Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = microwave cavity resonance spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4952 KiB  
Article
Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets
by Dong Li, Yangyang Hou and Yusong Yu
Energies 2024, 17(17), 4256; https://doi.org/10.3390/en17174256 - 26 Aug 2024
Viewed by 1007
Abstract
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion [...] Read more.
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion characteristics of ADN-based liquid propellant droplets were investigated using experimental methods. A high-speed camera was used to record the droplet combustion process in the combustion chamber, the effect of the microwave antenna on the propellant combustion response was analyzed based on the emission spectroscopy method, and finally, the loss of the microwave antenna was evaluated using a scanning electron microscope. The experimental results show that the droplet has the lowest critical ignition power (179 W) when the material of the microwave antenna is tungsten, but the ignition delay time is higher than that of copper. A finer diameter of microwave antenna is more favorable for plasma generation. At a microwave power of 260 W, the ignition delay time of the droplet with a microwave antenna diameter of 0.3 mm is 100 ms lower than that of 0.8 mm, which is about 37.5%. In addition, this study points out the mechanism of microwave discharge in the droplet combustion process. The metallic microwave antenna not only collects the electrons escaping from the gas discharge, but also generates a large amount of metallic vapor, which provides charged particles to the plasma. This study provides the possibility for the application of microwave-assisted liquid fuel ignition. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

19 pages, 7656 KiB  
Article
Influence of the Preparation Method on the Structural, Morphological and Dielectric Properties of FeNbO4 Ceramics
by Susana Devesa, Filipa Gonçalves and Manuel Graça
Materials 2023, 16(8), 3202; https://doi.org/10.3390/ma16083202 - 18 Apr 2023
Cited by 8 | Viewed by 1699
Abstract
In this work, iron niobate (FeNbO4) was prepared via two processes based on the sol-gel method: colloidal gel and polymeric gel. The obtained powders were submitted to heat treatments at different temperatures based on the results obtained via differential thermal analysis. [...] Read more.
In this work, iron niobate (FeNbO4) was prepared via two processes based on the sol-gel method: colloidal gel and polymeric gel. The obtained powders were submitted to heat treatments at different temperatures based on the results obtained via differential thermal analysis. The structures of the prepared samples were characterized via X-ray diffraction and the morphology was characterized via scanning electron microscopy. The dielectric measurements were performed in the radiofrequency region using the impedance spectroscopy technique and in the microwave range using the resonant cavity method. The influence of the preparation method was noticeable in the structural, morphological and dielectric properties of the studied samples. The polymeric gel method promoted the formation of monoclinic and orthorhombic iron niobate at lower temperatures. The differences in the samples’ morphology were also remarkable, both in the size and shape of the grains. The dielectric characterization revealed that the dielectric constant and the dielectric losses had the same order of magnitude and similar trends. A relaxation mechanism was identified in all the samples. Full article
Show Figures

