Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = microwave tunable phase shifters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5870 KiB  
Article
High Dielectric Tunability and Figure of Merit at Low Voltage in (001)-Oriented Epitaxial Tetragonal Pb0.52Zr0.48TiO3 Thin Films
by Hongwang Li, Chao Liu and Jun Ouyang
Nanomaterials 2025, 15(9), 695; https://doi.org/10.3390/nano15090695 - 5 May 2025
Viewed by 483
Abstract
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability [...] Read more.
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability η of a (001) tetragonal ferroelectric film can be analytically solved. After a survey of materials, a large η value above 60% was predicted to be achievable in a (001)-oriented tetragonal Pb(Zr0.52Ti0.48)O3 (PZT) film. Experimentally, (001)-oriented PZT thin films were prepared on LaNiO3-coated (100) SrTiO3 substrates by using pulsed laser deposition (PLD). These films exhibited good dielectric tunability (η ~ 67.6%) measured at a small electric field E of ~250 kV/cm (corresponding to 5 volts for a 200 nm thick film). It only dropped down to ~54.2% when E was further reduced to 125 kV/cm (2.5 volts for 200 nm film). The measured dielectric tunability η as functions of the applied electric field E and measuring frequency f are discussed for a 500 nm thick PZT film, with the former well described by the theoretical η(E) curves and the latter showing a weak frequency dependence. These observations validate our integrated approach rooted in a theoretical understanding. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
A Filter-Free, Image-Reject, Sub-Harmonic Downconverted RoF Link Without Fiber-Dispersion-Induced Power Fading
by Yuanyuan Li, Qiong Zhao and Wu Zhang
Photonics 2024, 11(12), 1191; https://doi.org/10.3390/photonics11121191 - 19 Dec 2024
Viewed by 883
Abstract
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local [...] Read more.
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local oscillator (LO) is applied to the lower QPSK modulator, achieving sub-harmonic single-sideband (SH–SSB) modulation. The I/Q mixing is realized by exploiting a two-channel photonic microwave phase shifter, which mainly consists of a modulator, two polarization controllers, and two polarizers. The image interference signal can be rejected when combing the I and Q IF signals through a 90° electrical hybrid. Because the scheme is simple and filter-free, it has a good image-reject capability over a large frequency tunable range. Moreover, due to the special SH-SSB modulation, the modulated signals are immune to the chromatic dispersion-introduced power fading effect. Last, the sub-harmonic downconverter can decrease the frequency requirement of the LO signal. Experimental results show that an image rejection ratio (IRR) greater than 50 dB can be achieved when transmitted through a 25 km single-mode fiber (SMF). Simultaneously, under different RF signals and IF signals, the IRR has no periodic power fading, only small fluctuations. Image rejection capability of the scheme for the 50-MBaud 16-QAM wideband vector signal is also verified and the demodulation of the desired IF signal with a good EVM of less than 5% is realized. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

