Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Micrography and Elemental Composition
2.2. AFM: Atomic Force Microscopy Nanosurf Easy Scan 2, Liestal, Switzerland
2.3. Functional Groups Analysis in FTIR Spectroscopy
2.4. Numerical Simulation in COMSOL 5.6
2.5. LIF Spectroscopy Analysis
3. Materials and Methods
3.1. Materials
3.2. Method of Work
3.3. Methods of Analysis
3.3.1. Numerical Simulation in COMSOL 5.6 Software
3.3.2. Fourier Transform Infrared Spectroscopy Analysis
3.3.3. Laser-Induced Fluorescence Spectroscopy Analysis
3.3.4. Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Analysis
3.3.5. Atomic Force Microscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, M.; Sardesai, M.M. Cannabis sativa (Cannabaceae) in ancient clay plaster of Ellora Caves, India. Curr. Sci. 2016, 110, 884–891. [Google Scholar]
- Snegireva, A.; Chernova, T.; Ageeva, M.; Lev-Yadun, S.; Gorshkova, T. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB PLANTS 2015, 7, plv061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevulova, N.; Cigasova, J.; Estokova, A.; Terpakova, E.; Geffert, A.; Kacik, F.; Singovszka, E.; Holub, M. Properties Characterization of Chemically Modified Hemp Hurds. Materials 2014, 7, 8131–8150. [Google Scholar] [CrossRef] [PubMed]
- Zimniewska, M. Hemp Fibre Properties and Processing Target Textile: A Review. Materials 2022, 15, 1901. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Characteristic and Performance of Elementary Hemp Fibre. Mater. Sci. Appl. 2010, 1, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Conti, S.; Cozzolino, E.; Melchionna, G.; Ottaiano, L.; Testa, A.; Sabatino, L.; Rouphael, Y.; Mori, M. Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects. Agronomy 2021, 11, 342. [Google Scholar] [CrossRef]
- Zimniewska, M.; Rozanska, W.; Gryszczynska, A.; Romanowska, B.; Kicinska-Jakubowska, A. Antioxidant Potential of Hemp and Flax Fibers Depending on Their Chemical Composition. Molecules 2018, 23, 1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorado, J.; Almendros, G.; Field, J.A.; Sierra-Alvarez, R. Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels. Enzym. Microb. Technol. 2001, 28, 550–559. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Chen, Y.; Hao, X.; Jin, X. Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys. 2017, 7, 1628–1633. [Google Scholar] [CrossRef]
- Pacheco, G.; Véspoli de Mello, C.; Chiari-Andréo, G.; Borges Isaac, V.L.; Sidney José Lima Ribeiro, S.J.; Édison Pecoraro, E.; Trovatti, E. Bacterial cellulose skin masks-Properties and sensory tests, Review. J. Cosmet. Dermatol. 2018, 17, 840–847. [Google Scholar] [CrossRef]
- Tang, J.; He, H.; Wan, R.; Yang, Q.; Luo, H.; Li, L.; Xiong, L. Cellulose Nanocrystals for Skin Barrier Protection by Preparing a Versatile Foundation Liquid. ACS Omega 2021, 6, 2906–2915. [Google Scholar] [CrossRef]
- Pilar Vinardell, M.; Montserrat Mitjans, M. Lignins and Their Derivatives with Benefificial Effects on Human Health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shena, Y.; Songa, X.; Lic, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Liu, C.; Yang, W.; Williams, L.; Zhang, H.; et al. Protective effffects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother. 2019, 111, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Chool Boo, Y. p-Coumaric Acid as An Active Ingredient in Cosmetics: A Review Focusing on its Antimelanogenic Effects. Antioxidants 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Aldaba-Muruato, L.R.; Ventura-Juárez, J.; Perez-Hernandez, A.M.; Hernández-Morales, A.; Muñoz-Ortega, M.H.; Martínez-Hernández, S.L.; Alvarado-Sánchez, B.; Macías-Pérez, J.R. Therapeutic perspectives of p-coumaric acid: Anti-necrotic, anti-cholestatic and anti-amoebic activities. World Acad. Sci. J. 2021, 3, 47. [Google Scholar] [CrossRef]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Yu, S.; Min Yan, M.; Berglund, L. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance. Biomacromolecules 2016, 17, 1358–1364. [Google Scholar] [CrossRef] [Green Version]