Figure 1

20 pages, 4051 KiB  
Article
Carvacrol and HP-β-Cyclodextrin Complexes: Extensive Characterization and Potential Cytotoxic Effect in Human Colorectal Carcinoma Cells
by María Isabel Rodríguez-López, María Teresa Mercader-Ros, Alfonso Pérez-Garrido, Horacio Pérez-Sánchez, José Antonio Pellicer, Carmen Lucas-Abellán, Silvia Montoro-García, María Josefa Yáñez-Gascón, Ángel Gil-Izquierdo, Estrella Núñez-Delicado and José Antonio Gabaldón
Pharmaceutics 2022, 14(12), 2638; https://doi.org/10.3390/pharmaceutics14122638 - 29 Nov 2022
Cited by 5 | Viewed by 2551
Abstract
The aim of this study was to obtain solid carvacrol-cyclodextrin (CD) complexes for use in the pharmaceutical industry. To this end, the complexation of carvacrol at different pH values was studied in detail, to determine the type of CD and the reaction environment [...] Read more.
The aim of this study was to obtain solid carvacrol-cyclodextrin (CD) complexes for use in the pharmaceutical industry. To this end, the complexation of carvacrol at different pH values was studied in detail, to determine the type of CD and the reaction environment that supported the highest amount of encapsulated carvacrol. Evidence of the capability of hydroxypropyl-β-cyclodextrins (HP-β-CD) to form inclusion complexes with carvacrol (KC = 5042 ± 176 L mol−1) and more high complexation efficiency (2.824) was demonstrated for HP-β-CDs using two different energy sources, ultrasound (US) (KC = 8129 ± 194 L mol−1 24 h) and microwave irradiation (MWI) (KC = 6909 ± 161 L mol−1), followed by spraying the resulting solution in a spray dryer. To confirm complex formation, the complexes were characterized using various instrumental methods to corroborate the carvacrol incorporation into the hydrophobic cavity of HP-β-CD. The obtained carvacrol solid complexes were analyzed by 1H nuclear magnetic resonance (1H-NMR) and 2D nuclear magnetic resonance (ROSEY), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) characterization. The structures of the resulting complexes were also characterized by molecular modeling. Furthermore, 1 mM HP-β-CD-carvacrol complex has been shown to reduce cell proliferation in HCT-116 colorectal cancer cells by 43%, much more than in a healthy lung fibroblast MRC-5 cell line (11%). Full article
(This article belongs to the Special Issue Cyclodextrin-Based Delivery Systems for Anticancer Drugs)
Show Figures

Figure 1

19 pages, 2906 KiB  
Article
Time-Synchronized Microwave Cavity Resonance Spectroscopy and Laser Light Extinction Measurements as a Diagnostic for Dust Particle Size and Dust Density in a Low-Pressure Radio-Frequency Driven Nanodusty Plasma
by Tim Donders, Tim Staps and Job Beckers
Appl. Sci. 2022, 12(23), 12013; https://doi.org/10.3390/app122312013 - 24 Nov 2022
Cited by 7 | Viewed by 1816
Abstract
In a typical laboratory nanodusty plasma, nanometer-sized solid dust particles can be generated from the polymerization of reactive plasma species. The interplay between the plasma and the dust gives rise to behavior that is vastly different from that of pristine plasmas. Two of [...] Read more.
In a typical laboratory nanodusty plasma, nanometer-sized solid dust particles can be generated from the polymerization of reactive plasma species. The interplay between the plasma and the dust gives rise to behavior that is vastly different from that of pristine plasmas. Two of the key parameters in nanodusty plasma physics are, among other things, the dust particle size and the dust density. In this work, we introduce a novel method for the determination of these two quantities from the measurement of the free electron density using microwave cavity resonance spectroscopy and laser light extinction measurements. When comparing these two measurements to theory, one can determine the best-fitting dust particle size and dust density. Generally, cyclic behavior of the dust particle size and dust density was observed, of which the trends were relatively insensitive to varying the most stringent input assumptions. Finally, this method has been used to explore the behavior of the dust particle size and dust density for varying plasma powers. Full article
(This article belongs to the Special Issue Plasma Technology and Its Applications)
Show Figures

