Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = microporous polymer films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2502 KiB  
Article
Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films
by Athinarayanan Balasankar, Raja Venkatesan, Dae-Yeong Jeong, Tae Hwan Oh, Seong-Cheol Kim, Alexandre A. Vetcher and Subramaniyan Ramasundaram
Polymers 2024, 16(16), 2344; https://doi.org/10.3390/polym16162344 - 19 Aug 2024
Cited by 3 | Viewed by 1513
Abstract
Anodized aluminum oxide (AAO) molds were used for the production of large-area and inexpensive superhydrophobic polymer films. A controlled anodization methodology was developed for the fabrication of hierarchical micro–nanoporous (HMN) AAO imprint molds (HMN-AAO), where phosphoric acid was used as both an electrolyte [...] Read more.
Anodized aluminum oxide (AAO) molds were used for the production of large-area and inexpensive superhydrophobic polymer films. A controlled anodization methodology was developed for the fabrication of hierarchical micro–nanoporous (HMN) AAO imprint molds (HMN-AAO), where phosphoric acid was used as both an electrolyte and a widening agent. Heat generated upon repetitive high-voltage (195 V) anodization steps is effectively dissipated by establishing a cooling channel. On the HMN-AAO, within the hemispherical micropores, arrays of hexagonal nanopores are formed. The diameter and depth of the micro- and nanopores are 18/8 and 0.3/1.25 µm, respectively. The gradual removal of micropatterns during etching in both the vertical and horizontal directions is crucial for fabricating HMN-AAO with a high aspect ratio. HMN-AAO rendered polycarbonate (PC) and polymethyl methacrylate (PMMA) films with respective water contact angles (WCAs) of 153° and 151°, respectively. The increase in the WCA is 80% for PC (85°) and 89% for PMMA (80°). On the PC and PMMA films, mechanically robust arrays of nanopillars are observed within the hemispherical micropillars. The micro–nanopillars on these polymer films are mechanically robust and durable. Regular nanoporous AAO molds resulted in only a hydrophobic polymer film (WCA = 113–118°). Collectively, the phosphoric acid-based controlled anodization strategy can be effectively utilized for the manufacturing of HMN-AAO molds and roll-to-roll production of durable superhydrophobic surfaces. Full article
Show Figures

Figure 1

29 pages, 11536 KiB  
Review
From Molecular Design to Practical Applications: Strategies for Enhancing the Optical and Thermal Performance of Polyimide Films
by Liangrong Li, Wendan Jiang, Xiaozhe Yang, Yundong Meng, Peng Hu, Cheng Huang and Feng Liu
Polymers 2024, 16(16), 2315; https://doi.org/10.3390/polym16162315 - 16 Aug 2024
Cited by 13 | Viewed by 3496
Abstract
Polyimide (PI) films are well recognized for their outstanding chemical resistance, radiation resistance, thermal properties, and mechanical strength, rendering them highly valuable in advanced fields such as aerospace, sophisticated electronic components, and semiconductors. However, improving their optical transparency while maintaining excellent thermal properties [...] Read more.
Polyimide (PI) films are well recognized for their outstanding chemical resistance, radiation resistance, thermal properties, and mechanical strength, rendering them highly valuable in advanced fields such as aerospace, sophisticated electronic components, and semiconductors. However, improving their optical transparency while maintaining excellent thermal properties remains a significant challenge. This review systematically checks over recent advancements in enhancing the optical and thermal performance of PI films, focusing on various strategies through molecular design. These strategies include optimizing the main chain, side chain, non-coplanar structures, and endcap groups. Rigid and flexible structural characteristics in the proper combination can contribute to the balance thermal stability and optical transparency. Introducing fluorinated substituents and bulky side groups significantly reduces the formation of charge transfer complexes, enhancing both transparency and thermal properties. Non-coplanar structures, such as spiro and cardo configurations, further improve the optical properties while maintaining thermal stability. Future research trends include nanoparticle doping, intrinsic microporous PI polymers, photosensitive polyimides, machine learning-assisted molecular design, and metal coating techniques, which are expected to further enhance the comprehensive optical and thermal performance of PI films and expand their applications in flexible displays, solar cells, and high-performance electronic devices. Overall, systematic molecular design and optimization have significantly improved the optical and thermal performance of PI films, showing broad application prospects. This review aims to provide researchers with valuable references, stimulate more innovative research and applications, and promote the deep integration of PI films into modern technology and industry. Full article
Show Figures

