Effect of Cooling Temperature on Crystalline Behavior of Polyphenylene Sulfide/Glass Fiber Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PPS/GF Composites
2.2. Characterization
2.2.1. Morphology Analysis
2.2.2. Crystallographic Analysis
2.2.3. Thermal Analysis
2.2.4. Mechanical Testing
3. Results
3.1. Crystallization Behavior of PPS/GF Composites
3.2. Thermal Properties of PPS/GF Composites
3.3. Mechanical Properties
3.4. Fractured Morphology Analysis of PPS/GF Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Yu, Y.; Huang, H.; Yin, X.; Peng, J.; Sun, J.; Huang, L.; Tang, Y.; Wang, L. High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics. Compos. B Eng. 2019, 174, 106790. [Google Scholar] [CrossRef]
- Manjunath, A.; Manjushree, H.; Nagaraja, K.C.; Pranesh, K.G. Role of E-glass fiber on mechanical, thermal and electrical properties of polyphenylene sulfide (PPS) composites. Mater. Today Proc. 2022, 62, 5439–5443. [Google Scholar] [CrossRef]
- Quan, D.; Liu, J.; Yao, L.; Dransfeld, C.; Alderliesten, R.; Zhao, G. Interlaminar and intralaminar fracture resistance of recycled carbon fibre/PPS composites with tailored fibre/matrix adhesion. Compos. Sci. Technol. 2023, 239, 110051. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Park, S.-M.; Lee, E.-S.; Kim, M.-S.; Sim, J.-H.; Bae, J.-S. A study on properties of the glass fiber reinforced PPS composites for automotive headlight source module. Compos. Res. 2016, 29, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Isaincu, A.; Mardavina, D.M.L. On the fracture toughness of PPS and PPA reinforced with Glass Fiber. Procedia Struct Intrgrity 2022, 41, 646–655. [Google Scholar] [CrossRef]
- Barbosa, L.C.M.; de Souza, S.D.B.; Botelho, E.C.; Cândido, G.M.; Rezende, M.C. Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Eng. Fail Anal. 2019, 102, 60–68. [Google Scholar] [CrossRef]
- Ricotta, M.; Sorgato, M.; Zappalorto, M. Tensile and compressive quasi-static behaviour of 40% short glass fibre—PPS reinforced composites with and without geometrical variations. Theor. Appl. Fract. Mech. 2021, 114, 102990. [Google Scholar] [CrossRef]
- Deng, J.; Song, Y.; Xu, Z.; Nie, Y.; Lan, Z. Thermal aging effects on the mechanical behavior of glass-fiber-reinforced polyphenylene sulfide composites. Polymers 2022, 14, 1275. [Google Scholar] [CrossRef]
- Solfiti, E.; Solberg, K.; Gagani, A.; Landi, L.; Berto, F. Static and fatigue behavior of injection molded short-fiber reinforced PPS composites: Fiber content and high temperature effects. Eng. Fail Anal. 2021, 126, 105429. [Google Scholar] [CrossRef]
- Zuo, P.; Benevides, R.C.; Laribi, M.A.; Fitoussi, J.; Shirinbayan, M.; Bakir, F.; Tcharkhtchi, A. Multi-scale analysis of the effect of loading conditions on monotonic and fatigue behavior of a glass fiber reinforced polyphenylene sulfide (PPS) composite. Compos. B Eng. 2018, 145, 173–181. [Google Scholar] [CrossRef]
- Zuo, P.; Tcharkhtchi, A.; Shirinbayan, M.; Fitoussi, J.; Bakir, F. Effect of thermal aging on crystallization behaviors and dynamic mechanical properties of glass fiber reinforced polyphenylene sulfide (PPS/GF) composites. J. Polym. Res. 2020, 27, 77. [Google Scholar] [CrossRef]
- Chen, G.; Mohanty, A.K.; Misra, M. Progress in research and applications of Polyphenylene sulfide blends and composites with carbons. Compos. B Eng. 2021, 209, 108553. [Google Scholar] [CrossRef]