Figure 1

11 pages, 2245 KiB  
Article
Microresonators and Microantennas—Tools to Explore Magnetization Dynamics in Single Nanostructures
by Hamza Cansever and Jürgen Lindner
Magnetochemistry 2021, 7(2), 28; https://doi.org/10.3390/magnetochemistry7020028 - 19 Feb 2021
Cited by 5 | Viewed by 3144
Abstract
The phenomenon of magnetic resonance and its detection via microwave spectroscopy provide insight into the magnetization dynamics of bulk or thin film materials. This allows for direct access to fundamental properties, such as the effective magnetization, g-factor, magnetic anisotropy, and the various damping [...] Read more.
The phenomenon of magnetic resonance and its detection via microwave spectroscopy provide insight into the magnetization dynamics of bulk or thin film materials. This allows for direct access to fundamental properties, such as the effective magnetization, g-factor, magnetic anisotropy, and the various damping (relaxation) channels that govern the decay of magnetic excitations. Cavity-based and broadband ferromagnetic resonance techniques that detect the microwave absorption of spin systems require a minimum magnetic volume to obtain a sufficient signal-to-noise ratio (S/N). Therefore, conventional techniques typically do not offer the sensitivity to detect individual micro- or nanostructures. A solution to this sensitivity problem is the so-called planar microresonator, which is able to detect even the small absorption signals of magnetic nanostructures, including spin-wave or edge resonance modes. As an example, we describe the microresonator-based detection of spin-wave modes within microscopic strips of ferromagnetic A2 Fe60Al40 that are imprinted into a paramagnetic B2 Fe60Al40-matrix via focused ion-beam irradiation. While microresonators operate at a fixed microwave frequency, a reliable quantification of the key magnetic parameters like the g-factor or spin relaxation times requires investigations within a broad range of frequencies. Furthermore, we introduce and describe the step from microresonators towards a broadband microantenna approach. Broadband magnetic resonance experiments on single nanostructured magnetic objects in a frequency range of 2–18 GHz are demonstrated. The broadband approach has been employed to explore the influence of lateral structuring on the magnetization dynamics of a Permalloy (Ni80Fe20) microstrip. Full article
(This article belongs to the Special Issue Recent Advances in Nanomagnetism)
Show Figures

Figure 1

38 pages, 5411 KiB  
Review
Probing Collisional Plasmas with MCRS: Opportunities and Challenges
by Bart Platier, Tim Staps, Peter Koelman, Marc van der Schans, Job Beckers and Wilbert IJzerman
Appl. Sci. 2020, 10(12), 4331; https://doi.org/10.3390/app10124331 - 24 Jun 2020
Cited by 8 | Viewed by 4464
Abstract
Since the 1940s, Microwave Cavity Resonance Spectroscopy (MCRS) has been used to investigate a variety of solids, gases, and low-pressure plasmas. Recently, the working terrain of the diagnostic method has been expanded with atmospheric-pressure plasmas. This review discusses the advancements that were required [...] Read more.
Since the 1940s, Microwave Cavity Resonance Spectroscopy (MCRS) has been used to investigate a variety of solids, gases, and low-pressure plasmas. Recently, the working terrain of the diagnostic method has been expanded with atmospheric-pressure plasmas. This review discusses the advancements that were required for this transition and implications of studying highly collisional, with respect to the probing frequencies, plasmas. These developments and implications call for a redefinition of the limitations of MCRS, which also impact studies of low-pressure plasmas using the diagnostic method. Moreover, a large collection of recommendations concerning the approach and its potential for future studies is presented. Full article
(This article belongs to the Special Issue The Applications of Plasma Techniques)
Show Figures

Figure 1

9 pages, 1528 KiB  
Article
Contactless Resonant Cavity Dielectric Spectroscopic Studies of Recycled Office Papers
by Mary Kombolias, Jan Obrzut, Michael T. Postek, Dianne L. Poster and Yaw S. Obeng
Recycling 2019, 4(4), 43; https://doi.org/10.3390/recycling4040043 - 5 Nov 2019
Cited by 1 | Viewed by 4792
Abstract
Current product composition and quality test methods for the paper and pulp industries are rooted in wet-bench chemistry techniques which cannot be used to distinguish between virgin and secondary fibers. We have recently demonstrated the application of an in situ and nondestructive assessment [...] Read more.
Current product composition and quality test methods for the paper and pulp industries are rooted in wet-bench chemistry techniques which cannot be used to distinguish between virgin and secondary fibers. We have recently demonstrated the application of an in situ and nondestructive assessment method based on dielectric spectroscopy (DS), which can address this deficiency in the testing of paper. The DS technique, which employs a resonant microwave cavity, could be applicable to quality assurance techniques such as gauge capability studies and real-time statistical process control (SPC), and may have inherent forensic capabilities. In this paper, we show how this DS technique can be used to distinguish between office copier paper products which may contain recycled fibers. We show a reasonable correlation between the dielectric characteristics (e.g., dielectric loss) and the atomistic level chemical changes that result from the paper recycling process. Full article
Show Figures