- Alipoormazandarani, N.; Fokkink, R.; Fateh, P. Deposition behavior of lignin on solid surfaces assessed by stagnation point adsorption reflectometry. RSC Adv. 2021, 11, 16980. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Wu, S.; Liang, J.; Lei, M. Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv. 2016, 6, 107970. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. Affifinity Assays for Cannabinoids Detection: Are They Amenable to On-Site Screening? Biosensors 2022, 12, 608. [Google Scholar] [CrossRef]
- Cocean, G.; Cocean, A.; Postolachi, C.; Garofalide, S.; Bulai, G.; Munteanu, B.S.; Cimpoesu, N.; Cocean, I.; Gurlui, S. High-Power Laser Deposition of Chitosan Polymers: Medical and Environmental Applications. Polymers 2022, 14, 1537. [Google Scholar] [CrossRef] [PubMed]
- Thirumal, S.; Duraikannu, G. Fourier-transform Infrared Analysis and In Vitro Antibacterial Activity of Ormocarpum cochinchinense (Elumbotti). Int. J. Pharm. Biol. Arch. 2019, 10, 78–82. [Google Scholar] [CrossRef]
- Blanchard, M.; Meheut, M.; Delon, L.; Poirier, M. Pierre Micoud, Christophe Le Roux, François Martin Infrared spectroscopic study of the synthetic Mg–Ni talc series. Phys. Chem. Miner. 2018, 45, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Tables of Spectral Data, 4th ed.; Revised and Enlarged Edition; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-93810-1. [Google Scholar] [CrossRef]
- Hussien, S.S. Biosynthesis, Extraction and Characterization of Extracellular Polymeric Substances (EPSs) from Aspergillus clavatus. Adv. Environ. Stud. 2019, 3, 216–228. [Google Scholar] [CrossRef]
- Cocean, A.; Postolachi, C.; Cocean, G.; Bulai, G.; Munteanu, B.S.; Cimpoesu, N.; Cocean, I.; Gurlui, S. The Origin and Physico-Chemical Properties of Some Unusual Earth Rock Fragments. Appl. Sci. 2022, 12, 983. [Google Scholar] [CrossRef]
- Cocean, A.; Cocean, I.; Cimpoesu, N.; Cocean, G.; Cimpoesu, R.; Postolachi, C.; Popescu, V.; Gurlui, S. Laser Induced Method to Produce Curcuminoid-Silanol Thin Films for Transdermal Patches Using Irradiation of Turmeric Target. Appl. Sci. 2021, 11, 4030. [Google Scholar] [CrossRef]
- Cocean, A.; Cocean, I.; Cocean, G.; Postolachi, C.; Pricop, D.A.; Munteanu, B.S.; Cimpoesu, N.; Gurlui, S. Study of Physico-Chemical Interactions during the Production of Silver Citrate Nanocomposites with Hemp Fiber. Nanomaterials 2021, 11, 2560. [Google Scholar] [CrossRef]
- Cocean, I.; Cocean, A.; Postolachi, C.; Pohoata, V.; Cimpoesu, N.; Bulai, G.; Iacomi, F.; Gurlui, S. Alpha keratin amino acids behvior under high fluence laser interaction. Medical applications. Appl. Surf. Sci. 2019, 488, 418–426. [Google Scholar] [CrossRef]
- De Pascale, M.; De Angelis, M.G.; Boi, C. Mixed Matrix Membranes Adsorbers (MMMAs) for the Removal of Uremic Toxins from Dialysate. Membranes 2022, 12, 203. [Google Scholar] [CrossRef]
- Cocean, A.; Pelin, V.; Cazacu, M.M.; Cocean, I.; Sandu, I.; Gurlui, S.; Iacomi, F. Thermal effects induced by laser ablation in non-homogeneous limestone covered by an impurity layer. Appl. Surf. Sci. 2017, 424, 324–329. [Google Scholar] [CrossRef]
- Cocean, A.; Cocean, I.; Gurlui, S.; Iacomi, F. Study of the pulsed laser deposition phenomena by means of Comsol Multiphysics. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 263–274. [Google Scholar]
- Cocean, A.; Cocean, I.; Gurlui, S. Influence of the Impurities to the Composite Materials in Laser Ablation Phenomena. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 225–238. [Google Scholar]
- Kawamoto, H. Lignin pyrolysis reactions. J. Wood Sci. 2017, 63, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, C.; Langsdorf, G.; Lichtenthaler, H.K. Imaging of the blue, green, and red fluotrescence emission of plants: An overview. Photosynthetica 2000, 38, 483–491. [Google Scholar] [CrossRef]
- Ndolo, V.U.; Beta, T.; Fulcher, R.G. Ferulic acid fluorescence intensity profifiles and concentration measured by HPLC in pigmented and non-pigmented cereals. Food Res. Int. 2013, 52, 109–118. [Google Scholar] [CrossRef]
- Garcia-Sanchez, F.; Carnero, C.; Heredia, A. Fluorometric determination of p-coumaric acid in beer. J. Agric. Food Chem. 1988, 36, 80–82. [Google Scholar] [CrossRef]
- Putschögl, M.; Zirak, P.; Penzkofer, A. Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents. Chem. Phys. 2008, 343, 107–120. [Google Scholar] [CrossRef]
- Optical Constants of Ca (Calcium). Available online: https://refractiveindex.info/?shelf=main&book=Ca&page=Mathewson (accessed on 20 October 2022).