Figure 1

18 pages, 4789 KiB  
Article
3D-Printable Sustainable Bioplastics from Gluten and Keratin
by Jumana Rashid Mohammed Haroub Alshehhi, Nisal Wanasingha, Rajkamal Balu, Jitendra Mata, Kalpit Shah, Naba K. Dutta and Namita Roy Choudhury
Gels 2024, 10(2), 136; https://doi.org/10.3390/gels10020136 - 7 Feb 2024
Cited by 9 | Viewed by 3849
Abstract
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised [...] Read more.
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources. Gluten film was fabricated from an alcohol–water mixture soluble fraction, largely comprised of gliadin proteins. Co-crosslinking hydrolyzed low-molecular-weight keratin with gluten enhanced its hydrophilic properties and enabled the tuning of its physicochemical properties. Furthermore, the hierarchical structure of the fabricated films was studied using neutron scattering techniques, which revealed the presence of both hydrophobic and hydrophilic nanodomains, gliadin nanoclusters, and interconnected micropores in the matrix. The films exhibited a largely (>40%) β-sheet secondary structure, with diminishing gliadin aggregate intensity and increasing micropore size (from 1.2 to 2.2 µm) with an increase in keratin content. The hybrid films displayed improved molecular chain mobility, as evidenced by the decrease in the glass-transition temperature from ~179.7 °C to ~173.5 °C. Amongst the fabricated films, the G14K6 hybrid sample showed superior water uptake (6.80% after 30 days) compared to the pristine G20 sample (1.04%). The suitability of the developed system for multilayer 3D printing has also been demonstrated, with the 10-layer 3D-printed film exhibiting >92% accuracy, which has the potential for use in packaging, agricultural, and biomedical applications. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials)
Show Figures

Figure 1

18 pages, 3289 KiB  
Article
Microporous Polymer-Modified Glassy Carbon Electrodes for the Electrochemical Detection of Metronidazole: Experimental and Theoretical Insights
by Héctor Quiroz-Arturo, Carlos Reinoso, Ullrich Scherf and Alex Palma-Cando
Nanomaterials 2024, 14(2), 180; https://doi.org/10.3390/nano14020180 - 12 Jan 2024
Cited by 2 | Viewed by 2169
Abstract
The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) [...] Read more.
The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4′-Di(carbazol-9-yl)-1,1′-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Monomers were electropolymerized through cyclic voltammetry and chronoamperometry techniques. Computational methods at the B3LYP/def2-TZVP level were employed to investigate the structural and electrochemical properties of the monomers. The electrochemical detection of MNZ utilized the linear sweep voltammetry technique. Surface characterization through SEM and XPS confirmed the proper electrodeposition of polymer films. Notably, MPN-GCEs exhibited higher detection signals compared to bare GCEs up to 3.6 times in the case of PTPTCzSiOH-GCEs. This theoretical study provides insights into the structural, chemical, and electronic properties of the polymers. The findings suggest that polymer-modified GCEs hold promise as candidates for the development of electrochemical sensors. Full article
Show Figures

