Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Nanoporous AAO Imprinting Molds
2.2. Fabrication of Hierarchical Micro–Nanoporous Imprinting Molds
2.3. Fabrication of Polymeric Replica Films
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shibuichi, S.; Yamamoto, T.; Onda, T.; Tsujii, K. Super Water and Oil-Repellent Surfaces Resulting from Fractal Structure. J. Colloid Interface Sci. 1998, 208, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties. Langmuir 2000, 16, 7044–7047. [Google Scholar] [CrossRef]
- Wang, B.; Liang, W.X.; Guo, Z.G.; Liu, W.M. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem. Soc. Rev. 2015, 44, 336–361. [Google Scholar] [CrossRef] [PubMed]
- Valipour, N.M.; Birjandi, F.C.; Sargolzaei, J. Super-non-wettable surfaces: A review. Colloids Surface A 2014, 448, 93–106. [Google Scholar] [CrossRef]
- Guo, Z.G.; Liu, W.M.; Su, B.L. Superhydrophobic Surfaces: From Natural to Biomimetic to Functional. J. Colloid Interface Sci. 2011, 353, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.Y.; Song, Y.L.; Jiang, L.; Wang, J.J. Bio-Inspired Strategies for Anti-Icing. ACS Nano 2014, 8, 3152–3169. [Google Scholar] [CrossRef] [PubMed]
- Jeevahan, J.; Chandrasekaran, M.; Joseph, G.B.; Durairaj, R.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. A review on superhydrophobic polymer nanocoatings: Recent development, application. Ind. Eng. Chem. Res. 2018, 57, 2727–2745. [Google Scholar] [CrossRef]
- Shome, A.; Das, A.; Borbora, A.; Dhar, M.; Manna, U. Role of chemistry in bio-inspired liquid wettability. Chem. Soc. Rev. 2022, 51, 5452–5497. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chu, F.; Shan, H.; Wu, X.; Dong, Z.; Wang, R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. Adv. Mater. 2023, 36, 2310177. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Guo, Z. Surface topographies of biomimetic superamphiphobic materials: Design criteria, fabrication and performance. Adv. Colloid Interface Sci. 2019, 269, 87–121. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.L.; Hill, R.M.; Lowery, J.L.; Fridrikh, S.V.; Rutledge, G.C. Electrospun Poly(Styrene-Block-Dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005, 21, 5549–5554. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dai, D.; Wu, X. Fabrication of superhydrophobic surfaces on aluminum. Appl. Surf. Sci. 2008, 254, 5599–5601. [Google Scholar] [CrossRef]
- Wang, H.X.; Fang, J.; Cheng, T.; Ding, J.; Qu, L.T.; Dai, L.M.; Wang, X.G.; Lin, T. One-Step Coating of Fluoro- Containing Silica Nanoparticles for Universal Generation of Surface Superhydrophobicity. Chem. Commun. 2008, 7, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Guo, Z.G.; Liu, W.M. Biomimetic transparent and superhydrophobic coatings: From nature and beyond nature. Chem. Commun. 2015, 51, 1775–1794. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, S.; Wang, L. Fabrication of artificial super-hydrophobic lotus-leaf-like bamboo surfaces through soft lithography. Colloid Surface A 2017, 513, 389–395. [Google Scholar] [CrossRef]
- Shi, T.; Xue, S.; Ma, X.; Peng, H.; Du, J.; Zheng, B.; Xia, Z. Fabrication of superhydrophobic micro-nanostructured aluminum alloy surface via a cost-effective processing using an ultra-low concentration of fluoroalkylsilane. Appl. Phys. A 2021, 127, 399. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Q.; Xu, Y.; Guo, C.F.; Wu, Z. Facile Fabrication of Self-Similar Hierarchical Micro-Nano Structures for Multifunctional Surfaces via Solvent-Assisted UV-Lasering. Micromachines 2020, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Hu, Y.; Li, M.; Li, D. Fabrication of Sr-functionalized micro/nano-hierarchical structure ceramic coatings on 3D printing titanium. Surf. Eng. 2021, 37, 373–380. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Ji, H. Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating. Appl. Surf. Sci. 2014, 288, 341–348. [Google Scholar] [CrossRef]
- Brock, L.; Sheng, J. Robust fabrication of polymeric nanowire with anodic aluminum oxide templates. Micromachines 2020, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kim, Y.; Lim, H.; Kim, J.; Choi, K.; Lee, J.; Kim, G. Fabrication of a Metal Roller Mold with Nanoimprinted Pattern Using Thermal Nanoimprint Lithography. Sci. Adv. Mater. 2020, 12, 481–485. [Google Scholar] [CrossRef]
- Youn, W.; Takahashi, M.; Goto, H.; Maeda, R. Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques. J. Mater. Process. Technol. 2007, 187, 326–330. [Google Scholar] [CrossRef]
- Sakamoto, J.; Nishino, T.; Kawata, H.; Yasuda, M.; Hirai, Y. High aspect ratio nano mold fabrication by advanced edge lithography without CVD. Microelectron. Eng. 2011, 88, 1992–1996. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.-J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Parvate, S.; Dixit, P.; Chattopadhyay, S. Superhydrophobic Surfaces: Insights from Theory and Experiment. J. Phys. Chem. B 2020, 124, 1323–1360. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285. [Google Scholar] [CrossRef]
