; Padilla-Díaz, C.M.; Fernández, J.E. Classification models for automatic identification of daily states from leaf turgor related measurements in olive. Comput. Electron. Agric. 2017, 142, 181–189. [Google Scholar] [CrossRef]
- Pôças, I.; Gonçalves, J.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 177–190. [Google Scholar] [CrossRef]
- Kok, Z.H.; Shariff, A.R.M.; Alfatni, M.S.M.; Khairunniza-Bejo, S. Support Vector Machine in Precision Agriculture: A review. Comput. Electron. Agric. 2021, 191, 106546. [Google Scholar] [CrossRef]
- Lelong, C.C.; Pinet, P.C.; Poilvé, H. Hyperspectral Imaging and Stress Mapping in Agriculture: A Case Study on Wheat in Beauce (France). Remote Sens. Environ. 1998, 66, 179–191. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Farbo, A.; Novello, V.; de Palma, L. A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data. Horticulturae 2022, 8, 759. [Google Scholar] [CrossRef]
Vegetation Index (VI) | VI Full Name | Formula | Reference |
---|---|---|---|
NDVI | Normalized Difference Vegetation Index | (rNIR − rRED)/(rNIR + rRED) | [32] |
OSAVI | Optimized Soil Adjusted Vegetation Index | (1 + 0.16)(rNIR − rRED)/(rNIR + rRED + 0.16) | [33] |
TCARI | Transformed Chlorophyll Absorption Reflectance Index | 3[(rRE − rRED) − 0.2(rRE − rGREEN)(rRE/rRED)] | [34] |
TCARI/OSAVI | Combined TCARI/OSAVI | TCARI/OSAVI | [35] |
EVI | Enhanced Vegetation Index | 2.5 × [(rNIR − rRED)/(rNIR + 6 × rRED − 7.5 × rBLUE + 1)] | [36,37] |
MCARI | Modified Chlorophyll Absorption Reflectance Index | [(rRE − rRED) − 0.2(rRE − rGREEN)](rRE/rRED) | [34] |
MCARI/OSAVI | Combined MCARI/OSAVI | MCARI/OSAVI | [35] |
SR | Simple Ratio | rRED/rNIR | [38] |
TVI | Transformed Vegetation Index | √((NDVI) + 0.5) | [38] |
NDRE | Normalized Difference Red Edge | (rNIR − rRE)/(rNIR + rRE) | [39] |
2021 | ||||||||
---|---|---|---|---|---|---|---|---|
Fruit Development 10% | Fruit Development 50% | Beginning of Fruit Color | Harvest Maturity | |||||
Mean | St. Er | Mean | St. Er | Mean | Er.st | Mean | St. Er | |
B1 | 0.0473 | 0.0005 | 0.0401 | 0.0005 | 0.0802 | 0.0004 | 0.0309 | 0.0005 |
B2 | 0.0569 | 0.0005 | 0.0467 | 0.0006 | 0.0500 | 0.0005 | 0.0314 | 0.0005 |
B3 | 0.0819 | 0.0007 | 0.0766 | 0.0009 | 0.1014 | 0.0004 | 0.0438 | 0.0007 |
B4 | 0.0940 | 0.0009 | 0.0771 | 0.0010 | 0.0749 | 0.0005 | 0.0562 | 0.0007 |
B5 | 0.1219 | 0.0010 | 0.1276 | 0.0010 | 0.1392 | 0.0007 | 0.0689 | 0.0010 |