Figure 1

14 pages, 4330 KiB  
Article
BaSO4/TiO2 Microparticle Embedded in Polyvinylidene Fluoride-Co-Hexafluoropropylene/Polytetrafluoroethylene Polymer Film for Daytime Radiative Cooling
by Mohamed Mahfoodh Saleh Altamimi, Usman Saeed and Hamad Al-Turaif
Polymers 2023, 15(19), 3876; https://doi.org/10.3390/polym15193876 - 25 Sep 2023
Cited by 9 | Viewed by 2642
Abstract
Radiative cooling is a new large-scale cooling technology with the promise of lowering costs and decreasing global warning. Currently, daytime radiative cooling is achieved via the application of reflective metal layers and complicated multilayer structures, limiting its application on a massive scale. In [...] Read more.
Radiative cooling is a new large-scale cooling technology with the promise of lowering costs and decreasing global warning. Currently, daytime radiative cooling is achieved via the application of reflective metal layers and complicated multilayer structures, limiting its application on a massive scale. In our research, we explored and tested the daytime subambient cooling effect with the help of single-layer films consisting of BaSO4, TiO2, and BaSO4/TiO2 microparticles embedded in PVDF/PTFE polymers. The film, consisting of BaSO4/TiO2 microparticles, offers a low solar absorbance and high atmospheric window emissivity. The solar reflectance is enhanced by micropores in the PVDF/PTFE polymers, without any significant influence on the thermal emissivity. The BaSO4/TiO2/PVDF/PTFE microparticle film attains 0.97 solar reflectance and 0.95 high sky-window emissivity when the broadly distributed pore size reaches 180 nm. Our field test demonstrated that the single-layer BaSO4/TiO2/PVDF/PTFE microparticle film achieved a temperature 5.2 °C below the ambient temperature and accomplished a cooling power of 74 W/m2. Also, the results show that, when the humidity rises from 33% to 38% at 12:30 pm, it hinders the cooling of the body surface and lowers the cooling effect to 8%. Full article
(This article belongs to the Special Issue Multifunctional Advanced Polymeric Films)
Show Figures

Figure 1

14 pages, 5730 KiB  
Article
Effect of Cooling Temperature on Crystalline Behavior of Polyphenylene Sulfide/Glass Fiber Composites
by Seo-Hwa Hong and Beom-Gon Cho
Polymers 2023, 15(15), 3179; https://doi.org/10.3390/polym15153179 - 26 Jul 2023
Cited by 3 | Viewed by 2468
Abstract
Poly (phenylene sulfide) (PPS) is a super engineering plastic that has not only excellent rigidity and high chemical resistance but also excellent electrical insulation properties; therefore, it can be applied as an electronic cover or an overheating prevention component. This plastic has been [...] Read more.
Poly (phenylene sulfide) (PPS) is a super engineering plastic that has not only excellent rigidity and high chemical resistance but also excellent electrical insulation properties; therefore, it can be applied as an electronic cover or an overheating prevention component. This plastic has been extensively applied in the manufacture of capacitor housing as, in addition to being a functional and lightweight material, it has a safety feature that can block the electrical connection between the electrolyte inside and outside the capacitor. Moreover, the fabrication of PPS composites with high glass fiber (GF) content facilitates the development of lightweight and excellent future materials, which widens the scope of the application of this polymer. However, the crystallinity and mechanical properties of PPS/GF composites have been found to vary depending on the cooling temperature. Although extensive studies have been conducted on the influence of cooling temperature on the crystalline behavior of PPS-based composites, there has been limited research focused particularly on PPS/GF composites for capacitor housing applications. In this study, to apply PPS/GF composites as film capacitor housings, specimens were prepared via injection molding at different cooling temperatures to investigate the composites’ tensile, flexural, and impact energy absorption properties resulting in increases in mechanical properties at high cooling mold temperature. Fracture surface analysis was also performed on the fractured specimens after the impact test to confirm the orientation of the GF and the shape of the micropores. Finally, the crystallinity of the composites increased with higher cooling temperatures due to the extended crystallization time. Full article
(This article belongs to the Special Issue Advances in Structure-Property Relationship of Polymer Materials)
Show Figures

