Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets
Abstract
1. Introduction
2. Experimental Setup and Methods
2.1. Experimental Apparatus
2.2. Quality Factor
2.3. Electric Field Simulation
3. Results and Discussion
3.1. Effect of Microwave Antenna Materials on the Ignition and Combustion Characteristics of Droplets
3.2. Effect of Microwave Antenna Diameter on the Ignition and Combustion Characteristics of Droplets
3.3. Microwave Plasma Discharges and Antenna Losses
4. Conclusions
- (1)
- It is found that the droplets have lower ignition delay time and critical ignition power when the materials of microwave antenna are tungsten and copper. However, tungsten or tungsten alloy are more suitable for microwave antennas considering the wear resistance of the material.
- (2)
- A finer microwave antenna diameter (0.3 mm) is more favorable for plasma generation, and the flame profile area during propellant combustion is larger, and the flame is stable and bright. Reducing the diameter of the microwave antenna is very effective in reducing the ignition delay time and critical ignition power of droplets.
- (3)
- Microwave plasma combustion is the result of the joint action of gas discharge and metal discharge. In the pre-combustion stage of the droplet, the gas discharge is mainly dominated, while the metal discharge is mainly dominated in the post-combustion stage. The metal atoms on the microwave antenna control the combustion reaction by providing charged particles to the gas plasma.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thakre, P.; Duan, Y.; Yang, V. Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed and gas phase kinetics. Combust. Flame 2014, 161, 347–362. [Google Scholar] [CrossRef]
- Ide, Y.; Takahashi, T.; Iwai, K.; Nozoe, K.; Habu, H.; Tokudome, S. Potential of ADN-based Ionic Liquid Propellant for Spacecraft Propulsion. Procedia Eng. 2015, 99, 332–337. [Google Scholar] [CrossRef]
- Östmark, H.; Bemm, U.; Langlet, A.; Sandén, R.; Wingborg, N. The properties of ammonium dinitramide (ADN): Part 1, basic properties and spectroscopic data. J. Energetic Mater. 2000, 18, 123–138. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Yu, X. Investigation on plasma enhanced decomposition of ammonium dinitramide (ADN) based propellant with optical diagnosis. Spectrochim. Acta Part B At. Spectrosc. 2023, 200, 106589. [Google Scholar] [CrossRef]
- Anflo, K.; Möllerberg, R. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite. Acta Astronaut. 2009, 65, 1238–1249. [Google Scholar] [CrossRef]
- Persson, S.; Veldman, S.; Bodin, P. PRISMA—A formation flying project in implementation phase. Acta Astronaut. 2009, 65, 1360–1374. [Google Scholar] [CrossRef]
- Amrousse, R.; Hori, K.; Fetimi, W.; Farhat, K. HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes. Appl. Catal. B Environ. 2012, 127, 121–128. [Google Scholar] [CrossRef]
- Li, H.-M.; Li, G.-X.; Li, L.; Yao, Z.-P. Experimental study on thermal ignition and combustion of droplet of ammonium dinitramide based liquid propellant in different oxidizing gas atmospheres. Acta Astronaut. 2020, 169, 40–49. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Wang, Q.; Hou, L.; Zhang, G. Experimental study of microwave resonance plasma ignition of methane–air mixture in a constant volume cylinder. Combust. Flame 2015, 162, 2561–2568. [Google Scholar] [CrossRef]
- Yamamoto, T.; Imamura, Y.; Kishida, M. Development and combustion characteristics of microwave plasma-assisted fluidized bed combustor. Adv. Powder Technol. 2023, 34, 104203. [Google Scholar] [CrossRef]