Vibration Bands [cm−1] | Functional Groups and References | Observations | ||
---|---|---|---|---|
HMP-STK | PLD-HMP-STK | HMP-FB | ||
3938 | 3938 | - | O-H st free and bonded in phenols [22] O-H in adsorbed/absorbed water or in Mg-OH; Ca-OH [23] | lignin p-coumaric and ferulic acids (phenolic acids of parenchyma provenience) Mg-OH Ca-OH Adsorbed water |
3848 | 3848 | - | O-H st free in alcohols [24] O-H in carboxylic acid, known to be typical carbohydrates [25] O-H in adsorbed/absorbed water or in Mg-OH; Ca-OH [23,26] | cellulose, hemicellulose starch sugars Mg-OH Ca-OH adsorbed water |
3533 3362 | 3522 3382 | 3480 3328 | O-H st intermolecular bonded in alcohols and phenols in polymers [5,21] O-H st in carboxylic acids [24,27,28] | cellulose, hemicellulose, starch, sugars, lignin p-coumaric and ferulic acids |
3025 | 3025 | - | Aryl C-H groups [1,24] | lignin p-coumaric and ferulic acids |
2953 | 2953 | 2971 2906 | Alkyl C-H groups [8,21,24,26] 2971 cm−1-possible Aryl C-H in lignin [7] | cellulose, hemicellulose starch sugars Possible lignin |
2462 | 2451 | - | O=C=O st (carbon dioxide) [24,26] | adsorbed CO2 |
1790 | 1790 | 1780 | C=O st in carboxyl groups in conjugated acids and aldehydes, esters [5,24,29] C=O st in vinyl/phenyl ester [5,24] | lignin pectin p-coumaric and ferulic acids waxes |
1747 | 1747 | - | C=O st in esters; [5,24] C=O st in carboxyl groups in conjugated acids of parenchyma and aldehydes, esters (in pectin, lignin, wax) [Ernö Pretch] [24,26] | waxes p-coumaric and ferulic acids pectin lignin adsorbed formaldehyde |
- | - | 1682 | C=O in carboxyl groups in carboxylic acids [8,24]; C=O in conjugated aldehide or ketone [24] | p-coumaric and ferulic acids |
1639 | 1639 | - | O-H of adsorbed water [5]; C=C st in monosubstituted alkene [24] | adsorbed water p-coumaric and ferulic acids |
- | - | 1617 | C=C st in α,β-unsaturated ketone [24] | |
1554 | 1554 | - | [24] C=O in carboxyl groups [4,21,24,26,28] | adsorbed formaldehyde p-coumaric and ferulic acids |
1510 | 1510 | 1510 | C=C aromatic symetrical st [4,5,24] | lignin |
1359 | 1359 | 1359 | C-H bending [24]; methoxyphenolic substitution in the aromatic ring [8,24]; H in-plane bending in phenols in lignin [24] O-H in-plane bending, intermolecular bonded in alcohols in polymers [5,24] | cellulose, hemicellulose starch sugars lignin |
1151 | 1190 | 1160 | Skeletal vibrations due to C-O-C asymmetric st in the oxane ring (cyclic ethers) [4,21,24] | cellulose (amorphous to crystalline 1160; 1190) Hemicellulose Starch pectin |
1124 | 1124 | 1124 | Skeletal vibrations due to C-O-C asymmetric st in the oxane ring (cyclic ethers) [21,24] | cellulose (amorphous to crystalline 1160; 1190) Hemicellulose Starch pectin |
1000 | 1000 | 945 | Skeletal vibrations due to C-O-C asymmetric st in the oxane ring (cyclic ethers) [24] Side groups vibrations [4,24] C=C bending in alkene in the carboxylic acids [24] | cellulose Hemicellulose Starch Pectin p-coumaric and ferulic acids |
880 | 880 | - | Skeletal vibrations due to C-O-C symmetric st, C-C-O and C-C-H bendings [4,5,21,24]; C=C bending in alkene in the carboxylic acids [24] | cellulose Hemicellulose Starch Pectin p-coumaric and ferulic acids |
- | 827 | - | C=C bending in alkene trisubstituted [24] | p-coumaric and ferulic acids |
794 | 783 | - | Out-of-plane bending in alkene in the carboxylic acids [24] | p-coumaric and ferulic acids |
729 | 729 | 729 | CH2 rocking [24]; C=C bending in alkene disubstituted (cis) in the carboxylic acids [24] O-H out-of-plane bending [24] C-H bending [24] | Cellulose p-coumaric and ferulic acids |
