Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = mid infrared light emitting diodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 6251 KiB  
Article
Wavelength Tuning in Resonant Cavity Interband Cascade Light Emitting Diodes (RCICLEDs) via Post Growth Cavity Length Adjustment
by Nicolas Schäfer, Robert Weih, Julian Scheuermann, Florian Rothmayr, Johannes Koeth and Sven Höfling
Sensors 2024, 24(12), 3843; https://doi.org/10.3390/s24123843 - 14 Jun 2024
Cited by 1 | Viewed by 1302
Abstract
We demonstrate substrate-emitting resonant cavity interband cascade light emitting diodes (RCICLEDs) based on a single distributed Bragg reflector (DBR). These devices operate in continuous wave mode at room temperature. Compared to standard ICLEDs without a cavity, we achieved an 89% reduction in the [...] Read more.
We demonstrate substrate-emitting resonant cavity interband cascade light emitting diodes (RCICLEDs) based on a single distributed Bragg reflector (DBR). These devices operate in continuous wave mode at room temperature. Compared to standard ICLEDs without a cavity, we achieved an 89% reduction in the emission spectrum width, as indicated by the Full Width Half Maximum (FWHM) of 70 nm. Furthermore, we observed far-field narrowing and improved thermal stability. A single DBR configuration allows the cavity length to be adjusted by adding refractive index-matched material to the top of the epitaxial structure after epitaxial growth. This modification effectively shifts the cavity response towards longer wavelengths. We fabricated emitters comprising two cavities of different lengths, resulting in the emission of two distinct spectral lines that can be independently controlled. This dual-color capability enables one of the emission lines to serve as a built-in reference channel, making these LEDs highly suitable for cost-effective gas-sensing applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 10197 KiB  
Article
Photoreflectance Analysis of InAsPSb/InGaAs Multi-Quantum Well LED Structures with Different Well/Barrier Numbers
by Behnam Zeinalvand Farzin, S. Bahareh Seyedein Ardebili, Tae In Kang, Jong Su Kim, Phuc Dinh Nguyen and Sang Jun Lee
Photonics 2024, 11(3), 277; https://doi.org/10.3390/photonics11030277 - 21 Mar 2024
Cited by 2 | Viewed by 2043
Abstract
InAsPSb is an emerging material used as an efficient barrier in quantum well structures, and the resulting devices can be employed in the mid-infrared region of the electromagnetic spectrum. This study investigates the photoreflectance spectra of two InAsPSb/InGaAs multi-quantum well light-emitting diodes with [...] Read more.
InAsPSb is an emerging material used as an efficient barrier in quantum well structures, and the resulting devices can be employed in the mid-infrared region of the electromagnetic spectrum. This study investigates the photoreflectance spectra of two InAsPSb/InGaAs multi-quantum well light-emitting diodes with 6 and 15 quantum well periods. The photoreflectance of the samples was analyzed at various temperatures and excitation powers. By examining the Franz-Keldysh oscillations in the spectra, we explored the influence of the number of well layers on the electric field strength in the junction. The results showed that the number of quantum wells can influence the electric field at the junction, potentially impacting the overall performance of the devices. The simulation of the electric field strength aligns with the results of the photoreflectance analysis. This suggests that the field extracted from Franz-Keldysh oscillations characterizes the field inside the multi-quantum wells, offering potential reasons for the observed effects on the number of multi-quantum wells in the field. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in LED Technology)
Show Figures

Figure 1

13 pages, 5164 KiB  
Article
Properties of ScAlMgO4 as Substrate for Nitride Semiconductors
by Takashi Matsuoka, Hitoshi Morioka, Satoshi Semboshi, Yukihiko Okada, Kazuya Yamamura, Shigeyuki Kuboya, Hiroshi Okamoto and Tsuguo Fukuda
Crystals 2023, 13(3), 449; https://doi.org/10.3390/cryst13030449 - 4 Mar 2023
Cited by 5 | Viewed by 2610
Abstract
SCAM has been expected to be a suitable substrate for GaN blue-light-emitting-diodes (LEDs) and high-power high electron mobility transistors (HEMTs) because of its lower lattice mismatch to GaN than that of the widely used sapphire. Considering both potential device applications, the crystal lattice [...] Read more.
SCAM has been expected to be a suitable substrate for GaN blue-light-emitting-diodes (LEDs) and high-power high electron mobility transistors (HEMTs) because of its lower lattice mismatch to GaN than that of the widely used sapphire. Considering both potential device applications, the crystal lattice and optical properties of SCAM substrates were investigated on selected high quality samples. As lattice parameters, the thermal expansion coefficient as well as the lattice constant were extrapolated from room temperature to 2000 °C by using a high temperature X-ray diffraction (XRD) system with the heating unit on a sample stage. The thermal conductance, which is also important for growing bulk SCAM crystals and the operation of devices on the SCAM substrate, was measured. Raman scattering measurements were carried out to better understand crystal lattice characteristics. It was clearly confirmed that prepared SCAM crystals were of high quality. Similar to sapphire, SCAM has the high transparency over the wide wavelength range from ultraviolet to mid-infrared. The refractive index, important for the design of any optical devices, was measured. From these results, it can be said that SCAM is a suitable substrate for nitride devices, especially LEDs and solar cells. Full article
(This article belongs to the Special Issue Research in GaN-based Materials and Devices)
Show Figures