21 pages, 6975 KiB  
Article
Susceptibility to Low-Frequency Breakdown in Full-Wave Models of Liquid Crystal-Coaxially-Filled Noise-Shielded Analog Phase Shifters
by Jinfeng Li and Haorong Li
Electronics 2024, 13(23), 4792; https://doi.org/10.3390/electronics13234792 - 4 Dec 2024
Cited by 4 | Viewed by 1449
Abstract
Building on the fully encapsulated architecture of liquid crystal (LC) coaxial phase shifters, which leverages noise-shielding advantages for millimeter-wave wideband reconfigurable applications, this study addresses the less-explored issue of low-frequency breakdown (LFB) susceptibility in modern full-wave solvers. Specifically, it identifies the vulnerability nexus [...] Read more.
Building on the fully encapsulated architecture of liquid crystal (LC) coaxial phase shifters, which leverages noise-shielding advantages for millimeter-wave wideband reconfigurable applications, this study addresses the less-explored issue of low-frequency breakdown (LFB) susceptibility in modern full-wave solvers. Specifically, it identifies the vulnerability nexus between the tuning states (driven by low-frequency bias voltages) and the constitutive elements of LC-filled coaxial phase shifters—namely, the core line, housing grounding, and radially sandwiched tunable dielectrics—operating at millimeter-wave frequencies (60 GHz WiGig), microwave (1 GHz), and far lower frequency regimes (down to 1 MHz, 1 kHz, and 1 Hz) for long-wavelength or quasi-static conditions, with specialized applications in submarine communications and geophysical exploration. For completeness, the study also investigates the device state prior to LC injection, when the cavity is air-filled. Key computational metrics, such as effective permittivity and characteristic impedance, are analyzed. The results show that at 1 kHz, deviations in effective permittivity exceed four orders of magnitude compared to 1 GHz, while characteristic impedance exhibits deviations of three orders of magnitude. More critically, in the LFB regime, theoretical benchmarks from 1 MHz to 1 kHz and 1 Hz demonstrate an exponential increase in prediction error for both effective permittivity, rising from 16.8% to 1.5 × 104% and 1.5 × 107%, and for characteristic impedance, escalating from 8.1% to 1.15 × 103% and 3.9 × 104%, respectively. Consequently, the prediction error of the differential phase shift, minimal at 60 GHz (0.16%), becomes noticeable at 1 MHz (4.39%), increases sharply to 743.88% at 1 kHz, and escalates dramatically to 2.18 × 1010% at 1 Hz. The findings reveal a pronounced frequency asymmetry in LFB susceptibility for the LC coaxial phase shifter biased at extremely low frequencies. Full article
(This article belongs to the Special Issue Feature Papers in Circuit and Signal Processing)
Show Figures

Figure 1

21 pages, 12673 KiB  
Article
Modeling 0.3 THz Coaxial Single-Mode Phase Shifter Designs in Liquid Crystals with Constitutive Loss Quantifications
by Jinfeng Li and Haorong Li
Crystals 2024, 14(4), 364; https://doi.org/10.3390/cryst14040364 - 11 Apr 2024
Cited by 16 | Viewed by 2506
Abstract
This work proposes and examines the feasibility of next-generation 0.3 THz phase shifters realized with liquid crystals (LCs) as tunable dielectrics coaxially filled in the transmission line. The classic coaxial transmission line topology is robust to electromagnetic interference and environmental noise, but is [...] Read more.
This work proposes and examines the feasibility of next-generation 0.3 THz phase shifters realized with liquid crystals (LCs) as tunable dielectrics coaxially filled in the transmission line. The classic coaxial transmission line topology is robust to electromagnetic interference and environmental noise, but is susceptible to higher-order modes from microwave to millimeter-wave towards terahertz (THz) wavelength ranges, which impedes the low-insertion-loss phase-shifting functionality. This work thus focuses primarily on the suppression of the risky higher-order modes, particularly the first emerging TE11 mode impacting the dielectric loss and metal losses in diverse manners. Based on impedance matching baselines at diverse tuning states of LCs, this work analytically derives and models two design geometries; i.e., design 1 for the coaxial geometry matched at the isotopically referenced state of LC for 50 Ω, and design 2 for geometry matched at the saturated bias of LC with the maximally achievable permittivity. The Figure-of-Merit for design 1 and design 2 reports as 35.15°/dB and 34.73°/dB per unit length, respectively. We also propose a constitutive power analysis method for understanding the loss consumed by constitutive materials. Notably, for the 0.3 THz design, the isotropic LC state results in an LC dielectric loss of 63.5% of the total input power (assuming 100%), which becomes the primary constraint on achieving low-loss THz operations. The substantial difference in the LC dielectric loss between the isotropic LC state and saturated bias state for the 0.3 THz design (35.76% variation) as compared to that of our past 60 GHz design (13.5% variation) indicates that the LC dielectric loss’s escalating role is further enhanced with the rise in frequency, which is more pronounced than the conductor losses. Overall, the results from analytical and finite-element optimization in this work shape the direction and feasibility of the unconventional THz coaxial phase shifting technology with LCs, actioned as continuously tunable dielectrics. Full article
Show Figures