Figure 1

23 pages, 3876 KiB  
Article
Synthesis and Structure of Copper Complexes of a N6O4 Macrocyclic Ligand and Catalytic Application in Alcohol Oxidation
by Zhen Ma, Qijun Wang, Elisabete C. B. A. Alegria, M. Fátima C. Guedes da Silva, Luísa M. D. R. S. Martins, João P. Telo, Isabel Correia and Armando J. L. Pombeiro
Catalysts 2019, 9(5), 424; https://doi.org/10.3390/catal9050424 - 7 May 2019
Cited by 19 | Viewed by 4436
Abstract
Reactions between N6O4 macrocyclic 1,4,19,22,25,40-hexaaza-10,13,31,34-tetraoxa-6,14,27,35(1,4)-tetrabenzenacyclopentacontane (L) and several copper salts (viz. trifuoromethane and toluene sulfonates, nitrate, perchlorate, benzoate, and acetate) led to the formation of dinuclear compounds [Cu2(OSO2CF3)2(DMF)2L](SO [...] Read more.
Reactions between N6O4 macrocyclic 1,4,19,22,25,40-hexaaza-10,13,31,34-tetraoxa-6,14,27,35(1,4)-tetrabenzenacyclopentacontane (L) and several copper salts (viz. trifuoromethane and toluene sulfonates, nitrate, perchlorate, benzoate, and acetate) led to the formation of dinuclear compounds [Cu2(OSO2CF3)2(DMF)2L](SO3CF3)2 (1), [Cu2(p-OSO2C6H4Me)2L(DMF)2](SO3C6H4Me)2 (2), [Cu2(ONO2)2L(DMF)2](NO3)2 (3), [Cu2(OClO3)2(DMF)2L](ClO4)2 (4), [Cu2(OOCPh)2L(H2O)2](O2CPh)2 (5), and [Cu2(OOCMe)4L] (6), which were characterized by IR, elemental analysis and TG-DTA (thermogravimetric-differential thermal analysis), as well as by single-crystal X-ray diffraction, EPR (electron paramagnetic resonance) spectroscopy, and electrochemical techniques (cyclic voltammetry and controlled potential electrolysis). The molecular structures of compounds 16 reveal a considerable conformational flexibility of the ligand L, which allowed its readjustment for the formation of the metal compounds and confirmed the presence of dinuclear endo macrocyclic species. In every case, the L ligand coordinates to each copper cation via three nitrogen atoms, with the remaining coordination positions of the metal square pyramid environment being accomplished by neutral or anionic ligands. The macrocyclic cavities appear to be adequate for the enclosure of a neutral species as proved by compound 6 with 1,4-dioxane. The compounds, in combination with the TEMPO (2,2,6,6-tetramethyl-piperidinyloxyl) radical and in alkaline aqueous solution, act as efficient catalysts in the aerobic oxidation of different alcohols to the corresponding aldehydes (yields up to 99% and TON up 232) after 20 h at 70 °C. In addition, the microwave-assisted solvent-free peroxidative oxidation (by tert-butylhydroperoxide, TBHP) of 1-phenylethanol led to acetophenone yields up to 99% and TOF of 1.1 × 103 after 0.5 h, without any additive. Full article
(This article belongs to the Special Issue Recent Advances in Homogeneous Catalysis)
Show Figures

Graphical abstract

14 pages, 4071 KiB  
Article
Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing
by Andreas Bogner, Carsten Steiner, Stefanie Walter, Jaroslaw Kita, Gunter Hagen and Ralf Moos
Sensors 2017, 17(10), 2422; https://doi.org/10.3390/s17102422 - 24 Oct 2017
Cited by 72 | Viewed by 13935
Abstract
A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was [...] Read more.
A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions. Full article
(This article belongs to the Collection Gas Sensors)
Show Figures

Graphical abstract

Back to TopTop