Polyaniline Hybrids with Biological Tissue, and Biological Polymers as Physiological—Electroactive Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Synthesis of Sprout/PANI
2.4. Synthesis of PANI with Fucoidan
2.4.1. Synthesis of Polyaniline with Non-Gel Method
2.4.2. Synthesis of Polyaniline with Chemical Reaction in Fucoidan Gel
2.4.3. Synthesis of Polyaniline with Electrochemical Reaction in Fucoidan Gel
3. Results and Discussion
3.1. Sprout/PANI
3.1.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.1.2. Optical Microscopy Images
3.2. Fucoidan/PANI
3.2.1. IR Absorption
3.2.2. UV-vis Absorption
3.2.3. Electron Spin Resonance
3.2.4. Cyclic Voltammetry
3.2.5. Electrochromism
3.2.6. X-ray Diffraction (XRD)
3.2.7. Surface Image
4. Diode
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ito, T.; Shirakawa, H.; Ikeda, S. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. J. Polym. Sci. Polym. Chem. 1974, 12, 11–20. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Y.; Yue, G.; Tu, Y.; Zheng, H. A dual function of high efficiency quasi-solid-state flexible dye-sensitized solar cell based on conductive polymer integrated into poly (acrylic acid-co-carbon nanotubes) gel electrolyte. Sol. Energy 2017, 148, 63–69. [Google Scholar] [CrossRef]
- Chen, H.W.; Lee, J.H.; Lin, B.Y.; Chen, S.; Wu, S.T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Benavides-Guerrero, J.; Banerjee, D.; Roy-Moisan, F.; Cloutier, S.G. Hybrid color-tunable polymer light-emitting diodes using electrospraying. ACS Omega 2019, 4, 19287–19292. [Google Scholar] [CrossRef]
- Jeon, S.O.; Lee, K.H.; Kim, J.S.; Ihn, S.G.; Chung, Y.S.; Kim, J.W.; Lee, H.; Kim, S.; Choi, H.; Lee, J.Y. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photonics 2021, 15, 208–215. [Google Scholar] [CrossRef]
- Iino, H.; Hanna, J. Liquid crystalline organic semiconductors for organic transistor applications. Polym. J. 2017, 49, 23–30. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, H.R.; Park, C.H.; Han, S.G.; Oh, J.H. Organic transistor-based chemical sensors for wearable bioelectronics. Acc. Chem. Res. 2018, 51, 2829–2838. [Google Scholar] [CrossRef]
- Zhao, P.; Tang, Q.; Zhao, X.; Tong, Y.; Liu, Y. Highly stable and flexible transparent conductive polymer electrode patterns for large-scale organic transistors. J. Colloid Interface Sci. 2018, 520, 58–63. [Google Scholar] [CrossRef]
- Abel, S.B.; Frontera, E.; Acevedo, D.; Barbero, C.A. Functionalization of conductive polymers through covalent postmodification. Polymers 2023, 15, 205. [Google Scholar] [CrossRef]
- Bhadra, J.; Alkareem, A.; Al-Thani, N. A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J. Polym. Res. 2020, 27, 122. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Tong, X.; Zhuo, H.; Zhong, L.; Peng, X. Biomass-Based Porous N-Self-Doped Carbon Framework/Polyaniline Composite with Outstanding Supercapacitance. ACS Sustain. Chem. Eng. 2017, 5, 8663–8674. [Google Scholar] [CrossRef]
- Jisha, P.; Suma, M.S.; Murugendrappa, M.V.; Raj, K. A study on the effect of PVDF on the structural and transport properties of polyaniline. Int. J. Polym. Anal. Charact. 2020, 25, 176–187. [Google Scholar] [CrossRef]
- Kausar, A. Polyimide, polybenzimidazole-in situ-polyaniline nanoparticle and carbon nano-onion-based nanocomposite designed for corrosion protection. Int. J. Polym. Anal. Charact. 2017, 22, 557–567. [Google Scholar] [CrossRef]
- Upadhyay, J.; Das, T.M.; Borah, R. Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes. Int. J. Polym. Anal. Charact. 2021, 26, 354–363. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, D.; Liu, F.; Li, W.; Lin, J. Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 2020, 8, 5853–5858. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, T.; Yang, Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 2020, 389, 124433. [Google Scholar] [CrossRef]
- Demirci, S.; Sutekin, S.D.; Sahiner, N. Polymeric composites based on carboxymethyl cellulose cryogel and conductive polymers: Synthesis and characterization. J. Compos. Sci. 2020, 4, 33. [Google Scholar] [CrossRef]