Figure 1

15 pages, 6084 KiB  
Article
Using Excimer Laser for Manufacturing Stimuli Responsive Membranes
by Erol Sancaktar
Membranes 2023, 13(4), 398; https://doi.org/10.3390/membranes13040398 - 31 Mar 2023
Viewed by 1653
Abstract
A 248 nm KrF excimer laser can be used to manufacture temperature and pH-responsive polymer-based membranes for controlled transport applications. This is done by a two-step approach. In the first step, well-defined/shaped and orderly pores are created on commercially available polymer films by [...] Read more.
A 248 nm KrF excimer laser can be used to manufacture temperature and pH-responsive polymer-based membranes for controlled transport applications. This is done by a two-step approach. In the first step, well-defined/shaped and orderly pores are created on commercially available polymer films by ablation by using an excimer laser. The same laser is used subsequently for energetic grafting and polymerization of a responsive hydrogel polymer inside the pores fabricated during the first step. Thus, these smart membranes allow controllable solute transport. In this paper, determination of appropriate laser parameters and grafting solution characteristics are illustrated to obtain the desired membrane performance. Fabrication of membranes with 600 nm to 25 μm pore sizes by using the laser through different metal mesh templates is discussed first. Laser fluence and the number of pulses need to be optimized to obtain the desired pore size. Mesh size and film thickness primarily control the pore sizes. Typically, pore size increases with increasing fluence and the number of pulses. Larger pores can be created by using higher fluence at a given laser energy. The vertical cross-section of the pores turns out to be inherently tapered due to the ablative action of the laser beam. The pores created by laser ablation can be grafted with PNIPAM hydrogel by using the same laser to perform a bottom-up grafting-from type pulsed laser polymerization (PLP) in order to achieve the desired transport function controlled by temperature. For this purpose, a set of laser frequencies and pulse numbers need to be determined to obtain the desired hydrogel grafting density and the extent of cross-linking, which ultimately provide controlled transport by smart gating. In other words, on-demand switchable solute release rates can be achieved by controlling the cross-linking level of the microporous PNIPAM network. The PLP process is extremely fast (few seconds) and provides higher water permeability above the lower critical solution temperature (LCST) of the hydrogel. Experiments have shown high mechanical integrity for these pore-filled membranes, which can sustain pressures up to 0.31 MPa. The monomer (NIPAM) and cross-linker (mBAAm) concentrations in the grafting solution need to be optimized in order to control the network growth inside the support membrane pores. The cross-linker concentration typically has a stronger effect on the temperature responsiveness. The pulsed laser polymerization process described can be extended to different unsaturated monomers, which can be polymerized by the free radical process. For example, poly(acrylic acid) can be the grafted to provide pH responsiveness to membranes. As for the effects of thickness, a decreasing trend is observed in the permeability coefficient with increasing thickness. Furthermore, the film thickness has little or no effect on PLP kinetics. The experimental results have shown that membranes manufactured by excimer laser are excellent choices for applications where flow uniformity is the prime requirement, as they possess uniform pore sizes and distribution. Full article
(This article belongs to the Special Issue Structure and Performance of Porous Polymer Membranes)
Show Figures