- Zhu, K.; Barkley, S.J.; Sippel, T.R.; Michael, J.B. Emission thermometry of microwave-assisted alkali-doped propellant combustion. Combust. Flame 2023, 251, 112704. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Wu, H.; Zhou, D.; Huang, S.; Cheng, X.; Chen, J.-Y. Experimental study of microwave assisted spark ignition on expanding C2H2-Air spherical flames. Combust. Flame 2020, 222, 111–122. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 2015, 48, 21–83. [Google Scholar] [CrossRef]
- Hwang, J.; Bae, C.; Park, J.; Choe, W.; Cha, J.; Woo, S. Microwave-assisted plasma ignition in a constant volume combustion chamber. Combust. Flame 2016, 167, 86–96. [Google Scholar] [CrossRef]
- Lebedev, Y.A.; Krashevskaya, G.V.; Batukaev, T.S.; Mikhaylyuk, A.V. Time resolved study of ignition of microwave discharge in liquid hydrocarbons. Plasma Process. Polym. 2022, 19, e2100215. [Google Scholar] [CrossRef]
- Batukaev, T.S.; Krashevskaya, G.V.; Lebedev, Y.A.; Mikhailyuk, A.V. Time-Resolved Optical Diagnostics of the Microwave Discharge in Liquid Hydrocarbons with Argon Bubbling. Plasma Phys. Rep. 2022, 48, 391–394. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Cheng, X.; Huang, Y.; Chen, J.-Y.; Liu, C.; Wang, Z.; Xu, J.; Zhang, X. Effect of microwave pulse parameters on energy coupling and enhancement of microwave assisted ignition. Proc. Combust. Inst. 2023, 39, 5531–5539. [Google Scholar] [CrossRef]
- Fragge, B.; Sokoloff, J.; Rouzaud, O.; Pascal, O.; Orain, M. Ignition of Kerosene Droplets by Focused Microwaves. In Proceedings of the ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 August–2 September 2021. [Google Scholar]
- Tang, Y.; Li, S.; Yao, Z.; Huang, B.; Li, S. Ignition of an ionic liquid dual-mode monopropellant using a microwave plasma torch. Proc. Combust. Inst. 2023, 39, 5063–5071. [Google Scholar] [CrossRef]
- Javed, I.; Baek, S.W.; Waheed, K. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures. Combust. Flame 2015, 162, 774–787. [Google Scholar] [CrossRef]
- Hou, Y.; Yu, Y.; Li, Y.; Liu, X.; Wang, X. Experimental study on microwave-induced puffing, micro-explosion, and combustion characteristics of ammonium dinitramide-based liquid propellant droplets. Phys. Fluids 2023, 35, 117122. [Google Scholar] [CrossRef]
- Reddy, V.R.S.; Sai, B.N.; Kumar, N.V.P.; Reddy, S.S.V.; Kathyayani, B.S. Design of dipole aerial by using COMSOL multi physics software. Mater. Today Proc. 2023, 80, 3481–3485. [Google Scholar] [CrossRef]
- Kourtzanidis, K.; Raja, L.L. Analysis and characterization of microwave plasma generated with rectangular all-dielectric resonators. Plasma Sources Sci. Technol. 2017, 26, 045007. [Google Scholar] [CrossRef]
- Saifutdinov, A.I.; Kustova, E.V. Dynamics of plasma formation and gas heating in a focused-microwave discharge in nitrogen. J. Appl. Phys. 2021, 129, 023301. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Li, H. Experimental Study of Electrical Ignition Characteristics of ADN-Based Liquid Propellants with Different Electrode Materials. J. Propuls. Technol. 2020, 41, 65–72. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Hou, Y.; Yu, Y. Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets. Energies 2024, 17, 4256. https://doi.org/10.3390/en17174256
Li D, Hou Y, Yu Y. Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets. Energies. 2024; 17(17):4256. https://doi.org/10.3390/en17174256
Chicago/Turabian StyleLi, Dong, Yangyang Hou, and Yusong Yu. 2024. "Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets" Energies 17, no. 17: 4256. https://doi.org/10.3390/en17174256
APA StyleLi, D., Hou, Y., & Yu, Y. (2024). Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets. Energies, 17(17), 4256. https://doi.org/10.3390/en17174256