- Kausar, A. Potential of polymer/fullerene nanocomposites for anticorrosion applications in the biomedical field. J. Compos. Sci. 2022, 6, 394. [Google Scholar] [CrossRef]
- Guo, Y.; Ghobeira, R.; Aliakbarshirazi, S.; Morent, R.; De Geyter, N. Polylactic acid/polyaniline nanofibers subjected to pre- and post-electrospinning plasma treatments for refined scaffold-based nerve tissue engineering applications. Polymers 2023, 15, 72. [Google Scholar] [CrossRef]
- Komaba, K.; Goto, H. Preparation of bagworm silk/polyaniline composite. J. Appl. Polym. Sci. 2021, 139, e51791. [Google Scholar] [CrossRef]
- Perrin, F.X.; Oueiny, C. Polyaniline thermoset blends and composites. React. Funct. Polym. 2017, 114, 86–103. [Google Scholar] [CrossRef]
- Giraldo, J.P.; Landry, M.P.; Faltermeier, S.M.; McNicholas, T.P.; Iverson, N.M.; Boghossian, A.A.; Reuel, N.F.; Hilmer, A.J.; Sen, F.; Brew, J.A.; et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 2014, 13, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Goto, H. Polymerisation of Aniline on the Butterfly Scale: Bio-Interface Polymerisation. Int. Lett. Chem. Phys. Astron. 2015, 62, 34–36. [Google Scholar] [CrossRef]
- Komaba, K.; Goto, H. A polyaniline/shark skin composite and its conductivity based on polaron hopping. Polym.-Plast. Technol. Mat. 2020, 60, 906–916. [Google Scholar] [CrossRef]
- Komaba, K.; Goto, H. Direct bio-interface preparation for spirulina and conductive polymer composite. Int. J. Polym. Mater. Bio. Mater. 2020, 70, 669–673. [Google Scholar] [CrossRef]
- Komaba, K.; Hirokawa, S.; Goto, H. Preparation of biocarbon micro coils. Soft Mater. 2020, 19, 40–49. [Google Scholar] [CrossRef]
- Sareen, H.; Maes, P. Cyborg botany: Exploring in-planta cybernetic systems for interaction. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems; ACM: New York, NY, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Stavrinidou, E.; Gabrielsson, R.; Gomez, E.; Crispin, X.; Nilsson, O.; Simon, D.T.; Berggren, M. Electronic plants. Sci. Adv. 2015, 1, e150113. [Google Scholar] [CrossRef]
- Anisimov, Y.A.; Cree, D.E.; Wilson, L.D. Preparation of multicomponent biocomposites and characterization of their physicochemical and mechanical properties. J. Comp. Sci. 2020, 4, 18. [Google Scholar] [CrossRef]
- Gu, Z.J.; Song, W.; Shen, Q. Effect of electrostatic forces control on the structure and properties of polyaniline/graphene oxide nanocomposite. Int. J. Polym. Anal. Charact. 2019, 24, 517–523. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Q.; Xiao, J.; Zeng, K.; Qu, S.; Shi, W.; Wang, Q.; Chen, L. Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials. Chem. Asian J. 2016, 11, 1804–1810. [Google Scholar] [CrossRef]
- Yamada, N. Science of Sea Weed Fucoidan; Seizando-Shoten Publishing Co., Ltd.: Tokyo, Japan, 2006; pp. 59, 79–85, 114–121, 151–161. [Google Scholar]
- Usui, T.; Asari, K.; Mizuno, T. Isolation of highly purified “fucoidan” from Eisenia bicyclis and its anticoagulant and antitumor activities. Agric. Biol. Chem. 1980, 44, 1965–1966. [Google Scholar] [CrossRef]
- Yamamoto, I.; Nagumo, T.; Yagi, K.; Tominaga, H.; Aoki, M. Antitumor effect of seaweeds. I. Antitumor effect of extracts from Sargassum and Laminaria. Jpn. J. Exp. Med. 1974, 44, 543–546. [Google Scholar]
- Ponce, N.M.A.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydr. Res. 2003, 338, 153–165. [Google Scholar] [CrossRef]
- De Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- Willenborg, D.O.; Parish, C.R. Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J. Immunol. 1988, 15, 3401–3405. [Google Scholar] [CrossRef]
- Filote, C.; Lanez, E.; Popa, V.I.; Lanez, T.; Volf, I. Characterization and Bioactivity of Polysaccharides Separated through a (Sequential) Biorefinery Process from Fucus spiralis Brown Macroalgae. Polymers 2022, 14, 4106. [Google Scholar] [CrossRef]
- Kim, M.; Hayashi, M.; Yu, B.; Lee, T.K.; Kim, R.H.; Jo, D.-W. Effects of Fucoidan Powder Combined with Mineral Trioxide Aggregate as a Direct Pulp-Capping Material. Polymers 2022, 14, 2315. [Google Scholar] [CrossRef]