- Montagna, L.S.; Kondo, M.Y.; Callisaya, E.S.; Mello, C.; Souza, B.R.D.; Lemes, A.P.; Botelho, E.C.; Costa, M.L.; Alves, M.C.d.S.; Ribeiro, M.V.; et al. A review on research, application, processing, and recycling of PPS based materials. Polímeros 2022, 32, e2022005. [Google Scholar] [CrossRef]
- Seki, Y.; Kizilkan, E.; Leşkeri, B.M.; Sarikanat, M.; Altay, L.; Isbilir, A. Comparison of the Thermal and Mechanical Properties of poly(phenylene sulfide) and poly(phenylene sulfide)-Syndiotactic polystyrene-Based Thermal Conductive Composites. ACS Omega 2022, 7, 45518–45526. [Google Scholar] [CrossRef]
- Oshima, S.; Higuchi, R.; Kato, M.; Minakuchi, S.; Yokozeki, T.; Aoki, T. Cooling rate-dependent mechanical properties of polyphenylene sulfide (PPS) and carbon fiber reinforced PPS (CF/PPS). Compos. A 2023, 164, 107250. [Google Scholar] [CrossRef]
- Vieille, B.; Ernault, E.; Delpouve, N.; Gonzalez, J.P.; Esposito, A.; Dargent, E.; Le Pluart, L.; Delbreilh, L. On the improvement of thermo-mechanical behavior of carbon/polyphenylene sulfide laminated composites upon annealing at high temperature. Compos. B Eng. 2021, 216, 108858. [Google Scholar] [CrossRef]
- Do Yeon Jeong, S.Y.Y.; Jung, C.-G.; Lee, J.; Kim, S.H.; Lee, P.-C.; Lee, H.W.; Ha, J.U. Comparison of polyphenylene sulfide composites having different processing temperatures and glass fibers. Elastomers Compos. 2019, 54, 308–312. [Google Scholar]
- Zuo, P.; Tcharkhtchi, A.; Shirinbayan, M.; Fitoussi, J.; Bakir, F. Multiscale physicochemical characterization of a short glass fiber-reinforced polyphenylene sulfide composites under aging and its thermo-oxidative mechanism. Polym. Adv. Technol. 2019, 30, 584–597. [Google Scholar] [CrossRef] [Green Version]
- Risteska, S.; Petkoska, A.T.; Samak, S.; Drienovsky, M. Annealing Effects on the Crystallinity of Carbon Fiber-Reinforced Polyetheretherketone and Polyohenylene Laminate Composites Manufactured by Laser Automatic Tape Placement. Mater. Sci. 2020, 26, 308–316. [Google Scholar] [CrossRef] [Green Version]
- ASTM Standard D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM Standard D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM Standard D7136; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Batista, N.L.; Rezende, M.C.; Botelho, E.C. Effect of crystallinity on CF/PPS performance under weather exposure: Moisture, salt fog and UV radiation. Polym. Degrad. Stab. 2018, 153, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Kwang Hee Lee, M.P.; Kim, Y.C.; Choe, C.R. Crystallization behavior of Polyphenyele sulfide (PPS) and PPS/carbon fiber composites. Polym. Bull. 1993, 30, 469–475. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Bai, Y.; Li, Z.; Cheng, B. C(60) as fine fillers to improve poly(phenylene sulfide) electrical conductivity and mechanical property. Sci. Rep. 2017, 7, 4443. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, L.; Sun, B.; Meng, S.; Chen, L.; Zhu, M. Effect of TiO2@SiO2 nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers. Prog. Nat. Sci. Mater. Int. 2015, 25, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Tao, X.; Kasai, H.; Oikawa, H.; Nakanishi, H. Size control for fullerene C60 nanocrystals during the high temperature and high pressure fluid crystallization process. Mater. Lett. 2007, 61, 1738–1741. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.-H.; Park, J.-H.; Park, M.; Joh, H.-I.; Ku, B.