Figure 1

16 pages, 5717 KiB  
Article
Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells
by Alexandru Cocean, Georgiana Cocean, Maria Diaconu, Silvia Garofalide, Francisca Husanu, Bogdanel Silvestru Munteanu, Nicanor Cimpoesu, Iuliana Motrescu, Ioan Puiu, Cristina Postolachi, Iuliana Cocean and Silviu Gurlui
Int. J. Mol. Sci. 2023, 24(4), 3892; https://doi.org/10.3390/ijms24043892 - 15 Feb 2023
Cited by 4 | Viewed by 2297
Abstract
The study in this paper presents a new material that was produced as a thin film by the Pulsed Laser Deposition technique (PLD) using a 532 nm wavelength and 150 mJ/pulse laser beam on the hemp stalk as target. The analyses performed by [...] Read more.
The study in this paper presents a new material that was produced as a thin film by the Pulsed Laser Deposition technique (PLD) using a 532 nm wavelength and 150 mJ/pulse laser beam on the hemp stalk as target. The analyses performed by spectroscopic techniques (Fourier Transform Infrared Spectroscopy—FTIR, Laser—Induced Fluorescence Spectroscopy—LIF, Scanning Electron Microscopy coupled with Energy Dispersive X-ray—SEM-EDX, Atomic Force Microscopy—AFM and optical microscope) evidenced that a biocomposite consisting of lignin, cellulose, hemicellulose, waxes, sugars and phenolyc acids p-coumaric and ferulic, similar to the hemp stalk target was obtained. Nanostructures and aggregated nanostructures of 100 nm to 1.5 μm size were evidenced. Good mechanical strength and its adherence to the substrate were also noticed. It was noticed that the content in calcium and magnesium increased compared to that of the target from 1.5% to 2.2% and from 0.2% to 1.2%, respectively. The COMSOL numerical simulation provided information on the thermal conditions that explain phenomena and processes during laser ablation such as C-C pyrolisis and enhanced deposition of calcium in the lignin polymer matrix. The good gas and water sorption properties due to the free OH groups and to the microporous structure of the new biocomposite components recommends it for studies for functional applications in medicine for drug delivery devices, filters in dialysis and for gas and liquid sensors. Functional applications in solar cells windows are also possible due to the conjugated structures of the contained polymers. Full article
(This article belongs to the Special Issue Nanomaterial Thin Films and Structures: Future and Development)
Show Figures

Figure 1

20 pages, 6490 KiB  
Article
Polyaniline Hybrids with Biological Tissue, and Biological Polymers as Physiological—Electroactive Materials
by Mai Ichikawa, Masashi Otaki and Hiromasa Goto
Micro 2023, 3(1), 172-191; https://doi.org/10.3390/micro3010013 - 1 Feb 2023
Cited by 4 | Viewed by 2240
Abstract
A sprout/polyaniline was synthesized via the chemical oxidative polymerization of aniline in the presence of natural sprout, based on a concept of cyborg plant composite. The composite consisted of both polyaniline and plants. The chemical structure was confirmed by infrared absorption spectroscopy measurements. [...] Read more.
A sprout/polyaniline was synthesized via the chemical oxidative polymerization of aniline in the presence of natural sprout, based on a concept of cyborg plant composite. The composite consisted of both polyaniline and plants. The chemical structure was confirmed by infrared absorption spectroscopy measurements. Optical microscopy observation revealed that polyaniline was deposited into the micro-tissue of the sprout to form the conductive polymer bio-composite. Micro-optical fiber functions for the composite were visually confirmed. Furthermore, the sprout/polyaniline based organic diode exhibited an avalanche breakdown phenomenon. Next, a fucoidan/polyaniline composite as a physiological active material/conducting polymer composite was prepared. This composite showed good film-forming ability, electrochromism, and a micro-porous surface. This paper reports the preparation of conducting polymer composites with a combination of bio-tissue and bio-substance for the creation of bio-based electrically active organized architecture. Full article
Show Figures