B6 | 0.1381 | 0.0011 | 0.1169 | 0.0012 | 0.1061 | 0.0009 | 0.0717 | 0.0012 |
B7 | 0.1665 | 0.0012 | 0.1449 | 0.0013 | 0.1358 | 0.0009 | 0.1017 | 0.0014 |
B8 | 0.2758 | 0.0016 | 0.2600 | 0.0016 | 0.2772 | 0.0009 | 0.2235 | 0.0021 |
NDVI | 0.4202 | 0.0034 | 0.3797 | 0.0028 | 0.4467 | 0.0032 | 0.5150 | 0.0048 |
OSAVI | 0.3561 | 0.0027 | 0.3091 | 0.0020 | 0.3655 | 0.0024 | 0.3871 | 0.0033 |
TCARI | 0.0428 | 0.0014 | 0.0334 | 0.0015 | 0.0424 | 0.0013 | 0.0512 | 0.0021 |
TCARI/OSAVI | 0.1198 | 0.0035 | 0.1078 | 0.0045 | 0.1159 | 0.0031 | 0.1320 | 0.0049 |
EVI | 0.2691 | 0.0023 | 0.2220 | 0.0016 | 0.2781 | 0.0021 | 0.2678 | 0.0027 |
MCARI | 0.0241 | 0.0009 | 0.0179 | 0.0009 | 0.0226 | 0.0007 | 0.0301 | 0.0016 |
MCARI/OSAVI | 0.4085 | 0.0034 | 0.4497 | 0.0030 | 0.3826 | 0.0030 | 0.3205 | 0.0042 |
SR | 0.4085 | 0.0034 | 0.4497 | 0.0030 | 0.3826 | 0.0030 | 0.3205 | 0.0042 |
TVI | 0.9592 | 0.0018 | 0.9379 | 0.0015 | 0.9729 | 0.0016 | 1.0074 | 0.0024 |
NDRE | 0.3142 | 0.0024 | 0.2845 | 0.0028 | 0.3424 | 0.0027 | 0.3749 | 0.0043 |
2022 | ||||||||
Fruit Development 10% | Fruit Development 50% | Beginning of fruit color | Harvest maturity | |||||
Mean | St. Er | Mean | St. Er | Mean | Er.st | Mean | St. Er | |
B1 | 0.0652 | 0.0005 | 0.0617 | 0.0007 | 0.0650 | 0.0007 | 0.0442 | 0.0006 |
B2 | 0.0463 | 0.0005 | 0.0491 | 0.0007 | 0.0721 | 0.0004 | 0.0387 | 0.0004 |
B3 | 0.0863 | 0.0006 | 0.0810 | 0.0006 | 0.0794 | 0.0006 | 0.0363 | 0.0005 |
B4 | 0.0812 | 0.0007 | 0.0853 | 0.0007 | 0.0985 | 0.0007 | 0.0520 | 0.0006 |
B5 | 0.1289 | 0.0011 | 0.1091 | 0.0007 | 0.1128 | 0.0008 | 0.0535 | 0.0007 |
B6 | 0.1185 | 0.0011 | 0.1229 | 0.0011 | 0.1314 | 0.0011 | 0.0635 | 0.0008 |
B7 | 0.1553 | 0.0010 | 0.1586 | 0.0009 | 0.1588 | 0.0012 | 0.0913 | 0.0014 |
B8 | 0.3042 | 0.0016 | 0.2887 | 0.0013 | 0.2890 | 0.0012 | 0.2093 | 0.0016 |
NDVI | 0.4394 | 0.0040 | 0.4032 | 0.0033 | 0.3751 | 0.0033 | 0.5348 | 0.0029 |
OSAVI | 0.3697 | 0.0033 | 0.3367 | 0.0026 | 0.3151 | 0.0027 | 0.3908 | 0.0020 |
TCARI | 0.0520 | 0.0016 | 0.0504 | 0.0017 | 0.0385 | 0.0017 | 0.0495 | 0.0016 |
TCARI/OSAVI | 0.1402 | 0.0035 | 0.1495 | 0.0045 | 0.1219 | 0.0051 | 0.1269 | 0.0042 |
EVI | 0.2784 | 0.0030 | 0.2503 | 0.0023 | 0.2566 | 0.0025 | 0.2803 | 0.0020 |
MCARI | 0.0289 | 0.0010 | 0.0274 | 0.0011 | 0.0187 | 0.0009 | 0.0289 | 0.0012 |
MCARI/OSAVI | 0.3898 | 0.0039 | 0.4255 | 0.0034 | 0.4547 | 0.0036 | 0.3032 | 0.0025 |