Figure 1

17 pages, 15455 KiB  
Article
Varactor-Based Tunable Sensor for Dielectric Measurements of Solid and Liquid Materials
by Waseem Shahzad, Weidong Hu, Qasim Ali, Ali Raza Barket and Gulab Shah
J. Sens. Actuator Netw. 2024, 13(1), 8; https://doi.org/10.3390/jsan13010008 - 18 Jan 2024
Cited by 1 | Viewed by 2682
Abstract
In this article, a tunable RF sensor is presented for the measurement of dielectric materials (liquids and solids) based on a metamaterial resonator. The proposed novel configuration sensor has a microstrip line-loaded metamaterial resonator with tunable characteristics by utilizing a single varactor diode [...] Read more.
In this article, a tunable RF sensor is presented for the measurement of dielectric materials (liquids and solids) based on a metamaterial resonator. The proposed novel configuration sensor has a microstrip line-loaded metamaterial resonator with tunable characteristics by utilizing a single varactor diode in the series of the resonator. CST Microwave studio is employed for 3D simulations of the tunable sensor, and the desired performance is attained by optimizing various structural parameters to enhance the transmission coefficient (S21 magnitude) notch depth performance. The proposed RF sensor can be tuned in L and S-bands using the varactor diode biasing voltage range of 0–20 V. To validate the performance of the sensor, the proposed design has been simulated, fabricated, and tested for the dielectric characterization of different solid and liquid materials. Material testing is performed in the bandwidth of 1354 MHz by incorporating a single metamaterial resonator-based sensor. Agilent’s Network Analyzer is used for measuring the S-parameters of the proposed sensor topology under loaded and unloaded conditions. Simulated and measured S-parameter results correspond substantially in the 1.79 to 3.15 GHz frequency band during the testing of the fabricated sensor. This novel tunable resonator design has various applications in modulators, phase shifters, and filters as well as in biosensors for liquid materials. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

10 pages, 1284 KiB  
Article
Enhanced Graphene Based Electronically Tunable Phase Shifter
by Muhammad Yasir, Fabio Peinetti and Patrizia Savi
Micromachines 2023, 14(10), 1877; https://doi.org/10.3390/mi14101877 - 29 Sep 2023
Cited by 8 | Viewed by 1445
Abstract
In this work, an enhanced tunable microwave phase shifter is presented. The phase shifter consists of three short circuited stubs and a tapered line. The stubs are connected to graphene pads. Graphene’s tunable conductivity is varied by a DC voltage. This in turn [...] Read more.
In this work, an enhanced tunable microwave phase shifter is presented. The phase shifter consists of three short circuited stubs and a tapered line. The stubs are connected to graphene pads. Graphene’s tunable conductivity is varied by a DC voltage. This in turn causes a reactance variation at the input of the tapered line, which causes a phase variation. The physical parameters of the stubs are optimized for a maximum reactance variation by the help of analytical models, circuit and full wave simulations. Measurements of an optimized prototype are performed and a dynamic phase variation of 59 is obtained with an amplitude variation of less than 1 dB. Full article
(This article belongs to the Special Issue 2D Materials: Devices and Functionalities)
Show Figures