Figure 1

26 pages, 5177 KiB  
Article
Enhancing the Spectroelectrochemical Performance of WO3 Films by Use of Structure-Directing Agents during Film Growth
by Thi Hai Quyen Nguyen, Florian Eberheim, Sophie Göbel, Pascal Cop, Marius Eckert, Tim P. Schneider, Lukas Gümbel, Bernd M. Smarsly and Derck Schlettwein
Appl. Sci. 2022, 12(5), 2327; https://doi.org/10.3390/app12052327 - 23 Feb 2022
Cited by 12 | Viewed by 3147
Abstract
Thin, porous films of WO3 were fabricated by solution-based synthesis via spin-coating using polyethylene glycol (PEG), a block copolymer (PIB50-b-PEO45), or a combination of PEG and PIB50-b-PEO45 as structure-directing agents. The [...] Read more.
Thin, porous films of WO3 were fabricated by solution-based synthesis via spin-coating using polyethylene glycol (PEG), a block copolymer (PIB50-b-PEO45), or a combination of PEG and PIB50-b-PEO45 as structure-directing agents. The influence of the polymers on the composition and porosity of WO3 was investigated by microwave plasma atomic emission spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, X-ray diffraction, and gas sorption analysis. The electrochromic performance of the WO3 thin films was characterized with LiClO4 in propylene carbonate as electrolyte. To analyze the intercalation of the Li+ ions, time-of-flight secondary ion mass spectrometry, and X-ray photoelectron spectroscopy were performed on films in a pristine or reduced state. The use of PEG led to networks of micropores allowing fast reversible electrochromic switching with a high modulation of the optical transmittance and a high coloration efficiency. The use of PIB50-b-PEO45 provided isolated spherical mesopores leading to an electrochromic performance similar to compact WO3, only. Optimum characteristics were obtained in films which had been prepared in the presence of both, PEG and PIB50-b-PEO45, since WO3 films with mesopores were obtained that were interconnected by a microporous network and showed a clear progress in electrochromic switching beyond compact or microporous WO3. Full article
(This article belongs to the Special Issue Metal Oxides in Energy Technologies)
Show Figures

Graphical abstract

15 pages, 2042 KiB  
Article
Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer
by Anton Kozmai, Natalia Pismenskaya and Victor Nikonenko
Int. J. Mol. Sci. 2022, 23(4), 2238; https://doi.org/10.3390/ijms23042238 - 17 Feb 2022
Cited by 8 | Viewed by 2577
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included [...] Read more.
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems 3.0)
Show Figures

Graphical abstract

15 pages, 4380 KiB  
Article
Tuning the Sensitivity and Dynamic Range of Optical Oxygen Sensing Films by Blending Various Polymer Matrices
by Kaiheng Zhang, Siyuan Lu, Zhe Qu and Xue Feng
Biosensors 2022, 12(1), 5; https://doi.org/10.3390/bios12010005 - 22 Dec 2021
Cited by 5 | Viewed by 4299
Abstract
In this work, eight different types of optical oxygen sensing films were prepared by impregnating indicator and matrix solution on the surface of a polypropylene microporous filter membrane. The polymer matrix of the sensing films was ethyl cellulose (EC), polymethyl methacrylate (PMMA), and [...] Read more.
In this work, eight different types of optical oxygen sensing films were prepared by impregnating indicator and matrix solution on the surface of a polypropylene microporous filter membrane. The polymer matrix of the sensing films was ethyl cellulose (EC), polymethyl methacrylate (PMMA), and their blends with different mixing ratios. Scanning electron microscopy (SEM), laser confocal microscopy, and fluorescence spectrometer were used to investigate the morphologies and optical properties of the sensing films. Phase delay measurements under different oxygen partial pressures (PO2) and temperatures were applied to investigate the analytical performances of the sensing film for gaseous O2 monitoring. Results show that the response time of all the sensing films was extremely fast. The sensitivities and dynamic ranges of the sensing films with the blended polymer matrix were separately decreased and increased as the EC/PMMA ratio decreased, and the S-V curve of the sensing films blended with equal content of EC and PMMA exhibited good linearity under different temperatures, showing a promising prospect in practical application. Full article
(This article belongs to the Special Issue Flexible Biosensors for Health Monitoring)
Show Figures