- Jeong, C.; Choi, C.-H. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic sufficiency. ACS Appl. Mater. Interfaces 2012, 4, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R.-E.; Rubner, M.-F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 2007, 23, 7293–7298. [Google Scholar] [CrossRef]
- Michalska-Domańska, M.; Norek, M.; Stępniowski, W.J.; Budner, B. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum. Electrochim. Acta 2013, 105, 424–432. [Google Scholar] [CrossRef]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Surawathanawises, K.; Cheng, X. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates. Electrochim. Acta 2014, 117, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, J.; Park, H.-C.; Lee, K.-H.; Hwang, W. A superhydrophobic dual-scale engineered lotus leaf. J. Micromech. Microeng. 2008, 18, 5019. [Google Scholar] [CrossRef]
- Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gosele, U. Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2002, 2, 677–680. [Google Scholar] [CrossRef]
- Zhao, N.Q.; Jiang, X.X.; Shi, C.S.; Li, J.J.; Zhao, Z.G.; Du, X.W. Effects of anodizing conditions on anodic alumina structure. J. Mater. Sci. 2007, 42, 3878–3882. [Google Scholar] [CrossRef]
- Masuda, H.; Yada, K.; Osaka, A. A Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution. Jpn. J. Appl. Phys. 1998, 37, L1340–L1342. [Google Scholar] [CrossRef]
- Tian, J.; Bao, J.; Li, L.; Sha, J.; Duan, W.; Qiao, M.; Cui, J.; Zhang, Z. Facile fabrication of superhydrophobic coatings with superior corrosion resistance on LA103Z alloy by one-step electrochemical synthesis. Surf. Coat. Technol. 2023, 452, 129090. [Google Scholar] [CrossRef]
- Pawar, P.G.; Xing, R.; Kambale, R.C.; Kumar, A.M.; Liu, S.; Latthe, S.S. Polystyrene assisted superhydrophobic silica coatings with surface protection and selfcleaning approach. Prog. Org. Coat. 2017, 105, 235–244. [Google Scholar] [CrossRef]
- Fu, J.; Sun, Y.; Ji, Y.; Zhang, J. Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods. J. Mater. Process. Technol. 2022, 306, 117641. [Google Scholar] [CrossRef]
- Sinha, A.; Gupta, M.C. Microscale patterning of semiconductor c-Si by selective laser-heating induced KOH etching. Semicond. Sci. Technol. 2021, 36, 085002. [Google Scholar] [CrossRef]
- Shen, Y.; Li, K.; Chen, H.; Wu, Z.; Wang, Z. Superhydrophobic F-SiO2@PDMS composite coatings prepared by a two-step spraying method for the interface erosion mechanism and anti-corrosive applications. Chem. Eng. J. 2021, 413, 127455. [Google Scholar] [CrossRef]
- Athinarayanan, B.; Jeong, D.Y.; Kang, J.H.; Koo, B.H. Fabrication of hydrophobic and anti-reflective polymeric films using anodic aluminum-oxide imprints. J. Korean Phys. Soc. 2015, 67, 1977–1985. [Google Scholar] [CrossRef]
- Pu, Y.; Hu, J.J.; Yao, T.; Li, L.; Zhao, J.; Guo, Y. Influence of anodization parameters on film thickness and volume expansion of thick- and large-sized anodic aluminum oxide film. J. Mater. Sci. Mater. Electron. 2021, 32, 13708–13718. [Google Scholar] [CrossRef]
- Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Adv. Mater. 2007, 19, 2213–2217. [Google Scholar] [CrossRef]
Methodology | Advantages | Challenges | References |
---|---|---|---|
Electrochemical deposition method | Even on a large scale, it is very easy to control the thickness of the deposition layer | This will not work in non-conductive materials | [38] |
Spin coating methods | Minimum curing time | Poor binding energy between the substrates and polymers | [39] |
Chemical vapor deposition method | Portable, precise thickness control | Very expensive and not adequate for mass production | [40] |
Chemical etching method | Stable due to single-material work as a substrate | Expensive, time-consuming, and poor mechanical strength | [41] |
Spray coating method | Simple operation procedure | Consumed too many coating materials and did not have strong binding | [42] |
Combined methodology of UV lithography and anodization for master mold fabrication | Very cheap, simple, high throughput, mechanically stable | Stamping only possible for flexible polymers | Current work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasankar, A.; Venkatesan, R.; Jeong, D.-Y.; Oh, T.H.; Kim, S.-C.; Vetcher, A.A.; Ramasundaram, S. Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films. Polymers 2024, 16, 2344. https://doi.org/10.3390/polym16162344
Balasankar A, Venkatesan R, Jeong D-Y, Oh TH, Kim S-C, Vetcher AA, Ramasundaram S. Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films. Polymers. 2024; 16(16):2344. https://doi.org/10.3390/polym16162344
Chicago/Turabian StyleBalasankar, Athinarayanan, Raja Venkatesan, Dae-Yeong Jeong, Tae Hwan Oh, Seong-Cheol Kim, Alexandre A. Vetcher, and Subramaniyan Ramasundaram. 2024. "Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films" Polymers 16, no. 16: 2344. https://doi.org/10.3390/polym16162344
APA StyleBalasankar, A., Venkatesan, R., Jeong, D.-Y., Oh, T. H., Kim, S.-C., Vetcher, A. A., & Ramasundaram, S. (2024). Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films. Polymers, 16(16), 2344. https://doi.org/10.3390/polym16162344