Figure 1

17 pages, 7817 KiB  
Article
Miniaturized Compact Reconfigurable Half-Mode SIW Phase Shifter with PIN Diodes
by Franky Dakam Wappi, Bilel Mnasri, Alireza Ghayekhloo, Larbi Talbi and Halim Boutayeb
Technologies 2023, 11(3), 63; https://doi.org/10.3390/technologies11030063 - 23 Apr 2023
Cited by 1 | Viewed by 3485
Abstract
In this work, a novel electrically reconfigurable phase shifter based on a half-mode substrate integrated waveguide (HM-SIW) is proposed. SIW is a guided transmission line topology, and by using half-mode excitation, a smaller size can be achieved. Phase shifters are electronic devices that [...] Read more.
In this work, a novel electrically reconfigurable phase shifter based on a half-mode substrate integrated waveguide (HM-SIW) is proposed. SIW is a guided transmission line topology, and by using half-mode excitation, a smaller size can be achieved. Phase shifters are electronic devices that change the phase of transmission for a wide range of applications, including inverse scattering and sensing. The tunability of PIN diodes is applied here to achieve a reconfigurable design. The proposed single-layer structure does not require extra wiring layers for the bias circuit on the suggested printed circuit board. Its principle consists in the integration, in the HM-SIW, of three parallel lines, each connecting the edge of the HM-SIW and linked to a PIN diode and a radial stub. Here we present the results of measurements for a frequency band from 4.5 to 7 GHz that demonstrate how the experiment agrees with simulations. Insertion loss was less than −10 dB, and port coupling was less than −2 dB for both simulation and measurement solutions. The proposed half-mode structure is around half the size of a typical SIW line. With the proposed design, the seven states of the PIN diodes can be validated (ON and OFF), with a wide band adaptation and a relatively constant phase difference across a broad frequency range (44%). A key benefit of the proposed design for a microwave component is the reduction of extra biasing layers for the PIN diodes. This is in addition to the reduced size of the transmission line compared to a commercial SIW. In the annexed section, simulation software is used for a more comprehensive analysis involving more phase shift values and parametric studies. Full article
(This article belongs to the Special Issue Perpetual Sensor Nodes for Sustainable Wireless Network Applications)
Show Figures

Figure 1

18 pages, 9449 KiB  
Communication
Rethinking Liquid Crystal Tunable Phase Shifter Design with Inverted Microstrip Lines at 1–67 GHz by Dissipative Loss Analysis
by Jinfeng Li
Electronics 2023, 12(2), 421; https://doi.org/10.3390/electronics12020421 - 13 Jan 2023
Cited by 23 | Viewed by 4687
Abstract
Growing 5G/6G phased-array beam-steering applications, for which liquid crystal (LC) is one of the enabling technology candidates, have sparked interest in the modulation of the phase (and amplitude) of microwave and millimeter-wave signals. In this communication, fresh insights into the systematic design analysis [...] Read more.
Growing 5G/6G phased-array beam-steering applications, for which liquid crystal (LC) is one of the enabling technology candidates, have sparked interest in the modulation of the phase (and amplitude) of microwave and millimeter-wave signals. In this communication, fresh insights into the systematic design analysis of a 1–67 GHz passive inverted microstrip line (IMSL) phase shifter filled with highly anisotropic LC as tunable dielectric media are obtained. Based on waveguide disturbance tests to characterize the dielectric properties of the non-tunable PCB and tunable LC used in the IMSL phase shift device filled with a GT3-24002 LC layer (125 µm thick) partially enclosing a 220 µm wide, 17 µm thick, 1.35 cm long copper core line, a 0–π differential phase shift in the 1–67 GHz range with less than 2 dB insertion loss is reported. Dissipative loss analysis shows that the dielectric absorption of the LC is 21.28% of the input signal power at 60 GHz. Further investigation is performed to quantify the impacts of dielectric substrate thicknesses (PCB and LC) on the wave-occupied volume ratio (and hence the phase tuning range), as well as on dissipative losses (including conductor loss and dielectric loss). Specifically, conductor loss is observed to follow a linear relationship with the reciprocal of the LC thickness. Full article
Show Figures