Figure 1

20 pages, 3763 KiB  
Review
Infrared Spectroscopy–Quo Vadis?
by Michael Hlavatsch, Julian Haas, Robert Stach, Vjekoslav Kokoric, Andrea Teuber, Mehmet Dinc and Boris Mizaikoff
Appl. Sci. 2022, 12(15), 7598; https://doi.org/10.3390/app12157598 - 28 Jul 2022
Cited by 6 | Viewed by 4600
Abstract
Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent [...] Read more.
Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent developments in associated fields, IR spectroscopic devices increasingly evolve into reliable and robust tools for quality control purposes, for rapid analysis within at-line, in-line or on-line processes, and even for bed-side monitoring of patient health indicators. With the opportunity to guide light at or within dedicated optical structures, remote sensing as well as high-throughput sensing scenarios are being addressed by appropriate IR methodologies. In the present focused article, selected perspectives on future directions for IR spectroscopic tools and their applications are discussed. These visions are accompanied by a short introduction to the historic development, current trends, and emerging technological opportunities guiding the future path IR spectroscopy may take. Highlighted state-of-the art implementations along with novel concepts enhancing the performance of IR sensors are presented together with cutting-edge developments in related fields that drive IR spectroscopy forward in its role as a versatile analytical technology with a bright past and an even brighter future. Full article
(This article belongs to the Special Issue Molecular Sensing Technologies)
Show Figures

Figure 1

14 pages, 1846 KiB  
Article
On-Chip Non-Dispersive Infrared CO2 Sensor Based on an Integrating Cylinder
by Xiaoning Jia, Joris Roels, Roel Baets and Gunther Roelkens
Sensors 2019, 19(19), 4260; https://doi.org/10.3390/s19194260 - 30 Sep 2019
Cited by 36 | Viewed by 6733
Abstract
In this paper, we propose a novel, miniaturized non-dispersive infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor has a simple structure, consisting of a hollow metallic cylindrical cavity along with access waveguides. A detailed analysis of the proposed sensor [...] Read more.
In this paper, we propose a novel, miniaturized non-dispersive infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor has a simple structure, consisting of a hollow metallic cylindrical cavity along with access waveguides. A detailed analysis of the proposed sensor is presented. Simulation with 3D ray tracing shows that an integrating cylinder with 4 mm diameter gives an equivalent optical path length of 3.5 cm. The sensor is fabricated using Deep Reactive Ion Etching (DRIE) and wafer bonding. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼100 ppm. The response time of the sensor is only ∼2.8 s, due to its small footprint. The use of DRIE-based waveguide structures enables mass fabrication, as well as the potential co-integration of flip-chip integrated midIR light-emitting diodes (LEDs) and photodetectors, resulting in a compact, low-power, and low-cost NDIR CO2 sensor. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 14065 KiB  
Article
Optimised Performance of Non-Dispersive Infrared Gas Sensors Using Multilayer Thin Film Bandpass Filters
by Pinggui Wang, Xiuhua Fu, Des Gibson, Lewis Fleming, Sam Ahmadzadeh, Cheng Li, Manu Muhiyudin, Shigeng Song, David Hutson, David Moodie, Calum MacGregor and Matthew Steer
Coatings 2018, 8(12), 472; https://doi.org/10.3390/coatings8120472 - 19 Dec 2018
Cited by 10 | Viewed by 6749
Abstract
In this work, performance improvements are described for a low-power consumption non-dispersive infrared (NDIR) methane (CH4) gas sensor using customised optical thin film bandpass filters (BPFs) centered at 3300 nm. BPFs shape the spectral characteristics of the combined mid-infrared III–V based [...] Read more.
In this work, performance improvements are described for a low-power consumption non-dispersive infrared (NDIR) methane (CH4) gas sensor using customised optical thin film bandpass filters (BPFs) centered at 3300 nm. BPFs shape the spectral characteristics of the combined mid-infrared III–V based light emitting diode (LED)/photodiode (PD) light source/detector optopair, enhancing the NDIR CH4 sensor performance. The BPFs, deposited using a novel microwave plasma-assisted pulsed DC sputter deposition process, provide room temperature deposition directly onto the temperature-sensitive PD heterostructure. BPFs comprise germanium (Ge) and niobium pentoxide (Nb2O5) alternating high and low refractive index layers, respectively. Two different optical filter designs are progressed with BPF bandwidths (BWs) of 160 and 300 nm. A comparison of the modelled and measured NDIR sensor performance is described, highlighting the maximised signal-to-noise ratio (SNR) and the minimised cross-talk performance benefits. The BPF spectral stability for various environmental temperature and humidity conditions is demonstrated. Full article
(This article belongs to the Special Issue Applications of Optical Thin Film Coatings)
Show Figures