Figure 1

19 pages, 2183 KiB  
Article
Design and Development of Enhanced Antimicrobial Breathable Biodegradable Polymeric Films for Food Packaging Applications
by Mona M. Abd Al-Ghani, Rasha A. Azzam and Tarek M. Madkour
Polymers 2021, 13(20), 3527; https://doi.org/10.3390/polym13203527 - 14 Oct 2021
Cited by 13 | Viewed by 4593
Abstract
The principle of breathable food packaging is to provide the optimal number of pores to transfer a sufficient amount of fresh air into the packaging headspace. In this work, antimicrobial microporous eco-friendly polymeric membranes were developed for food packaging. Polylactic acid (PLA) and [...] Read more.
The principle of breathable food packaging is to provide the optimal number of pores to transfer a sufficient amount of fresh air into the packaging headspace. In this work, antimicrobial microporous eco-friendly polymeric membranes were developed for food packaging. Polylactic acid (PLA) and polycaprolactone (PCL) were chosen as the main packaging polymers for their biodegradability. To develop the microporous films, sodium chloride (NaCl) and polyethylene oxide (PEO) were used as porogenic agents and the membranes were prepared using solvent-casting techniques. The results showed that films with of 50% NaCl and 10% PEO by mass achieved the highest air permeability and oxygen transmission rate (O2TR) with PLA. Meanwhile, blends of 20% PLA and 80% PCL by mass showed the highest air permeability and O2TR at 100% NaCl composition. The microporous membranes were also coated with cinnamaldehyde, a natural antimicrobial ingredient, to avoid the transportation of pathogens through the membranes into the packaged foods. In vitro analysis showed that the biodegradable membranes were not only environmentally friendly but also allowed for maximum food protection through the transportation of sterile fresh air, making them ideal for food packaging applications. Full article
(This article belongs to the Special Issue Polymeric Membranes for Advanced Applications)
Show Figures

Figure 1

10 pages, 1621 KiB  
Article
An Evaluation of Optical Absorbance Kinetics for the Detection of Micro-Porosity in Molecularly Doped Polymer Thin-Films
by David Mitchell Goldie, Orlaith Skelton and Thomas James Bailey
Solids 2021, 2(2), 155-164; https://doi.org/10.3390/solids2020010 - 1 Apr 2021
Viewed by 3248
Abstract
The use of optical absorbance kinetics to identify micro-porous regions in doped polymer films is evaluated. Data are presented for a series of hydrazone doped polymer films which are found to optically bleach upon exposure to an ultra violet (UV) radiation source. The [...] Read more.
The use of optical absorbance kinetics to identify micro-porous regions in doped polymer films is evaluated. Data are presented for a series of hydrazone doped polymer films which are found to optically bleach upon exposure to an ultra violet (UV) radiation source. The UV absorbance kinetics are found to exhibit distinctive characteristics for the various polymers studied, with changes in film absorbance occurring either in a fast (<103 s) or slow (>104 s) timescale. An interpretation of these distinctive timescales based upon a cellular-automata model of the absorbance kinetics suggests that the underlying photo-oxidation of the hydrazone is highly sensitive to underlying micro-porosity in the films which controls the necessary supply of absorbed oxygen for photo-cyclic reaction. Full article
(This article belongs to the Special Issue Feature Papers of Solids 2021)
Show Figures

Figure 1

16 pages, 2506 KiB  
Article
Pozzolan Based 3D Printing Composites: From the Formulation Till the Final Application in the Precision Irrigation Field
by Nicola Schiavone, Vincent Verney and Haroutioun Askanian
Materials 2021, 14(1), 43; https://doi.org/10.3390/ma14010043 - 24 Dec 2020
Cited by 6 | Viewed by 2899
Abstract
A new eco-composite polymer for material extrusion fabrication based on fine fraction pozzolan waste was developed. In addition, the composite materials obtained were used to produce a self-watering pot with complex geometry and a permeable porous part to regulate the passage of water [...] Read more.
A new eco-composite polymer for material extrusion fabrication based on fine fraction pozzolan waste was developed. In addition, the composite materials obtained were used to produce a self-watering pot with complex geometry and a permeable porous part to regulate the passage of water from the storage area to the roots of the plant. Moreover, the system was devised with a cover characterized by a UV-B barrier film. The results have shown the possibility of the 3D printing of complex geometric parts as microporous structures or thin films using a composite based on poly lactic acid (PLA) and pozzolan. The pozzolan has an effect of reinforcement for the composite and at the same time improves the cohesion between the layers of the part during printing. Full article
Show Figures

Graphical abstract

Back to TopTop