Figure 1

8 pages, 1849 KiB  
Communication
Rethinking Figure-of-Merits of Liquid Crystals Shielded Coplanar Waveguide Phase Shifters at 60 GHz
by Jinfeng Li
J 2021, 4(3), 444-451; https://doi.org/10.3390/j4030034 - 17 Aug 2021
Cited by 11 | Viewed by 4761
Abstract
The demand for reconfigurable millimetre-wave (mm-Wave) components based on highly anisotropic liquid crystals (LC) is higher than ever before for the UK and worldwide. In this work, 60 GHz investigation on a bespoke shielded coplanar waveguide (SCPW) phase shifter structure filled with 16 [...] Read more.
The demand for reconfigurable millimetre-wave (mm-Wave) components based on highly anisotropic liquid crystals (LC) is higher than ever before for the UK and worldwide. In this work, 60 GHz investigation on a bespoke shielded coplanar waveguide (SCPW) phase shifter structure filled with 16 types of microwave-enabled nematic LCs respectively indicates that the patterns of the device’s figure-of-merit (FoM, defined as the ratio of maximum differential phase shift to maximum insertion loss) reshuffle from those of the characterised LC materials’ FoM (defined as the ratio of tunability to maximum dissipation factor). To be more specific, GT7-29001- and MDA-03-2838-based phase shifters exhibit the highest FoM for devices, outperforming phase shifters based on GT5-28004 and TUD-566 with the highest FoM for materials. Such a mismatch between the device’s FoM and LC’s FoM implies a nonlinearly perturbed wave-occupied volume ratio effect. Furthermore, the relationship between insertion loss and the effective delay line length is nonlinear, as evidenced by measurement results of two phase shifters (0–π and 0–2π, respectively). Such nonlinearities complicate the established FoM metrics and potentially lead to a renewed interest in the selection and material synthesis of LCs to optimise reconfigurable mmWave devices, and promote their technological exploitation in phased array systems targeting demanding applications such as inter-satellite links and satellite internet. Full article
(This article belongs to the Section Engineering)
Show Figures

Graphical abstract

11 pages, 2661 KiB  
Article
Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets
by Muhammad Yasir and Patrizia Savi
Micromachines 2020, 11(6), 600; https://doi.org/10.3390/mi11060600 - 20 Jun 2020
Cited by 11 | Viewed by 3315
Abstract
In microwave frequency band the conductivity of graphene can be varied to design a number of tunable components. A tunable phase shifter based on commercial graphene nanoplatelets is introduced. The proposed configuration consists of a microstrip line with two stubs connected with a [...] Read more.
In microwave frequency band the conductivity of graphene can be varied to design a number of tunable components. A tunable phase shifter based on commercial graphene nanoplatelets is introduced. The proposed configuration consists of a microstrip line with two stubs connected with a taper. On each side of the stubs there is a gap, short circuited through a via, where the commercial graphene nanoplatelets are drop casted. By applying a DC bias voltage that alters the graphene resistance the phase of the transmitted signal through the microstrip line can be varied. In order to maximize the phase shift of the transmitted signal and minimize the insertion loss, the length of the taper and the stubs are optimized by the help of circuit model and full-wave simulations. A prototype working at 4GHz is fabricated and measured. A phase variation of 33 degrees is acquired with an amplitude variation of less than 0.4 dB. Full article
(This article belongs to the Special Issue Graphene based Electronic Devices)
Show Figures