Figure 1

27 pages, 1986 KiB  
Review
Optoelectronics Based Dynamic Advancement of Graphene: Characteristics and Applications
by Himadri Shekhar Mondal, Md. Mahbub Hossain, Md. Ekhlasur Rahaman, Sheikh Mohammed Boni Amin, Md. Bellal Hossain, Md. Mehadi Hasan Mahasin and Pankoj Kumar Mondal
Crystals 2018, 8(4), 171; https://doi.org/10.3390/cryst8040171 - 17 Apr 2018
Cited by 12 | Viewed by 5878
Abstract
Graphene has impressive features that make it an exceptional material for sophisticated applications in next generation electronics and opto-electronics devices. This peremptory material has attracted researchers’ attention in various fields of recent advancement since its discovery in 2004. Its applied fields are increasing [...] Read more.
Graphene has impressive features that make it an exceptional material for sophisticated applications in next generation electronics and opto-electronics devices. This peremptory material has attracted researchers’ attention in various fields of recent advancement since its discovery in 2004. Its applied fields are increasing day by day. This two-dimensional material (2D) is using mellifluously for the development in different types of devices in the field of optics, photonics, light emitting diode (LED), medical diagnosis, sensing, and so on. In this review, the relevant optical properties and the applications areas with available results in various fields are discussed. Again, the optical conductivity of strained graphene is reviewed in a wavelength related regime that depends on strain modulus and position with field arrangements. Graphene shows a saturation and reverse saturation process due to the increase of light intensity. In addition, strong absorption is observed from the visible to mid-infrared (MIR) wavelength range. Moreover, the application areas of graphene including optics, photonics, plasmonics, mode-locked laser, optical modulator, etc., and the comparison of various results obtained from different sources are presented. Full article
(This article belongs to the Special Issue Graphene Mechanics)
Show Figures

Figure 1

17 pages, 4124 KiB  
Article
Development and Testing of an LED-Based Near-Infrared Sensor for Human Kidney Tumor Diagnostics
by Andrey Bogomolov, Urszula Zabarylo, Dmitry Kirsanov, Valeria Belikova, Vladimir Ageev, Iskander Usenov, Vladislav Galyanin, Olaf Minet, Tatiana Sakharova, Georgy Danielyan, Elena Feliksberger and Viacheslav Artyushenko
Sensors 2017, 17(8), 1914; https://doi.org/10.3390/s17081914 - 19 Aug 2017
Cited by 23 | Viewed by 7557
Abstract
Optical spectroscopy is increasingly used for cancer diagnostics. Tumor detection feasibility in human kidney samples using mid- and near-infrared (NIR) spectroscopy, fluorescence spectroscopy, and Raman spectroscopy has been reported (Artyushenko et al., Spectral fiber sensors for cancer diagnostics in vitro. In Proceedings of [...] Read more.
Optical spectroscopy is increasingly used for cancer diagnostics. Tumor detection feasibility in human kidney samples using mid- and near-infrared (NIR) spectroscopy, fluorescence spectroscopy, and Raman spectroscopy has been reported (Artyushenko et al., Spectral fiber sensors for cancer diagnostics in vitro. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 21–25 June 2015). In the present work, a simplification of the NIR spectroscopic analysis for cancer diagnostics was studied. The conventional high-resolution NIR spectroscopic method of kidney tumor diagnostics was replaced by a compact optical sensing device constructively represented by a set of four light-emitting diodes (LEDs) at selected wavelengths and one detecting photodiode. Two sensor prototypes were tested using 14 in vitro clinical samples of 7 different patients. Statistical data evaluation using principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) confirmed the general applicability of the LED-based sensing approach to kidney tumor detection. An additional validation of the results was performed by means of sample permutation. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Germany)
Show Figures