SR | 0.3898 | 0.0039 | 0.4255 | 0.0034 | 0.4547 | 0.0036 | 0.3032 | 0.0025 |
TVI | 0.9692 | 0.0021 | 0.9503 | 0.0017 | 0.9354 | 0.0018 | 1.0172 | 0.0014 |
NDRE | 0.3242 | 0.0026 | 0.2908 | 0.0024 | 0.2909 | 0.0030 | 0.3930 | 0.0050 |
Model | Predictors | Calibration | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | nRMSE | MAE | R2 | RMSE | nRMSE | MAE | ||
RF | VIs | 0.92 | 0.22 | 6.30% | 0.17 | 0.57 | 0.55 | 18.80% | 0.38 |
PBs | 0.90 | 0.26 | 7.40% | 0.20 | 0.78 | 0.38 | 13.20% | 0.28 | |
SVM | VIs | 0.66 | 0.42 | 13.30% | 0.28 | 0.19 | 0.58 | 19.80% | 0.46 |
PBs | 0.82 | 0.32 | 11.20% | 0.22 | 0.53 | 0.52 | 17.90% | 0.40 | |
MLR | VIs | 0.54 | 0.57 | 15.90% | 0.45 | 0.57 | 0.55 | 18.80% | 0.44 |
PBs | 0.76 | 0.39 | 13.40% | 0.26 | 0.58 | 0.49 | 17.30% | 0.40 |
Model | Predictors | Calibration | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | nRMSE | MAE | R2 | RMSE | nRMSE | MAE | ||
RF | PBs | 0.72 | 0.28 | 12.9 | 0.21 | −0.56 | 1.29 | 32.5 | 0.91 |
VIs | 0.67 | 0.30 | 13.9 | 0.23 | −0.43 | 1.08 | 31.1 | 0.87 | |
SVM | PBs | −2.74 | 0.43 | 60.5 | 0.32 | −130.51 | 1.23 | 280.9 | 0.99 |
VIs | 0.75 | 0.21 | 11.8 | 0.12 | −51.26 | 1.89 | 143.2 | 0.95 | |
LM | PBs | 0.38 | 0.42 | 19.2 | 0.32 | −1.10 | 1.31 | 37.7 | 1.01 |
VIs | 0.28 | 0.45 | 20.7 | 0.36 | −0.44 | 1.08 | 31.3 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, S.P.; Giannico, V.; Costanza, L.; Alhajj Ali, S.; Camposeo, S.; Lopriore, G.; Pedrero Salcedo, F.; Vivaldi, G.A. Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques. Agronomy 2024, 14, 1. https://doi.org/10.3390/agronomy14010001
Garofalo SP, Giannico V, Costanza L, Alhajj Ali S, Camposeo S, Lopriore G, Pedrero Salcedo F, Vivaldi GA. Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques. Agronomy. 2024; 14(1):1. https://doi.org/10.3390/agronomy14010001
Chicago/Turabian StyleGarofalo, Simone Pietro, Vincenzo Giannico, Leonardo Costanza, Salem Alhajj Ali, Salvatore Camposeo, Giuseppe Lopriore, Francisco Pedrero Salcedo, and Gaetano Alessandro Vivaldi. 2024. "Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques" Agronomy 14, no. 1: 1. https://doi.org/10.3390/agronomy14010001
APA StyleGarofalo, S. P., Giannico, V., Costanza, L., Alhajj Ali, S., Camposeo, S., Lopriore, G., Pedrero Salcedo, F., & Vivaldi, G. A. (2024). Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques. Agronomy, 14(1), 1. https://doi.org/10.3390/agronomy14010001