Figure 1

56 pages, 65518 KiB  
Review
Microwave Liquid Crystal Enabling Technology for Electronically Steerable Antennas in SATCOM and 5G Millimeter-Wave Systems
by Rolf Jakoby, Alexander Gaebler and Christian Weickhmann
Crystals 2020, 10(6), 514; https://doi.org/10.3390/cryst10060514 - 16 Jun 2020
Cited by 105 | Viewed by 20440
Abstract
Future satellite platforms and 5G millimeter wave systems require Electronically Steerable Antennas (ESAs), which can be enabled by Microwave Liquid Crystal (MLC) technology. This paper reviews some fundamentals and the progress of microwave LCs concerning its performance metric, and it also reviews the [...] Read more.
Future satellite platforms and 5G millimeter wave systems require Electronically Steerable Antennas (ESAs), which can be enabled by Microwave Liquid Crystal (MLC) technology. This paper reviews some fundamentals and the progress of microwave LCs concerning its performance metric, and it also reviews the MLC technology to deploy phase shifters in different topologies, starting from well-known toward innovative concepts with the newest results. Two of these phase shifter topologies are dedicated for implementation in array antennas: (1) wideband, high-performance metallic waveguide phase shifters to plug into a waveguide horn array for a relay satellite in geostationary orbit to track low Earth orbit satellites with maximum phase change rates of 5.1°/s to 45.4°/s, depending on the applied voltages, and (2) low-profile planar delay-line phase shifter stacks with very thin integrated MLC varactors for fast tuning, which are assembled into a multi-stack, flat-panel, beam-steering phased array, being able to scan the beam from −60° to +60° in about 10 ms. The loaded-line phase shifters have an insertion loss of about 3 dB at 30 GHz for a 400° differential phase shift and a figure-of-merit (FoM) > 120°/dB over a bandwidth of about 2.5 GHz. The critical switch-off response time to change the orientation of the microwave LCs from parallel to perpendicular with respect to the RF field (worst case), which corresponds to the time for 90 to 10% decay in the differential phase shift, is in the range of 30 ms for a LC layer height of about 4 µm. These MLC phase shifter stacks are fabricated in a standard Liquid Crystal Display (LCD) process for manufacturing low-cost large-scale ESAs, featuring single- and multiple-beam steering with very low power consumption, high linearity, and high power-handling capability. With a modular concept and hybrid analog/digital architecture, these smart antennas are flexible in size to meet the specific requirements for operating in satellite ground and user terminals, but also in 5G mm-wave systems. Full article
(This article belongs to the Special Issue Microwave Liquid Crystal Technology)
Show Figures

Figure 1

39 pages, 15367 KiB  
Article
Reconfigurable Millimeter-Wave Components Based on Liquid Crystal Technology for Smart Applications
by Ersin Polat, Henning Tesmer, Roland Reese, Matthias Nickel, Dongwei Wang, Peter Schumacher, Rolf Jakoby and Holger Maune
Crystals 2020, 10(5), 346; https://doi.org/10.3390/cryst10050346 - 27 Apr 2020
Cited by 28 | Viewed by 6691
Abstract
This paper presents recent development of tunable microwave liquid crystal (LC) components in the lower millimeter wave (mmW) regime up to the W-band. With the utilization of increasing frequency, conventional metallic waveguide structures prove to be impractical for LC-based components. In particular, the [...] Read more.
This paper presents recent development of tunable microwave liquid crystal (LC) components in the lower millimeter wave (mmW) regime up to the W-band. With the utilization of increasing frequency, conventional metallic waveguide structures prove to be impractical for LC-based components. In particular, the integration of the electric bias network is extremely challenging. Therefore, dielectric waveguides are a promising alternative to conventional waveguides, since electrodes can be easily integrated in the open structure of dielectric waveguides. The numerous subcategories of dielectric waveguides offer a high degree of freedom in designing smart millimeter wave components such as tunable phase shifters, filters and steerable antennas. Recent research resulted in many different realizations, which are analyzed in this paper. The first demonstrators of phased array antennas with integrated LC-based phase shifters are reviewed and compared. In addition, beam steering with a single antenna type is shown. Furthermore, the possibility to realize tunable filters using LC-filled dielectric waveguides is demonstrated. Full article
(This article belongs to the Special Issue Microwave Liquid Crystal Technology)
Show Figures

Figure 1

10 pages, 5669 KiB  
Communication
Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band
by Mohamed T. ElKhorassani, Angel Palomares-Caballero, Antonio Alex-Amor, Cleofás Segura-Gómez, Pablo Escobedo, Juan F. Valenzuela-Valdés and Pablo Padilla
Appl. Sci. 2019, 9(23), 5229; https://doi.org/10.3390/app9235229 - 1 Dec 2019
Cited by 6 | Viewed by 5655
Abstract
This communication presents the design of a two-port electronically tunable phase shifter at K band. The phase shifter consists of a 3 dB hybrid coupler loaded with reflective phase-controllable circuits. The reflective circuits are formed by varactors and non-sequential impedance transformers which increase [...] Read more.
This communication presents the design of a two-port electronically tunable phase shifter at K band. The phase shifter consists of a 3 dB hybrid coupler loaded with reflective phase-controllable circuits. The reflective circuits are formed by varactors and non-sequential impedance transformers which increase the operational bandwidth and the provided phase shift. The final phase shifter design is formed by two loaded-coupler stages of phase shifting to guarantee a complete phase turn. An 18 GHz phase shifter design with dynamic range of 600 degrees of phase shift is depicted in this document. The prototype is manufactured and validated through measurements showing good agreement with the simulation results. Full article
(This article belongs to the Special Issue Passive Planar Microwave Devices )
Show Figures