Figure 1

10 pages, 5788 KiB  
Article
Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range
by Robert Kucharski, Łukasz Janicki, Marcin Zajac, Monika Welna, Marcin Motyka, Czesław Skierbiszewski and Robert Kudrawiec
Crystals 2017, 7(7), 187; https://doi.org/10.3390/cryst7070187 - 25 Jun 2017
Cited by 17 | Viewed by 7439
Abstract
GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type) on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction [...] Read more.
GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type) on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction of dopants causes a decrease in transparency of GaN substrates in a broad spectral range which is attributed to absorption on free carriers (n-type samples) or dopant ionization (p-type samples). In the mid-infrared the transparency cut-off, which for a semi-insulating GaN is at ~7 µm due to an absorption on a second harmonic of optical phonons, shifts towards shorter wavelengths due to an absorption on free carriers up to ~1 µm at n ~ 1020 cm−3 doping level. Moreover, a semi-insulating GaN crystal shows good transparency in the 1–10 THz range, while for n-and p-type crystal, the transparency in this spectral region is significantly quenched below 1%. In addition, it is shown that in the visible spectral region n-type GaN substrates with a carrier concentration below 1018 cm−3 are highly transparent with the absorption coefficient below 3 cm−1 at 450 nm, a satisfactory condition for light emitting diodes and laser diodes operating in this spectral range. Full article
Show Figures

Figure 1

10 pages, 4476 KiB  
Article
Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon
by Alexander Spott, Jon Peters, Michael L. Davenport, Eric J. Stanton, Chong Zhang, Charles D. Merritt, William W. Bewley, Igor Vurgaftman, Chul Soo Kim, Jerry R. Meyer, Jeremy Kirch, Luke J. Mawst, Dan Botez and John E. Bowers
Photonics 2016, 3(2), 35; https://doi.org/10.3390/photonics3020035 - 2 Jun 2016
Cited by 37 | Viewed by 7924
Abstract
Silicon integration of mid-infrared (MIR) photonic devices promises to enable low-cost, compact sensing and detection capabilities that are compatible with existing silicon photonic and silicon electronic technologies. Heterogeneous integration by bonding III-V wafers to silicon waveguides has been employed previously to build integrated [...] Read more.
Silicon integration of mid-infrared (MIR) photonic devices promises to enable low-cost, compact sensing and detection capabilities that are compatible with existing silicon photonic and silicon electronic technologies. Heterogeneous integration by bonding III-V wafers to silicon waveguides has been employed previously to build integrated diode lasers for wavelengths from 1310 to 2010 nm. Recently, Fabry-Pérot Quantum Cascade Lasers integrated on silicon provided a 4800 nm light source for mid-infrared (MIR) silicon photonic applications. Distributed feedback (DFB) lasers are appealing for many high-sensitivity chemical spectroscopic sensing applications that require a single frequency, narrow-linewidth MIR source. While heterogeneously integrated 1550 nm DFB lasers have been demonstrated by introducing a shallow surface grating on a silicon waveguide within the active region, no mid-infrared DFB laser on silicon has been reported to date. Here we demonstrate quantum cascade DFB lasers heterogeneously integrated with silicon-on-nitride-on-insulator (SONOI) waveguides. These lasers emit over 200 mW of pulsed power at room temperature and operate up to 100 °C. Although the output is not single mode, the DFB grating nonetheless imposes wavelength selectivity with 22 nm of thermal tuning. Full article
(This article belongs to the Special Issue Quantum Cascade Lasers - Advances and New Applications)
Show Figures

Graphical abstract

25 pages, 999 KiB  
Article
A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible with Wireless and Portable Deployment
by Desmond Gibson and Calum MacGregor
Sensors 2013, 13(6), 7079-7103; https://doi.org/10.3390/s130607079 - 29 May 2013
Cited by 147 | Viewed by 21847
Abstract
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on [...] Read more.
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ’s, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in the UK 2013)
Show Figures

Back to TopTop