-C. Effect of curing poly(p-Phenylene sulfide) on thermal properties and crystalline morphologies. Adv. Chem. Eng. Sci. 2013, 03, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Nohara, L.B.; Nohara, E.L.; Moura, A.; Costa, M.L. Study of crystallization behavior of poly(phenylene sulfide). Polim. Cienica Tecnol. 2006, 16, 104–110. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Su, Z.; Xie, T. Effect of radiation-induced cross-linking on thermal aging properties of ethylene-tetrafluoroethylene for aircraft cable materials. Materials 2021, 14, 257. [Google Scholar] [CrossRef]
- Liu, P.; Dinwiddie, R.B.; Keum, J.K.; Vasudevan, R.K.; Jesse, S.; Nguyen, N.A.; Lindahl, J.M.; Kunc, V. Rheology, crystal structure, and nanomechanical properties in large-scale additive manufacturing of polyphenylene sulfide/carbon fiber composites. Compos. Sci. Technol. 2018, 168, 263–271. [Google Scholar] [CrossRef]
Cooling Temperature (°C) | (110, 200) | FWHM (110, 200) | Crystallite Size (nm) | CI a (%) |
---|---|---|---|---|
80 | 19.1 | 6.38 | 1.32 | 18.76 |
100 | 20.1 | 3.17 | 2.66 | 22.88 |
120 | 20.4 | 1.41 | 2.87 | 25.46 |
140 | 20.3 | 1.54 | 3.96 | 27.54 |
160 | 20.3 | 2.12 | 5.98 | 36.94 |
Cooling Temperature (°C) | Tm (°C) | ΔHm b (J/g) | Tc (°C) | ΔHc b (J/g) | Χc c (%) |
---|---|---|---|---|---|
80 | 281.67 | 16.65 | 233.51 | 18.67 | 24.6 |
100 | 281.83 | 17.86 | 233.88 | 20.10 | 26.4 |
120 | 281.67 | 15.92 | 233.01 | 17.57 | 23.4 |
140 | 283.50 | 16.76 | 234.52 | 18.94 | 24.8 |
160 | 282.51 | 19.34 | 234.19 | 20.39 | 28.6 |
Cooling Temperature (°C) | 5% Weight Loss Temperature, TD5% (℃) | TD1 (°C) | TD2 (°C) |
---|---|---|---|
80 | 500.72 | 417.75 | 574.31 |
100 | 505.32 | 420.56 | 577.84 |
120 | 503.41 | 421.79 | 577.84 |
140 | 509.08 | 421.84 | 583.70 |
160 | 512.87 | 426.95 | 583.97 |
Cooling Temperature (°C) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation @ Break (%) |
---|---|---|---|
80 | 127.29 ± 4.34 | 11.33 ± 0.74 | 4.87 |
100 | 129.51 ± 2.23 | 12.21 ± 1.47 | 5.11 |
120 | 133.35 ± 2.14 | 12.66 ± 0.60 | 5.58 |
140 | 135.73 ± 2.34 | 13.59 ± 1.45 | 5.66 |
160 | 140.32 ± 2.30 | 14.09 ± 1.62 | 6.09 |
Cooling Temperature (°C) | Flexural Strength (MPa) | Flexural Modulus (GPa) |
---|---|---|
80 | 161.95 ± 2.77 | 10.13 ± 0.19 |
100 | 168.52 ± 0.12 | 10.14 ± 0.13 |
120 | 171.68 ± 1.38 | 10.15 ± 0.03 |
140 | 180.63 ± 1.37 | 10.25 ± 0.06 |
160 | 189.42 ± 1.54 | 10.29 ± 0.18 |
Cooling Temperature (°C) | E′ at 40 °C (GPa) | Tg (°C) | max |
---|---|---|---|
80 | 8.36 | 122.81 | 0.094 |
100 | 9.05 | 127.73 | 0.088 |
120 | 8.25 | 119.76 | 0.085 |
140 | 8.81 | 124.48 | 0.088 |
160 | 10.85 | 128.25 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.-H.; Cho, B.-G. Effect of Cooling Temperature on Crystalline Behavior of Polyphenylene Sulfide/Glass Fiber Composites. Polymers 2023, 15, 3179. https://doi.org/10.3390/polym15153179
Hong S-H, Cho B-G. Effect of Cooling Temperature on Crystalline Behavior of Polyphenylene Sulfide/Glass Fiber Composites. Polymers. 2023; 15(15):3179. https://doi.org/10.3390/polym15153179
Chicago/Turabian StyleHong, Seo-Hwa, and Beom-Gon Cho. 2023. "Effect of Cooling Temperature on Crystalline Behavior of Polyphenylene Sulfide/Glass Fiber Composites" Polymers 15, no. 15: 3179. https://doi.org/10.3390/polym15153179
APA StyleHong, S.-H., & Cho, B.-G. (2023). Effect of Cooling Temperature on Crystalline Behavior of Polyphenylene Sulfide/Glass Fiber Composites. Polymers, 15(15), 3179. https://doi.org/10.3390/polym15153179