Figure 1

12 pages, 1611 KiB  
Communication
New Concept of Combined Microwave Delay Lines for Noise Radar-Based Remote Sensors
by Zenon Szczepaniak and Waldemar Susek
Sensors 2019, 19(22), 4842; https://doi.org/10.3390/s19224842 - 6 Nov 2019
Cited by 2 | Viewed by 3099
Abstract
Delay lines with a tunable length are used in a number of applications in the field of microwave techniques. The digitally-controlled analogue wideband delay line is particularly useful in noise radar applications as a precise detector of movement. In order to perform coherent [...] Read more.
Delay lines with a tunable length are used in a number of applications in the field of microwave techniques. The digitally-controlled analogue wideband delay line is particularly useful in noise radar applications as a precise detector of movement. In order to perform coherent reception in the noise radar, a delay line with a variable delay value is required. To address this issue, this paper comprises a new concept of a digitally-controlled delay line with a set of fine distance gates. In the paper, a solution for micro-movement detection is proposed, which is based on direct signal processing in the time domain with the use of a microwave analogue correlator. This concept assumes the use of a microwave analogue tapped delay line structure. It was found that the optimal solution for a noise radar with an analogue signal correlator is a combined delay line consisting of switched reference sections, a tapped delay line, and a precision phase shifter. The combined delay line presented in this paper is dedicated to serving as the adjustable reference delay for a noise radar intended for the detection of micro-movement. The paper contains the calculation results and delay line implementation for a given example. The new structure of the analogue tapped delay line with the calculation of optimal parameters is also presented. The precise detector of movement can be successfully used for the remote sensing of human vital signs (especially through-the-wall), e.g., breathing and heart beating, with the simultaneous determination of position. Full article
(This article belongs to the Special Issue Recent Advancements in Radar Imaging and Sensing Technology)
Show Figures

Figure 1

19 pages, 4077 KiB  
Review
Microwave Photonic Devices Based on Liquid Crystal on Silicon Technology
by Ruiqi Zheng, Erwin H. W. Chan, Xudong Wang, Xinhuan Feng and Bai-Ou Guan
Appl. Sci. 2019, 9(2), 260; https://doi.org/10.3390/app9020260 - 12 Jan 2019
Cited by 13 | Viewed by 4163
Abstract
This paper reviews the recent developments in microwave photonic devices based on liquid crystal on silicon (LCOS) technology. The operation principle, functions and important specifications of an LCOS based optical processor are described. Three microwave photonic devices, which are microwave photonic notch filters, [...] Read more.
This paper reviews the recent developments in microwave photonic devices based on liquid crystal on silicon (LCOS) technology. The operation principle, functions and important specifications of an LCOS based optical processor are described. Three microwave photonic devices, which are microwave photonic notch filters, phase shifters and couplers, reported in the past five years are focused on in this paper. In addition, a new multi-function signal processing structure based on amplitude and phase control functions in conjunction with a power splitting function in a commercial LCOS based optical processor is presented. It has the ability to realize multiple time -shifting operations and multiple frequency-independent phase shifting operations at the same time and control multiple RF signal amplitudes, in a single unit. The results for the new multi-function microwave photonic signal processor demonstrate multiple tunable true time delay and phase shifting operations with less than 3 dB amplitude variation over a very wide frequency range of 10 to 40 GHz. Full article
(This article belongs to the Special Issue Microwave Photonics 2018)
Show Figures

Figure 1

Back to TopTop