- Hsiao, W.-C.; Hong, Y.-H.; Tsai, Y.-H.; Lee, Y.-C.; Patel, A.K.; Guo, H.-R.; Kuo, C.-H.; Huang, C.-Y. Extraction, Biochemical Characterization, and Health Effects of Native and Degraded Fucoidans from Sargassum crispifolium. Polymers 2022, 14, 1812. [Google Scholar] [CrossRef]
- Akbari, A.; Bigham, A.; Rahimkhoei, V.; Sharifi, S.; Jabbari, E. Antiviral Polymers: A Review. Polymers 2022, 14, 1634. [Google Scholar] [CrossRef]
- Arunagiri, V.; Tsai, H.-C.; Darge, H.F.; Hanurry, E.Y.; Lee, C.Y.; Lai, J.-Y.; Wu, S.-Y. Enhanced Cellular Uptake in an Electrostatically Interacting Fucoidan–L-Arginine Fiber Complex. Polymers 2021, 13, 1795. [Google Scholar] [CrossRef]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Ballen, A.; Lopez-Garcia, J.-A.; Ozaltin, K. (PVA/Chitosan/Fucoidan)-Ampicillin: A Bioartificial Polymeric Material with Combined Properties in Cell Regeneration and Potential Antibacterial Features. Polymers 2019, 11, 1325. [Google Scholar] [CrossRef] [PubMed]
- Rohman, G.; Langueh, C.; Ramtani, S.; Lataillade, J.-J.; Lutomski, D.; Senni, K.; Changotade, S. The Use of Platelet-Rich Plasma to Promote Cell Recruitment into Low-Molecular-Weight Fucoidan-Functionalized Poly(Ester-Urea-Urethane) Scaffolds for Soft-Tissue Engineering. Polymers 2019, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Ozaltin, K.; Lehocky, M.; Humpolicek, P.; Pelkova, J.; Di Martino, A.; Karakurt, I.; Saha, P. Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization. Polymers 2019, 11, 750. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M.S. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers 2016, 8, 30. [Google Scholar] [CrossRef]
- Belhadj, H.; Moulefera, I.; Sabantina, L.; Benyoucef, A. Effects of Incorporating Titanium Dioxide with Titanium Carbide on Hybrid Materials Reinforced with Polyaniline: Synthesis, Characterization, Electrochemical and Supercapacitive Properties. Fibers 2022, 10, 46. [Google Scholar] [CrossRef]
- Perdigão, P.; Morais Faustino, B.M.; Faria, J.; Canejo, J.P.; Borges, J.P.; Ferreira, I.; Baptista, A.C. Conductive Electrospun Polyaniline/Polyvinylpyrrolidone Nanofibers: Electrical and Morphological Characterization of New Yarns for Electronic Textiles. Fibers 2020, 8, 24. [Google Scholar] [CrossRef]
- Kudo, Y.; Goto, H. Bio-interface Polymerisation: Synthesis of Polyaniline on the Marine Algae Surface. Int. Lett. Nat. Sci. 2016, 51, 14–20. [Google Scholar] [CrossRef]
Fucoidan (g) | Product (g) | |
---|---|---|
Fucoidan/N05 | 0.05 | Powder (0.120) |
Fucoidan/N1 | 0.1 | Powder (0.183) |
Fucoidan/N2 | 0.2 | Powder (0.199) |
Fucoidan/N3 | 0.3 | Powder (0.180) |
Fucoidan/N4 | 0.4 | Powder (0.198) |
Fucoidan/N5 | 0.5 | Powder (0.029) |
Fucoidan (g) | APS (g) b | E (V) c | Td | Product | |
---|---|---|---|---|---|
C-PANI | - | 0.6 | - | 24 h | Powder (0.214 g) |
Fucoidan/C-PANI(gel) | 0.5 | 0.6 | - | 24 h | Powder (0.525 g) |
E-PANI | - | - | 4.0 | 10 min | Film |
Fucoidan/E-PANI(gel) | 0.5 | - | 4.0 | 10 min | Film |
Hybrid | Host | Polymerization | Function |
---|---|---|---|
sprout/PANI | Sprout (Bio-tissue) | Tissue surface (heterogeneous) | Optical conduction, avalanche breakdown |
fucoidan/PANI | Fucoidan (Biopolymer) | (1) Non-gel method (heterogeneous) (2) Gel method (homogeneous) | Porous, electrochromism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichikawa, M.; Otaki, M.; Goto, H. Polyaniline Hybrids with Biological Tissue, and Biological Polymers as Physiological—Electroactive Materials. Micro 2023, 3, 172-191. https://doi.org/10.3390/micro3010013
Ichikawa M, Otaki M, Goto H. Polyaniline Hybrids with Biological Tissue, and Biological Polymers as Physiological—Electroactive Materials. Micro. 2023; 3(1):172-191. https://doi.org/10.3390/micro3010013
Chicago/Turabian StyleIchikawa, Mai, Masashi Otaki, and Hiromasa Goto. 2023. "Polyaniline Hybrids with Biological Tissue, and Biological Polymers as Physiological—Electroactive Materials" Micro 3, no. 1: 172-191. https://doi.org/10.3390/micro3010013
APA StyleIchikawa, M., Otaki, M., & Goto, H. (2023). Polyaniline Hybrids with Biological Tissue, and Biological Polymers as Physiological—Electroactive Materials. Micro, 3(1), 172-191. https://doi.org/10.3390/micro3010013