675 | 696 | - | C-H bending and ring bending [24]; C=C bending in alkene disubstituted (cis) in the carboxylic acids [24] C–H aromatic bending-out-of-plane modes [26] Adsorbed molecular CO2 [26] O-H out-of-plane bending [24]; C-OH out-of-plane bending [5,24] | cellulose crystalline state, hemicellulose, starch, sugars, lignin p-coumaric and ferulic acids adsorbed CO2 |
650–624 | 650–624 | 650–624 | O-H out-of-plane bending [24] C-OH out-of-plane bending [5,24] | cellulose, hemicellulose, starch, sugars, lignin p-coumaric and ferulic acids adsorbed water |
Time | 10 ns | 14 ns | 20 ns |
---|---|---|---|
Tequilibrium lignin/Ca in spot center (x,y,z) = (0,0,0) | 1014 K | 1279 K | 1330 K |
Tmax-Ca (in lignin/Ca composite target) | 799 K 720 K | 923 K 836 K | 948 K 840 K |
Tmax-lignin (in lignin/Ca composite target) | 1479 K 1349 K | 1853 K 1689 K | 1792 K 1645 K |
Tmax-Ca in pure Ca target in spot center (x,y,z) = (0,0,0) | 804 K | 930 K | 904 K |
Tmax-lignin in pure lignin target in spot center (x,y,z) = (0,0,0) | 1444 K | 1742 K | 1635 K |
Fluorecence [nm] | Emission, Fluorophores and References | |
---|---|---|
PLD-HMP-STK/HMP-FB | PLD-HMP-STK/Glass | |
430 | 424 | Violet-blue due to p- coumaric acid and its derivatives [37,38]; bathochromic shift on PLD-HMP-STK/Glass |
- | 443 | Blue due to coumaric acid derivatives [37,38] |
455 | 452 | Blue due to coumaric acid [37,38]; bathochromic shift on PLD-HMP-STK/Glass |
480 | 482 v. strong | Blue-green due to ferulic acid [35,36]; slight hypsochromic shift |
498 | 489 v. strong | Blue-green due to ferulic acid [35,36]; bathochromic shift and enhanced intensity due to the p-coumaric acid concentration [35] on PLD-HMP-STK/Glass |
508 (max) | 508 v. strong | Green; enhanced fluorescence intensity on PLD-HMP-STK/Glass |
- | 549 | Green-yellow |
559 | 561 | Yellow-green; hypsochromic shift and enhanced fluorescence intensity on PLD-HMP-STK/Glass |
588 | 587 v. strong | Yellow; slight hypsochromic shift and enhanced fluorescence intensity on PLD-HMP-STK/Glass |
- | 603 v. strong | Yellow-red; assigned to chlorophyll [35] |
615 | 614 v. strong | Yellow-red; slight hypsochromic shift and enhanced fluorescence intensity on PLD-HMP-STK/Glass |
- | 627 v. strong | Red-yellow; assigned to chlorophyll [35] |
- | 640 | Red-yellow |
665 | 668 | Red; slight hypsochromic shift and enhanced fluorescence intensity on PLD-HMP-STK/Glass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocean, A.; Cocean, G.; Diaconu, M.; Garofalide, S.; Husanu, F.; Munteanu, B.S.; Cimpoesu, N.; Motrescu, I.; Puiu, I.; Postolachi, C.; et al. Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells. Int. J. Mol. Sci. 2023, 24, 3892. https://doi.org/10.3390/ijms24043892
Cocean A, Cocean G, Diaconu M, Garofalide S, Husanu F, Munteanu BS, Cimpoesu N, Motrescu I, Puiu I, Postolachi C, et al. Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells. International Journal of Molecular Sciences. 2023; 24(4):3892. https://doi.org/10.3390/ijms24043892
Chicago/Turabian StyleCocean, Alexandru, Georgiana Cocean, Maria Diaconu, Silvia Garofalide, Francisca Husanu, Bogdanel Silvestru Munteanu, Nicanor Cimpoesu, Iuliana Motrescu, Ioan Puiu, Cristina Postolachi, and et al. 2023. "Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells" International Journal of Molecular Sciences 24, no. 4: 3892. https://doi.org/10.3390/ijms24043892
APA StyleCocean, A., Cocean, G., Diaconu, M., Garofalide, S., Husanu, F., Munteanu, B. S., Cimpoesu, N., Motrescu, I., Puiu, I., Postolachi, C., Cocean, I., & Gurlui, S. (2023). Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells. International Journal of Molecular Sciences, 24(4), 3892. https://doi.org/10.3390/ijms24043892